29
IEEE MQ: WIMNACT-45 Takumi Ohashi 1* , Kohei Suda 2 , Seiya Ishihara 2 , Naomi Sawamoto 2 , Shimpei Yamaguchi 1 , Kentaro Matsuura 1 , Kuniyuki Kakushima 1 , Nobuyuki Sugii 1 , Akira Nishiyama 1 , Yoshinori Kataoka 1 , Kenji Natori 1 , Kazuo Tsutsui 1 , Hiroshi Iwai 1 , Atsushi Ogura 2 , and Hitoshi Wakabayashi 1 1 Tokyo Institute of Technology 2 Meiji University MoS 2 film thinning on high-temperature sputtering for enhancement-mode nMOSFETs

MoS2 film thinning on high-temperature sputtering for ... · Sputtering at 300 °C High resistance at the surface owing to crystallinity difference Four-probe method. MoS 2 film on

  • Upload
    lydien

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

IEEE MQ: WIMNACT-45

Takumi Ohashi1*, Kohei Suda2, Seiya Ishihara2, Naomi Sawamoto2, Shimpei Yamaguchi1,Kentaro Matsuura1, Kuniyuki Kakushima1, Nobuyuki Sugii1, Akira Nishiyama1,

Yoshinori Kataoka1, Kenji Natori1, Kazuo Tsutsui1, Hiroshi Iwai1, Atsushi Ogura2, and Hitoshi Wakabayashi1

1Tokyo Institute of Technology2Meiji University

MoS2 film thinning on high-temperature sputtering for enhancement-mode

nMOSFETs

More Moore, More than Moore

Moore’s Law since 1965“The number of transistors on integrated circuits

doubles approximately every two years.”Gordon E. Moore, 1965

2000 2010 2020 2030 2040 2050108109

1010101110121013101410151016

Year

Num

ber o

f Tra

nsis

tors

(/cm

2 )

Moore’s law slope

Intel, 2014Intel, 2012

42 Million Tr. 2.3 Billion Tr.

Pentium 42000

Core i72011

Limitations of conventional siliconMobility Performance indicator of how fast electrons can move

e.g., related to the clock speed of PC

0 2 4 6 8300

350

400

450

500

Thickness of Channel (nm)

Mob

ility

(cm

2 /Vs)

K. Uchida, et al., (2002).

Up to nowFuturen

n p

Thin and high mobility are needed at the same time

Our solution- 2D material with sputtering -

2D material for future transistorsMolybdenum disulfide (semiconductor)utilized as solid lubricant so far

MoS2

Promising material for ultra-thin transistor

・Abundant・Flexible・Transparent・High heat resistivity

0 5 10100

200

300

400

500

600

700

800

Thickness of Channel (nm)

Mob

ility

(cm

2 /Vs)

MoS2Silicon

B. Radisavljevic, et al., (2011).H. Wang, et al., (2012).

S. Das, et al., (2012).

B. Radisavljevic,

K. Uchida, et al., (2002).

et al., (2012).

0.65 nm

MoS2 formation process

Exfoliation (taking off MoS2 film from the crystal)

• Unsuitable for mass production• Difficult to control amount of impurities

Sputtering method• Suitable for mass production• Easy to control amount of impurities

Conventional

Our proposal

Current achievements

Thickness dependent growth of MoS2

1 10 1000.0

0.5

1.0

1.5

2.0

2.5

Thickness (nm)

RM

S R

ough

ness

(nm

)

Lateral layers

Perpendicularlayers

10 nmSiO2 MoS2

Perpendicularto substrate

5 nm

SiO2Carbon-Passivation

AFM(1 × 1 µm2)

Suitable for scaled CMOS

Different growth direction at 10nm< 10nm, lateral layer,

Carrier density of sput. deposited MoS2

0 10 20 301016

1017

1018

1019

1020

1021

Thickness (nm)

Car

rier D

ensi

ty (c

m−3

)

(high temp. sputtering)

B. Radisavljevic, et al, (2013).

This study

(exfoliation)

100

Decrease in carrier density (~ 10-3 times)

Laterallayers

Perpendicularlayers

CarrierDensity

1.1×1017

cm-31.5×1018

cm-3

Lateral layer region exhibits low carrier concentration

Nd of 1017 cm-3 with lateral growth

Future direction&

Conclusion

Threshold voltage expectation with high-temp. sput. deposited MoS2

H. Wang, et al, (2012).

B. Radisavljevic, et al, (2011).

Qf = 4.6×1012 cm-2

Qf/2

Qf/10

Wang, et al., (2012).

