51
서울대학교 이동통신연구실 1 MIMO (Space-Time Processing)

MIMO (Space-Time Processing)ocw.snu.ac.kr/sites/default/files/NOTE/10358.pdf · 2018. 1. 30. · • S. H. Nam and K. B. Lee, “Transmit Power Allocation for an Extended V-BLAST

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • 서울대학교 이동통신연구실 1

    MIMO (Space-Time Processing)

  • 서울대학교 이동통신연구실

    • Fundamentals• V-Blast

    • Improved V-Blast

    • Simplified MIMO

    • Detection schemes

    • Performance in Correlated channel

    • Detector implementations

    • MIMO Channel capacity

    • Waterfilling & SVD

    • MIMO Capacity

    Contents

  • 서울대학교 이동통신연구실 3

    Fundamentals

    • Higher data rate is needed for next generation

    communications in restricted bandwidth.

    More spectrum efficient modulation technique

    • Higher order modulation schemes: Vulnerable to noise

    and interference.

    • Multiple Input Multiple Output (MIMO) System

    Using multiple antennas at Tx & Rx

    Increase channel capacity and enhance performance without

    bandwidth expansion.

  • 서울대학교 이동통신연구실 4

  • 서울대학교 이동통신연구실 5

    11 12 131 1 1

    2 21 22 23 2 2

    3 3 331 32 33

    y x n

    y x n

    y x n

    y H x n

    h h h

    h h h

    h h h

    x1

    x3

    x2 y2

    y3

    y1h11

    h31

    h21 X

    X

    X

  • 서울대학교 이동통신연구실 6

    h11

    h13

    h12 X

    X

    X

    g11

    g13

    g12+ x1

    h12

    h32

    h22X

    X

    X

    g11

    g13

    g12+ 0

    21

    31

  • 서울대학교 이동통신연구실 7

    If n=0,

    11 12 13-1

    21 22 23

    31 32 33

    g g g

    H G g g g

    g g g

    -1 -1 ( )n

    H y H Hx

    x

    11 12 13

    21 22 23

    31 32 33

    -111 12 13

    1 0 0

    h h h

    h h h

    h h h

    GH H H

    g g g

  • 서울대학교 이동통신연구실 8

    V-Blast: Successive Interference Cancellation (MUD)

    )(tr

    )(1 tr

    )(1 ts

    )(2 tr

    )(2 ts

    )(1 tb )(2 tb

    )(3 tr

  • 서울대학교 이동통신연구실 9

    Step 1. Order the transmitted signal

    Step 2. Null the interference

    Step 3. Detect the desired signal

    Step 4. Cancel the detected signal from received

    vector

    V-BLAST (Ordered Successive Interference Cancellation)

  • 서울대학교 이동통신연구실 10

    < V-BLAST Receiver for 4 Tx-Antenna Systems >

    LDor

    MMSE

    Decision for

    Tx 1

    NullingTx 2, 3, 4

    -

    1st Layer 2nd Layer

    +Re-

    Generation

    -+

    Re-Generation

    -+

    Re-Generation

    LDor

    MMSE

    Decision for

    Tx 3

    NullingTx 4

    LDor

    MMSE

    Decision for

    Tx 2

    NullingTx 3, 4

    Decision for

    Tx 4

    3rd Layer 4th Layer

    Combiner

  • 서울대학교 이동통신연구실 11

    • Shortcomings of V-BLAST receiver

    - Diversity order

    - Error propagation

  • 서울대학교 이동통신연구실 12

    • Overall BER (Assuming perfect symbol cancellation)

    Vki: nulling vector at the ith stage

    • Cost Function

    • Differentiation of J w.r.t. transmit power

    22

    1 1

    1 1( ) ( )

    i

    i

    i

    N Nk

    b b k

    i in k

    PP e P e f

    N N

    v

    1 2

    1

    ( , , , ) ( )i

    N

    N b k

    i

    J P P P P e P N

    ikP

    22

    , ( 1, 2,..., )i

    ii

    k

    kn k

    PdfN i N

    dP

    v

    Improved V-Blast: Optimal TPA

  • 서울대학교 이동통신연구실 13

    Improved V-Blast: Effects of Detection Ordering and TPA

    • Small diversity order for low detection stage Low detection stages dominate the overall performance

