22
Métodos Numéricos: soluciones Tema 2 Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Febrero 2008, Versión 1.3 Ejercicio 1 Queremos aproximar el valor 1 de sin(0.1). (a) Construye el polinomio de McLaurin de orden 4 y calcula p 4 (0.1). (b) Calcula una cota superior de error absoluto y relativo que se produce cuando aproximamos sin(0.1) mediante p 4 (0.1). (c) Verica el resultado comparando con el valor de sin(0.1) que propor- ciona la calculadora o Maple. Realiza los cálculos con 10 decimales. (a) El polinomio de McLaurin de orden 4 es p 4 = x x 3 6 . Valor aproximado p 4 (0.1) = 0.0998333333. (b) Cota superior de error absoluto |R 4 (0.1)| ¯ ¯ ¯ ¯ ¯ f (5) (ξ ) 5! (0.1) 5 ¯ ¯ ¯ ¯ ¯ 0.1 5 5! =0.8 33333 × 10 7 (ξ entre 0 y 0.1). Tenemos, por lo tanto, al menos 6 decimales exactos en la aproximación. Cota superior de error relativo δ ' |R 4 (0.1)| |p 4 (0.1)| =0.8 34724 2073 × 10 6 . Tenemos 6 dígitos signicativos. (c) Error absoluto |e| = |sin(0.1) p 4 (0.1)| =0.833135 × 10 7 . Error relativo |r| = |sin(0.1) p 4 (0.1)| sin(0.1) =0.834525 × 10 6 . Vemos que los errores reales son, en efecto, inferiores a las cotas de error obtenidas. 1 En los sucesivo, los ángulos están en radianes 1

Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

Métodos Numéricos: solucionesTema 2 Aproximación e interpolación

Francisco PalaciosEscuela Politécnica Superior de Ingeniería de Manresa

Universidad Politécnica de CataluñaFebrero 2008, Versión 1.3

Ejercicio 1 Queremos aproximar el valor1 de sin(0.1).

(a) Construye el polinomio de McLaurin de orden 4 y calcula p4(0.1).

(b) Calcula una cota superior de error absoluto y relativo que se producecuando aproximamos sin(0.1) mediante p4(0.1).

(c) Verifica el resultado comparando con el valor de sin(0.1) que propor-ciona la calculadora o Maple. Realiza los cálculos con 10 decimales.

(a) El polinomio de McLaurin de orden 4 es p4 = x− x3

6 . Valor aproximado

p4(0.1) = 0.0998333333.

(b) Cota superior de error absoluto

|R4(0.1)| ≤¯̄̄̄¯f (5)(ξ)5!

(0.1)5

¯̄̄̄¯ ≤ 0.155! = 0.8 33333× 10−7 (ξ entre 0 y 0.1).

Tenemos, por lo tanto, al menos 6 decimales exactos en la aproximación.Cota superior de error relativo

δ ' |R4(0.1)||p4(0.1)|

= 0.8 34724 2073× 10−6.

Tenemos 6 dígitos significativos.(c) Error absoluto

|e| = |sin(0.1)− p4(0.1)| = 0.833135× 10−7.

Error relativo

|r| = |sin(0.1)− p4(0.1)|sin(0.1)

= 0.834525× 10−6.

Vemos que los errores reales son, en efecto, inferiores a las cotas de errorobtenidas.

1En los sucesivo, los ángulos están en radianes

1

Page 2: Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

Ejercicios: Aproximación e Interpolación 2

Ejercicio 2 Consideramos la función sin(x).

(a) Construye el polinomio de McLaurin de orden 4 usando Maple.

(b) Representa conjuntamente la función seno y el polinomio en el inter-valo [−2, 2].

(c) Construye la expresión del valor absoluto del error absoluto

|e4(x)| = |R4(x)| = |sin(x)− p4(x)|

y represéntala en [−2, 2]. A partir del gráfico, determina una cotasuperior para |e4(x)|.

(d) Construye la función del valor absoluto del error relativo

|r4(x)| =¯̄̄̄sin(x)− p4(x)

sin(x)

¯̄̄̄represéntala en [−1, 1]. A partir del gráfico, determina una cota supe-rior para |r4(x)|.

(a) El polinomio de McLaurin de orden 4 se construye con las órdenes∙> s4:=series(sin(x),x,5);p4:=convert(s4,polynom);

(b) La representación conjunta de sin(x) y p4(x) puede hacerse con£> plot([sin(x),p4],x=-2..2);

(c) La definición de |e4(x)| y su representación puede hacerse con las órdenes∙> e4:=abs(sin(x)-p4);plot(e4,x=-2..2);

Una cota gráfica de error es |e4(x)| ≤ 0.25. Observa que hemos usado elnombre e4 para |e4(x)| .(d) Una cota gráfica de error relativo es δ4(x) ≤ 0.0097. ¤

Ejercicio 3 Consideramos la función cos(x).

(a) Construye el polinomio de McLaurin de orden 6.

(b) Determina una cota superior del error absoluto que se comente cuandoaproximamos cos(x) mediante el p6(x) en el intervalo [0, π4 ].

Page 3: Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

Ejercicios: Aproximación e Interpolación 3

(a) Polinomio de McLaurin

p6(x) = 1−x2

2+x4

24− x6

720.

(b) Cota de error en [0,π/4]

|e6(x)| = |R6(x)| ≤sin (π/4)

7!