Radisavljevic, et al., (2011).

Gate OxideS D

InsulatorSubstrate

Gate

0.65 nm30 nm

1.5 μm

1 μm

MoS2

+Qf

Normally-off can be achieved with Nd=1017 cm-3, under Qf improvement below 1011 cm-2

Future society using MoS2 transistors

Paper-like display Transparent smartphone

Supercomputer into one laptop?

Conclusion

• Better crystallinity MoS2 film lateral to substrate can be obtained with high-temperature sputtering

• Carrier concentration of laterally grown MoS2 exhibit a low carrier density of 1017 cm-3

• With this carrier concentration, normally-off characteristics can be achieved, if Qf at the gate dielectrics is less than 1011 cm-2

以下、素材

Resistance depending on thickness

SiO2

Low Resistivity

High Resistivity

VI

20 40 60 80 100

103

104

105

Thickness (nm)

Res

istiv

ity (Ω

µm)

Sputtering at 300 °C

High resistance at the surface owing to crystallinity difference

Four-probe method

MoS2 film on various substrateoften utilized in silicon process

MoS2 Target

Substrate

RF

Acceleratedargon ions

Argon gas ~ 1 Pa

Sputtering method

Appropriate for mass production

以下、素材

0 10 20 301016

1017

1018

1019

1020

1021

Thickness (nm)

Car

rier D

ensi

ty (c

m−3

)

(high temp. sputtering)

B. Radisavljevic, et al, (2013).

This study

(exfoliation)

100

Decrease in carrier density (~ 10-3 times)

1 10 1000.0

0.5

1.0

1.5

2.0

2.5

Thickness (nm)

RM

S R

ough

ness

(nm

)Lateral layers

Perpendicularlayers

Orientation differences

10 nmSiO2 MoS2

Perpendicularto substrate

Laterallayers

Perpendicularlayers

1 10 1000.0

0.5

1.0

1.5

2.0

2.5

Thickness (nm)

RM

S R

ough

ness

(nm

)

AFM(1.0×1.0 mm)

Succeeded forming MoS2 layers

3 nm

5 nm

SiO2

CarbonPassivation

MoS2

Five layers of MoS2 are obtained→Ultra-thin transistor will be realized

MoS2

SiO2

Billions of transistors for prosperous society

Integrated Circuits(IC chip)

IT Products

Social Systems

Graphene – 2D material made from a pencil

Excellent mobility

Pencil (carbon) Graphite Graphene

Metal-like behavior, not semiconductor

Nobel Prize in Physics 2010

= 40000 (Silicon: 1400)

Transistors – greatest invention of 20th century

Nobel Prize in 1956 Shockley, Bardeen and Brattain

Vacuum tubeTransistor

(= one vacuum tube)Integrated Circuit(= billions of Tr.)

as novel substitute for vacuum tubeFirst transistor, invented in 1947

2014!!~1947

Transistors – made of semiconductors

Semiconductor

Electrical resistance LargeSmall

InsulatorConductorMetal RubberSilicon

n-typesemiconductor

p-typesemiconductor

Free electrons: abundant Free electrons: lacking

Add very few impurities

Why are transistors needed?

Transistor

Switch

InsulatorMetal n

n p

Voltageon

Electron

Switch on

n

n p

Voltageoff

Switch off

Binary digits: 1 & 0 are available

IC chip

Why are transistors needed?

All IT products and networking system are using transistors

Switch Binary digits: 1 & 0 are available

Transistor IC chip

If there is no transistorsin the world…

More integration makes more prosperous society