    0 2 4 6 8 10 12 14 16 18 20 22 2410

    -6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    Stage 4

    Stage 3

    Stage 2

    Stage 1

    Without ordering, without TPA

    BE

    R

    SNR per receive antenna [dB]

  • 서울대학교 이동통신연구실 14

    Improved V-Blast: Effects of Detection Ordering and TPA

    0 2 4 6 8 10 12 14 16 18 20 22 2410

    -6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    Stage 4

    Stage 3

    Stage 2

    Stage 1

    Without ordering, without TPA

    With ordering, without TPA

    BE

    R

    SNR per receive antenna [dB]

    • Detection ordering (1) shifts BER curves, and

    (2) improves the 1st and 2nd stages, & degrades the 4th stage

  • 서울대학교 이동통신연구실 15

    Improved V-Blast: Effects of Detection Ordering and TPA

    0 2 4 6 8 10 12 14 16 18 20 22 2410

    -6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    Stage 4

    Stage 3

    Stage 2

    Stage 1

    Without ordering, without TPA

    With ordering, without TPA

    With ordering, with TPA

    BE

    R

    SNR per receive antenna [dB]

    • TPA shifts the BER curves of the 1st and 2nd stages.

  • 서울대학교 이동통신연구실 16

    Improved V-Blast: Average Power of Optimal TPA

    1 2 3 40.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    Avera

    ge t

    ran

    sm

    it p

    ow

    er

    Detection stages

    • Assign more transmit power to earlier detection stages

    Compensation of low diversity orders at low stages

  • 서울대학교 이동통신연구실 17

    • Post-detection SNR for the kith Symbol

    • BER for the kith Substream

    • S. H. Nam and K. B. Lee, “Transmit Power Allocation for an Extended V-BLAST

    System,” IEEE T-Comm, July 2004, pp 1074-1079.

    22

    i

    i

    i

    k

    k

    n k

    P

    v

    ( ) ( )i ib k k

    P e f

    Improved V-Blast: Tx Power Allocat’n for min BER

    1x

    kx

    Tnx

    1p

    kp

    Tnp

  • 서울대학교 이동통신연구실 18

    Improved V-Blast: BER

    • SNR gain at BER = 10-3: 4 dB (ZF), 2.5 dB (MMSE)

    0 2 4 6 8 10 12 14 16 18 20 22 24 2610

    -6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    V-BLAST without TPA, ZF

    V-BLAST with TPA, ZF

    V-BLAST without TPA, MMSE

    V-BLAST with TPA, MMSE

    ML detection

    BE

    R

    SNR per receive antenna [dB]

  • 서울대학교 이동통신연구실 19

    Detection Schemes

    • V-Blast

    • ML Receiver

    • LD (Linear Decorrelator) Receiver

    • MMSE Receiver

  • 서울대학교 이동통신연구실 20

    • ML Receiver

    - Select the most likable transmitted vector.

    - Complexity problem

    • LD Receiver

    - Null the interference signal using pseudo-inverse

    matrix.

    nHHHx

    yHHHr

    HH

    HH

    N

    P 1

    1

  • 서울대학교 이동통신연구실 21

    • MMSE Receiver

    - minimize mean squared error due to interference signal

    and noise.

    1

    2H H HP P EN N

    r H H H n n y

  • 서울대학교 이동통신연구실 22

    < N=M=4 case > < N=M=6 case >

    • BER Comparison between the Existed Schemes

  • 서울대학교 이동통신연구실 23

    - V-BLAST receivers outperforms MMSE or LD

    receivers in terms of BER performance.

    - Number of antennas

    BER of LD

    BER of MMSE …

    BER of V-BLAST and ML

    - Development of low complexity & high performance

    receiver is needed.

  • 서울대학교 이동통신연구실 24

    • Channel Model

    : Specular channel component : Scattered channel component (i.i.d.)

