Minimization of torsional oscillation of multi-storey ...library.tee.gr/digital/m2368/m2368_papadopoulos.pdf · μεταλλικών αντισεισμικών ... το μείζον

Embed Size (px)

Citation preview

  • 3o &

    57 , 2008 1901

    /

    Minimization of torsional oscillation of multi-storey asymmetrical RC buildings by placement of Special Anti-seismic Steel

    Elements

    1, 2

    : / . , , , . , . /, (....). , . , . , , .... . ABSTRACT: How a RC multistory building behaves and reacts on an earthquake very much depends on the dimensions and the topology of the stiffening elements of the building. Lack of symmetry on certain building causes significant torsional oscillation which in turn results in failure of structural elements mostly on the perimeter of the buildings. All modern regulations take this torsional asymmetry of the buildings into consideration and introduce special and more detailed analyses and calculation procedures to face it. This paper investigates the possibility reducing the possible torsion of such asymmetrical multistory RC buildings by introducing Special anti Seismic Steel Elements (SaSSEs) at pre-selected locations. For the purpose of selecting of the performance characteristics of the SaSSEs, a procedure based on the ultimate postelastic displacements is being utilized. 1 . , , ..., email: [email protected] 2 . , , ..., email: [email protected]

  • 2

    , , . (Kelly J. M. 1979, Wenlihhan Heisha 2007). (Eurocode 2004, FEMA 2000). ( ) . , . , () . , , (A 2003). / (), . , (), (Antonucci R. 2003, Sundararaj P. 2004, Verganelakis V. 2004). , . .

    ) ) ) 1. ) , ) ) . . ,

  • 3

    . . (Bergman M. 1987, Marioni A. 1996 1999, Chang C. 1993, Tremblay R. 1993, Nims K. 1993). , .

    . , ( . 1999), - .

    , . .

    2. ( PFD). , (Pall A. S. 1982) ( 2). , . , . ( . 1996, Papadopoulos P. 2002, . 1999), , . , . . , , 30% .

  • 4

    / (....). :

    PFD, , .

    , /, . , , , . , . , . , . , : x-x :

    - (Q- , F ) = 0 (Q- , F ) = 0

    y-y :

    y-y (Q- , F ) = 0 (Q- , F ) = 0

    , . :

    Q- Q+Q. ( 2 )

    Q- Q Q , .

    (1)

  • 5

    (2) : 1.

    2. , .

    3. , .

    (1) :

    x-x ( 4) : : F = Q- Q + Q (3.1) : M = M + M => F yi = Q yi + Q yi (3.2) y-y ( 4) : : F = Q- Q +Q (3.3) : M = M + M => Fxi = Q xi + Q xi (3.4)

    ) ) 4. ) x-x ) y-y. (3) () , . ( 3.)

    ) ) ) 3. ) , ) ) . :

    Vo. (F).

    max (/) .

    (3)

  • 6

    :

    1.

    2. (i max) .

    3. ( ).

    , , - () (Q). Q / F., ( ), .

    , ( ,), (2) :

    , 5. , . 20 m x 12 m 3.0 m 4.0 m . ( ) g=3.5 kN/m2 q=5.0 kN/m2.

    5. .

  • 7

    (PushOver) SAP 2000, 5. : G+0,3Q = 10 kN/m , PushOver . ( 1). max=2,0 %. ():

    () , . x-x y-y - , :

    max. , , 6.

    6. /. , .

  • 8

    ():

    (PFD), . ( 2). .

    ) . ) .

    ) . ) . 7. . 1 , , , , (3.1) (3.3):

    Q F - Q.

    1. ,

    .

    -

    . F

    Fx

    F.

    Q

    Q

    4 0,29 1088 1088 588 500 3 0,33 1209 2296 1241 1055 2 0,23 846 3142 1698 1444 1 0,15 558 3700 2000 1700

    Vox 1 3700

  • 9

    -

    . F

    Fy

    F.

    Q

    Q

    4 0,29 1088 1088 588 500 3 0,33 1209 2296 1241 1060 2 0,23 846 3142 1698 1444 1 0,15 558 3700 2000 1700

    Voy 1 3700

    , ( ). (3.2) (3.4) (1) (3) . (2) . , 12 . . 1 1 (Q = 600 kN ) 1 1200 kN.

    2. .

    - . yi

    (Fyi) M.

