21
Mott FET ITRS Workshop on Emerging Research Logic Device Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue, 1,2 H. Yamada, 1 H. Sato, 1,2 and H. Akoh 1,2 1 National Institute of Advanced Industrial Science and Technology (AIST) 2 JST-CREST

Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

Embed Size (px)

Citation preview

Page 1: Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

Mott FET

ITRS Workshop on Emerging Research Logic DevicesBordeaux, France, September 21, 2012

A. Sawa1,2

S. Asanuma,1,2 P.-H. Xiang,1,2 I. H. Inoue,1,2

H. Yamada,1 H. Sato,1,2 and H. Akoh1,2

1National Institute of Advanced Industrial Science and Technology (AIST)2JST-CREST

Page 2: Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

Outline

・ Correlated electron system・ Mott metal-insulator transition・ Mott field effect transistor

Feature/potentialIssues/challenges

・ ExperimentsMn-oxidesNi-oxidesV-oxides

・ Summary

Page 3: Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

Correlated electron system

Band insulator

E

EF

electron

Mott insulator

t

One electron in an orbital due to on-site Coulomb repulsion (U > t)

E

EF

t: TransferU: Coulomb

Pauli’s ruleNo more than 2 electrons in an orbital

E

EF

U

upper Hubbardband (UHB)

lower Hubbardband (LHB)

electron orbital

Page 4: Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

Mott insulator-metal transition

E

EFW U

Mott insulator Correlated-electron metal

W < U W > UMott transition

W: band widthU: Coulomb energy

E

EF

WU W ∝ t

t

(t < U) (t > U)

electron

Electron solid

Electron liquid

Carrier doping, magnetic field, light, ・・・

Decrease in U (band gap)

10-4

10-2

100

102

104

0 100 200 300

Res

istiv

ity [

cm]

Temperature [K]

Ca1-x

CexMnO

3

x=0

x=0.02

x=0.03

Huge resistance change

Y. Tomioka, unpublished

Page 5: Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

T

Carrier density

Antiferromagnetic insulator

Critical point

Electronic phasesT

Carrier density

Paramagneticmetal

Quantum CP

(La,Sr)MnO3

250

200

150

100

50

0

ab

(

cm)

6040200

T (K)

La2-xBaxCuO4 x=0.09

0T

9T

Superconductivity

Changes in electronic, magnetic, and optical properties

Optical propertyMagnetizum

Ferromagnetic metal

Antiferromagnetic insulator

insulator

metal

Page 6: Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

Mott FET

Page 7: Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

Mott FET

Mott FET can control electronic, magnetic, and optical properties by electric field

Gate

Correlated-electron material

Drain Source

“ON” “ON” “ON”“OFF”

“electronic” “magnetic” “optical”

Page 8: Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

Mott transition/transistor‐Scaling?‐

Metal

ON

Insulator

OFFMott

transition

Number of electrons 103 electrons

4 nm

In principle, a nanometer-scale Mott insulator shows the Mott transition

No one has demonstrated

Electronsolid

Electronliquid

Page 9: Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

Kotliar et.al PRL 89, 046401 (2002).

First order phase transitionHysteretic behavior Nonvolatile(?)

V < 0

V > 0

electrode doped-Mott ins.

Oka, Nagaosa, PRL95, 266403 (2005)

Mott transition/transistor‐Nonvolatile?‐

No one has demonstrated

Page 10: Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

Matsubara et al., PRL99, 207401 (2007)

Reflectcance Electronic state

Karr rotationMagnetic state

Mott transition takes place within a few picoseconds

sample

probe

PBSHWP

Balance Reciever

0.2-3 T

delaypump

sample

probe

PBSHWP

Balance Reciever

0.2-3 T

delaypump

Sample: Gd0.55Sr0.45MnO3

Mott transition/transistor‐Fast switching?‐Ultrafast optical pump‐probe spectroscopy

Page 11: Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

Challenges

1013 1015

conventional gate dielectric (SiO2): ~1013/cm2

For the realization of a practical Mott transistor, • Correlated-electron materials with a MI transition attainable at

significantly lower carrier concentrations• High-k gate materials with a large breakdown strength

Ahn, Triscone, Mannhart, Nature 424, 1015 (2003).