    = Ricean Factor

    T

    sp r t

    sc

    a a

    K

    H

    H

    MIMO Channel Models

  • 서울대학교 이동통신연구실 25

    MIMO Performance in Correlated Channel

    • Environments

    • Channel Model

    • QPSK Modulation

    • SNR per Rx antenna

  • 서울대학교 이동통신연구실 26

    < N=M=4 case > < N=M=6 case >

    • Average Capacity

  • 서울대학교 이동통신연구실 27

    Blank page

  • 서울대학교 이동통신연구실 28

    Posterior probabilities

    signal was transmitted , 1,2, ,

    After receiving the , the receiver choose that maximizes

    Maximum a posterior probability (MAP)

    : a prior probabili

    m

    m m

    m m

    m

    m

    P s r m M

    r s p s r

    f r s p sp s r

    f r

    p s

    1

    ty of the th signal.

    M

    m m

    m

    m

    f r f r s p s

    MIMO receiver 구현ML 설명 (7.5.3 The Optimum Detector, Proakis book)

  • 서울대학교 이동통신연구실 29

    2

    2

    0

    10

    2

    0

    10

    2

    1

    1exp

    1

    2

    Choose which maximizes

    Choose which minimizes

    N

    N

    m k mk

    k

    N

    m k mk

    k

    m m

    N

    m k mk

    k

    f r s r s NN

    Nln f r s ln N r s

    N

    s f r s

    s r s

    1 - signals are equally probable, .

    - : independent of the transmitted signals.

    - Choose which maximizes : ML criterion

    : likelihood fn.

    m

    m m

    m

    M p sM

    f r

    s f r s

    f r s

    ML

    MAP simplification

    2

    22

    2

    1: e

    2

    u mkr s

    mf r s

    참조

  • 서울대학교 이동통신연구실 30

    2 21 1 1

    2 2

    2

    2

    2

    Choose which maximizes 2

    : denote the region in the -dim space for which we decide

    was transmitted when is received.

    The probabilit

    N N N

    m k k mk mk

    k k k

    m m

    m m m

    m

    m

    D r s r r s s

    r r s s

    s r s s

    R N

    s r

    y of a decision error given that was transmitted.

    cm

    m

    m mR

    s

    P e s f r s dr

    Prob. of error

  • 서울대학교 이동통신연구실 31

    1

    1

    1

    1

    11

    is minimized by selecting if

    for .

    cm

    M

    m

    m

    M

    mRm

    M

    R mm

    m

    m

    m k

    P e P e sM

    f r s dr

    f r s drM

    P e s

    f r s f r s m k

    (M signals are equally probable.)

    BPSKThreshold

    s2 s1

    QPSK

  • 서울대학교 이동통신연구실 32

    7.6 Probability of Error for Signal Detection in Additive White Gaussian Noise

    2

    0

    2

    0

    1

    1

    0

    2

    0

    1

    1

    b

    b

    b

    r N

    r N

    r s n n

    f r s eN

    f r s eN

  • 서울대학교 이동통신연구실 33

    2

    0

    20

    2

    0

    0

    1 1

    0

    0

    22

    2

    2

    0

    1

    1

    2

    1

    2

    2

    b

    b

    b

    r N

    Nx

    x

    N

    b

    P e s p r s dr

    e drN

    e dx

    e dx

    QN

  • 서울대학교 이동통신연구실

    Simplified Maximum Likelihood Detection

    Scheme 1

    • H. Z. Sung, J. W. Kang, and K. B. Lee, "A Simplified Maximum Likelihood Detection for

    MIMO Systems," IEICE Transactions on Communications , vol. E98-B, no. 8, pp. 2241-2244,

    Aug. 2006.