    M M Q / Q Q / Q 4 6 6526 6526 3528 2998 250 / 250 260 / 260 3 6,615 7995 14521 8211 6310 529 / 526 530 / 530 2 6,615 5596 20117 11236 8881 704 / 740 710 / 750 1 6 3347 23464 12000 11464 745 / 955 750 / 960

    - . xi

    (Fxi) M.

    M M Q / Q Q / Q 4 6 6526 6526 3528 2998 250 / 250 270 / 270 3 9,077 10970 17496 11266 6230 744 / 311 800 / 350 2 9,077 7679 25175 15417 9758 956 / 488 1000 / 500 1 10 5578 30753 20000 10753 1162 / 538 600-600 / 550

    , .

  • 10

    , .

    1 . 2 .

    3 . 4 .

    8. . (-)

    (-) ( 9). . ( 7) , ( 8).

    9. .

  • 11

    , , 10.

    10. (-), .

    . 11 . (-) ().

    11. x y . 12 . 2,0% .

  • 12

    12. x y . 13 . y, .

    13. x y . 14, , - (PushOver curve) . .

    14. x y .

  • 13

    . , . .

    () /. , . , , . , . , .

    , , , :

    .

    .

    .

    Antonucci R., Balducci F., Castellano M., Ahmadi H., Goodchild I. and Fuller K. (2003),

    Seismic Retrofit of an Existing School Building by Means of Viscoelastic Dampers, Fifth National Conference on Earthquake Engineering, 26-30 May, Istanbul, Turkey.

    Bergman, D. M., and Goel, S.C., (1987), Evaluation of Cyclic Testing of Steel-Plate Devices for Added Damping and Stiffness, Report UMCE, 87-10, Dept. of Civil Eng., Univ. of Michigan, Ann Arbor.

  • 14

    CEN Eurocode 8 (2004), Design of structures for earthquake resistancePart 1, General rules, seismic actions and rules for buildings, Brussels.

    Chang K. C., Lai M. L., Soong T. T., Hao D. S. and Yen Y. C., (1993), Seismic behavior and design guidelines for steel frame structures with added viscoelastic dampers Report No. NCEER 93-0009, National Center of Earthquake Engineering Research, Buffalo, N.Y.

    FEMA 356 (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, DC.

    Kelly, J. M. et al. (1979) Aseismic Base Isolation, a Review, Proceedings of the 2nd U.S. National Conference on Earthquake Engineering, Stanford University, California, August 22-24, pp 823-837.

    Marioni A., (1996), development of a new type of hysteretic damper for the seismic protection of bridges, IV World Congress on Joint Sealing and Bearing Systems for Concrete Structures, Sacramento, USA - 29 Sept-2 Oct-1996.

    Marioni A., (1999), The use of hydraulic dampers for the protection of the structures from the seismic risk: an outstanding example, International Post-Smirt Conference Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control of Vibration of Structures, Cheju, Korea 23/25 Aug-1999.

    Nims D.K., Richter P.J., Bachman R.E., (1993), The Use of the Energy Dissipating Restraint for Seismic Hazard Mitigation Earthquake Spectra, Special Issue, Vol. 9, No.3, EERI.

    Pall A. S. and Marsh C. (1982), Seismic response of friction damped braced frames. J. Structure Div., 108_6_, pp. 13131323.

    Papadopoulos P. and Athanatopoulou A. (2002), Seismic behaviour of dual systems with in-plane discontinuities, 12th ECEE, London, UK.

    SAP2000, 2003. Integrated Finite Element Analysis and Design of Structures 2003, Computers and Structures Inc., Berkeley, USA.

    Sundararaj P. and Pall R. T. (2004), Seismic Control of Federal Electronics Research Building, Ottawa, 13th World Conference on Earthquake Engineering, Vancouver, Canada.

    Tremblay R., Stiemer S.F., (1993), Energy dissipation through friction bolted connections in concentrically braced steel frames, ATC 17-1 Seminar on Seismic Isolation, passive energy dissipation and active control, Vol 2, 557-568.

    Verganelakis V. and Pall R. T. (2004), Hightech Seismic Design of Le Nouvel Europa, Montreal, 13th World Conference on Earthquake Engineering, Vancouver, Canada.

    Wenlihhan Heisha (2007), Recent Development on Seismic Isolation, Energy Dissipation, and Control for Structures in China. EERTC, Guangzhou University, China.

    . . (1996), , 12 , , , . 295 - 305.

    A (2003), - 2003, (....) .

    ., ., . ., (1999), , 13 , , , . 306-313.

    . . (1999), . 13 , , , . 314-323.