1014 – 1015 cm-2

Page 12: Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

Electric double layer transistor

Page 13: Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

Outer Helmholtz plane

J. T. Ye et al., Nature Mater. 9, 125 (2010)

S. Ono et al., APL 94, 063301 (2009)

a large amount of carriers:1014 – 1015 cm-2(@2V)

Electric double layer transistor

Electrolyte/ionic liquid is used as gate dielectrics

Large capacitance: > 10 mF/cm2

Page 14: Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

CMO channel Thickness: ~ 30 nm W/L: ~ 10μm/100μm

+ −DEME+ cation TFSI - anion

GD S+ + + +−− − −

Ionic Liquid

Sepa-rator− − − −

CMO

ID IG

VD VG

YAO substrate

10mF/cm2@10-3Hz →1.5 × 1014 /cm2@VG= 2.5 V

Electric double layer transistor (EDLT)

S. Asamuna, AS et al., Appl. Phys. Lett. 97, 142110 (2010)P-.H. Xiang, AS et al., Adv. Mater. 23, 5822 (2011)

Page 15: Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

Insulator

Metal

Thickness of channel : 40nmOn/Off ratio: >10 @RT >103 @50K

P-.H. Xiang, AS et al., Adv. Mater. 23, 5822 (2011)

-2 -1 0 1 2

-0.1

0.0

0.1

0.00

0.05

0.10

0.15

0.20

0.25

I G (nA

)I D

(A

)

VG (V)

Nonvolatile change in resistance at “room temperature”

EDLT consisting of compressively strained CaMnO3 film

Page 16: Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

New approach for Mott transistorS

hee

t Res

ista

nce

Temperature

·CMR-manganite, High TC cuprate·1014~ 1015/cm2 carriers

non-doped(VG = 0)carrier doped(VG ≠ 0)

She

et R

esis

tanc

e(lo

garit

hmic

sca

le)

Temperature

“sharp” and “large” resistance change

(Nd,Sm)NiO3 TMI = 200–400 K VO2 TMI = 300–340 K

TMI

Page 17: Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

NdNiO3 EDLT

S. Asamuna, AS et al., Appl. Phys. Lett. 97, 142110 (2010) R. Scherwitzl et al., Adv. Mater. 22, 5517 (2010).

Page 18: Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

Nd0.5Sm0.5NiO3 EDLT

NSNO(0.5)/NdGaO3 (110) (Thickness:~6 nm)

10-2

10-3

10-4

Resistivity(Wcm

)

320300240220Temperature (K)

260 280

0V-2.3V-2.5V

(Nd,Sm)NiO3 channelVG

27-33 -13 7Temperature (ºC)

Large resistance change (~105) at room temperatureS. Asamuna, AS et al., unpublished

10-5

10-7

10-8

10-9

10-10

10-11

10-12

10-6

I SD (

A)

3-3 0 1 2-2 -1VG(V)

@300 K

Page 19: Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

Nonvolatile

insulator

metal

Gate voltage

VO2

VO2 EDLT

Nakano et al., Nature 487, 459 (2012)

Page 20: Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

Oxide FET

Mott FET

SrTiO3

TiO2 (anatase)

In-Ga-Zn-O

GdBa2Cu3O7

(La,Sr)MnO3

Operation temperature

On/Off ratio Gate material

SrTiO3

References

R. T.

~105 0.37 a-LaAlO3/MgO

R. T.

R. T.

Gate voltage(V)

Mobility(cm2/Vs)

5 APL92, 132107 (2008)

~102.5~105 a-CaHfO3JJAP46, L515 (2007)

La2CuO4 R. T.(?) <10 <8 SrTiO3 APL76, 3632 (2000)

(La,Ca)MnO3

SrRu1-xTixO377KR. T.

<10<1

±10 PZT APL82, 4770 (2003)

superconductivity: TC ~0.3K at VG=-3V electrolyte Nat. Mater. 7, 855 (2008)

100-200K <10 ±3 PRL102, 136402 (2009)

PZT(ferroelectrics )50-300K <3 ±3 Science 284, 1152 (1999)

10-300K <3 ±1 PZT PRB74, 174406 (2006)

~108 12 5 - 6 a-Y2O3APL89, 112123 (2006)

Channel

KTaO3 ~104 0.4 a-Al2O3R. T. 100 APL84, 3726 (2004)

CaMnO3

50KR. T.

>103

~10±2 Adv. Mater. 23, 5822 (2011)

(Nd,Sm)NiO3

~100K >10 ±2.5 Ionic liquid APL97,142110 (2010)

Ionic liquid

Ionic liquid

NdNiO3

±2.5 Ionic liquid unpublished

VO2 260K ~103

R. T. ~105

Ionic liquid±3 Nature 487, 459 (2012)

Page 21: Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

Feature/potential of Mott FET

• Functionality: electronic, magnetic, and optical switches• Scaling limit: < 10 nm• Nonvolatile and fast switching

Bottleneck/challenge

A large number of carriers (>1014 cm-2 ) is necessary to be doped in order to induce the Mott transition

Summary

For the realization of a practical Mott transistor• (“solid”) Higk-k gate materials with a large breakdown

strength

expected from theoretical and experimental studies on correlated electron materials