  • 서울대학교 이동통신연구실 35

    • Conventional ML detection scheme

    – Performs likelihood test with all possible symbol

    • Simplified ML detection scheme

    – Step 1 & 2: Chooses candidate symbol combinations among all

    possible symbol combinations

    – Step 3: Performs likelihood test with candidate symbol

    combinations

    A Simplified ML Detection Scheme

  • 서울대학교 이동통신연구실 36

    - Rx signal: r

    - Nulling

    Nulling Matrix

    Tentative statistic

    - Tentative decision

    The L closest elements of constellation point set to

    -> L probable symbols for antenna symbol

    11

    2

    :

    :

    T

    n N

    H H

    M

    y y y

    P P

    N N

    y G r

    G H H H I

    G

    y

    ,ˆ arg minn n

    s S

    x y s

    • Step 1: Select probable symbols for each symbol

    < Example: Probable

    symbols >

    (N=4 and L=2)

    1,1x̂ 1,2x̂

    2,2x̂

    3,1x̂ 3,2x̂

    4,1x̂ 4,2x̂

    : Probable Symbols

    2,1x̂

    ny

    nx

  • 서울대학교 이동통신연구실 37

    - Cancellation

    - Nulling

    where and

    - Slicing & Constructing a candidate symbol combination

    , ,ˆ

    n n n

    Px

    N r r h

    , , ,1 , , 1 ,

    T

    n n n N n ny y y G r

    1

    2H H

    n n n n M

    P P

    N N

    G H H H I 1 1 1 n n n N H h h h h

    , , , ,ˆ ( ) 1, 2, , 1n i n ix Q y i N

    n x , ,1ˆ[ nx , ,2ˆ nx , , 1ˆ n nx ,ˆ nx , ,ˆn nx , , 1ˆ ]T

    n Nx

    • Step 2: Determine a candidate symbol combination

    for each probable symbol from step 1

    < Example: Candidate symbol combinations >

    (N=4 and L=2)

    1,1x̂ 1,2x̂

    2,2x̂

    3,1x̂ 3,2x̂

    4,1x̂ 4,2x̂

    2,1x̂1,1,1x̂

    1,1,2x̂

    1,1,3x̂

    1,2,1x̂

    1,2,2x̂

    1,2,3x̂

    2,1,1x̂

    2,1,2x̂

    2,1,3x̂

    2,2,1x̂

    2,2,2x̂

    2,2,3x̂

    3,1,1x̂ 3,2,1x̂

    3,1,2x̂

    3,1,3x̂ 3,2,3x̂

    3,2,2x̂

    4,1,1x̂ 4,2,1x̂

    4,1,2x̂ 4,2,2x̂

    4,1,3x̂ 4,2,3x̂

  • 서울대학교 이동통신연구실 38

    - The likelihood function

    - Decision value

    ,

    1ˆexp ( ) ,

    det( )nN

    N

    P

    N

    r H x

    I

    1,..., and 1,...L n N

    ,,

    ˆˆarg min

    nn

    P

    N

    xr H x

    ,ˆ( )np r | x ,ˆ( )

    H

    n

    P

    N r H x

    ˆ x

    • Step 3. Determine the final decision value among

    candidate symbol combinations

    < Example: Decision value >

    (N=4 and L=2)

    2,2x̂

    2,2,1x̂

    2,2,2x̂

    2,2,3x̂

    2x̂

    1̂x

    3x̂

    4x̂

  • 서울대학교 이동통신연구실 39

    BER versus average SNR: N=M=4, QPSK

  • 서울대학교 이동통신연구실 40

    • Example: Number of multiplications of the

    proposed scheme and conventional detection

    scheme for QPSK modulation (C=4)

    N=M=4, L=4, and QPSK modulation: 72%

    complexity reduction

    The proposed schemeV-BLAST ML

    L=1 L=2 L=3 L=4

    N=M=4 1,008 1,122 1,296 1,440 467 5,120

    N=M=6 4,632 5,100 5,568 6,036 1,955 172,032

    Computational Complexity

  • 서울대학교 이동통신연구실

    Simplified Maximum Likelihood Detection

    Scheme 2

    • J. W. Kang and K. B. Lee, "A Multi-stage ML Detection for MIMO Systems," conditionally

    accepted to IEICE Transactions on Communications in May 2005.

  • 서울대학교 이동통신연구실 42

    * The number of surviving symbols; L = 2

    1x

    2x

    3x

    4x

    Interfering sub-streams

    : Objective sub-stream

    1x

    2x

    3x

    4x

    Interfering sub-streams

    1,1s

    1,4s1,2s 1,3s

    : Candidate symbols

    1x

    2x

    3x

    4x

    Interfering sub-streams

    1,1s

    1,4s1,2s 1,3s

    : Candidate symbols

    Perform likelihood test with 1 1,1 1,2 1,3 1,4, , , S s s s s

    < The 1st stage >

    1x

    2x

    3x

    4x

    Interfering sub-streams

    1,1y 1,2y

    : Candidate symbols

    : Surviving symbols

    * C candidate symbols L surviving symbols

  • 서울대학교 이동통신연구실 43

    * CL candidate symbol combinations

    L surviving symbol combinations

    1x

    2x

    3x

    4x

    Interfering sub-streams

    1x

    2x

    3x

    4x

    Interfering sub-streams

    2,1s

    2,2s 2,5s 2,6s 2,7s 2,8s

    2,3s 2,4s

    1x

    2x

    3x

    4x

    Interfering sub-streams

    2,1s

    2,2s 2,5s 2,6s 2,7s 2,8s

    2,1y 2,2y

    Perform likelihood test with 2 2,1 2,2 2,3 2,8, , , ... ,S s s s s

    1x

    2x

    3x

    4x

    Interfering sub-streams

    < The 2nd stage >

  • 서울대학교 이동통신연구실 44

    BER versus average SNR (N=M=4), QPSK

  • 서울대학교 이동통신연구실 45

    Capacity in band-limited, power-limited

    gaussian channel

    Y X Nk k k

    C I X Y X E X Pk k k k ( ; ) : [ ] Gaussian, 2

    CP

    1

    212 2log ( )

  • 서울대학교 이동통신연구실 46

    MIMO Channel Capacity

    • Capacity per Hz

    • Independent data stream, equal power allocation

    – CSI not available in Tx

    2 2log det H H

    M X X

    PC E

    N

    I H K H K XX

    2 2log det HM

    PC

    N

    I HH

  • 서울대학교 이동통신연구실 47

    • At large n and high SNR

    Capacity grows linearly with the number of antenna

    e

    PnC

    22log

  • 서울대학교 이동통신연구실 48

    Water Filling Algorithm in Parallel Channels

    • K independent channels in parallel

    – independent Gaussian noise for each channel

    • Constraint on total transmit power

    Y3

    Y2

    Y1

    Z1

    X2

    X1

    Z2

    Z3

    X3

    h1

    h3

    h2

    , 1,2,...,

    ~ (0, )

    j j j j

    j j

    Y h X Z j k

    Z N

    N

    E X Pjj

    k2

    1

  • 서울대학교 이동통신연구실 49

    Parallel Gaussian Channel (Cont.)

    • It’s achieved when

    • Maximize capacity using Lagrange multipliers

    • Differentiating with respect to

    CP

    NEX P P

    i

    k

    i

    i

    i i

    1

    21

    1

    2log( ) , where P i

    ( , ,..., ) ~X X X k1 2

    0 0

    0 0

    0 0

    N 0,

    P

    P

    P

    1

    2

    k

    L

    N

    MMMM

    O

    Q

    PPPP

    F

    H

    GGGG

    I

    K

    JJJJ

    J P P PP

    NP Pk

    i

    i

    i( , ,..., ) log( ) ( )1 21

    21

    Pi

  • 서울대학교 이동통신연구실 50

    Parallel Gaussian Channel (Cont.)

    • Power must be non-negative

    1

    2

    10

    1

    2

    1

    2

    P N

    P N

    P N

    i i

    i i

    i i

    FHG

    IKJ

    ,

    P Ni i ( ) +

    ( ) N Pi

    Power

    Channel 1 Channel 3Channel 2

    P2

    N2

    N3

    N1

    P1

  • 서울대학교 이동통신연구실 51

    Water Filling & SVD for max capacity

    • By decoupling transformation, MIMO channel is

    transformed into parallel SISO channel

    D : eigenvalues of HH2 HH UDV H ,

    Y X N Y X N U HV D UH H( )

    V

    Decoupling

    Transform

    Tnp

    1p

    kp

    1s

    ks

    Tns

    H

    UH

    Decoupling

    Transform

    Tn Rn

    1

    ~S

    kS~

    TnS~