³π4

´7= 0.2 586× 10−4.

Cota mejorada. En el caso de f(x) = cos(x) se cumple

f (7)(0) = sin(0) = 0

y, por lo tanto,p6(x) = p7(x).

Podemos tomar la cota de error

|e6(x)| = |cos(x)− p6(x)| = |cos(x)− p7(x)|

= |R7(x)| =¯̄̄̄¯f (8)(t)8!

x8

¯̄̄̄¯ =

¯̄̄̄cos(t)

8!x8¯̄̄̄

≤ (π/4)8

8!= 0.3 591× 10−6.

El polinomio de McLaurin de orden 6 para cos(x) proporciona 5 decimalesexactos en el intervalo [0, π4 ]. ¤

Ejercicio 4 Queremos aproximar e0.5.

(a) Calcula el polinomio de McLaurin de orden 5.

(b) Calcula un cota superior del error absoluto y del error relativo quese produce cuando aproximamos e0.5 mediante p5(0.5). Verifica losresultados comparando los valores que se obtienen con la calculadorao con Maple.

(a) Polinomio de McLaurin

p5(x) = 1 + x+1

2x2 +

1

6x3 +

1

24x4 +

1

120x5.

Valor de la aproximación

p5(0.5) = 1. 64869 792.

Page 4: Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

Ejercicios: Aproximación e Interpolación 4

(b) Cotas de error

|e5(0.5)| = |R5(0.5)| =¯̄̄̄¯f (6)(t)6!

(0.5)6

¯̄̄̄¯ ≤ e0.56! (0.5)6 ,

usamos la aproximación obtenida para estimar le valor de e0.5 y tomamos

e0.5 ' 1.7,

entonces|e5(0.5)| ≤

1.7

6!(0.5)6 = 0.3 689× 10−4.

Tenemos 4 decimales exactos, el valor de la aproximación es

e0.5 = 1. 6487.

La cota superior de error relativo es

|r5(0.5)| ≤e0.5

6! (0.5)6

e0.5=(0.5)6

6!= 2. 1701× 10−5.

Tenemos 5 dígitos significativos. Observa que en este caso no ha sido nece-sario usar la estimación de e0.5.Los errores exactos son: error absoluto

|e5(0.5)| =¯̄e0.5 − p5(0.5)

¯̄= 0. 23354× 10−4.

Error relativo

|r5(x)| =¯̄e0.5 − p5(0.5)

¯̄e0.5

= 1. 4165× 10−5. ¤

Ejercicio 5 Consideramos la función ex.

(a) Construye los polinomios de McLaurin de orden 3,4 y 5 usando Maple.

(b) Representa conjuntamente la función ex y los polinomios obtenidos enel intervalo [0, 1].

(c) Construye las funciones de error absoluto

|ej(x)| = |Rj(x)| = |exp(x)− pj(x)| , j = 3, 4, 5,

y represéntalas en [0, 1]. A partir del gráfico determina, en cada caso,una cota superior para |ej(x)|.

(d) Construye las funciones de error relativo

|rj(x)| =¯̄̄̄exp(x)− pjexp(x)

¯̄̄̄, j = 3, 4, 5,

represéntalas en [0, 1]. A partir del gráfico determina, en cada caso,una cota superior para |rj(x)|.

Page 5: Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

Ejercicios: Aproximación e Interpolación 5

(e) Amplía el cálculo de cotas de error al intervalo [−2, 2] ¿Sigue siendobueno el comportamiento de los polinomios como aproximantes de ex?

Cotas de error estimadas gráficamente en el intervalo [0, 1]

n = 3 n = 4 n = 5

cota |en(x)| 0.06 0.01 0.0017cota |rn(x)| 0.019 0.0037 0.00063

¤

Ejercicio 6 Consideramos la siguiente tabla de datos

x 0 1 2

y −1 1 3

(a) Plantea el sistema de ecuaciones que permite determinar el polinomiointerpolador de la tabla.

(b) Resuelve el sistema y determina el polinomio interpolador.

(c) Verifica los resultados con Maple.

(a) El polinomio interpolador es de la forma

p2(x) = a0 + a1x+ a2x2,

el sistema es ⎧⎨⎩a0 = −1,a0 + a1 + a2 = 1,a0 + 2a1 + 4a2 = 3.

(b) El sistema tiene solución

a0 = −1, a2 = 0, a1 = 2,

de donde obtenemos el polinomio

p2(x) = 2x− 1.

(c) Puedes construir el interpolador con las órdenes⎡⎣ > xx:=[0,1,2];yy:=[-1,1,3];p2:=interp(xx,yy,t);

Page 6: Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

Ejercicios: Aproximación e Interpolación 6

obtendrás como resultado un polinomio en la variable t. La orden para ob-tener el polinomio con la variable x es£

> p2:=interp(xx,yy,x);

Observa que hemos usado los nombres xx, yy, para designar las listas denodos y valores. De esta forma evitamos asignar valores a las variables x,y. 2

Ejercicio 7 Consideremos la tabla de datos

x x0 x1 x2y y0 y1 y2

Puede demostrarse que el polinomio interpolador de la tabla p(x) queda de-terminado por la siguiente expresión¯̄̄̄

¯̄̄̄ 1 x x2 p(x)1 x0 x20 y01 x1 x21 y11 x2 x22 y2

¯̄̄̄¯̄̄̄ = 0.

(a) Usando la fórmula anterior, determina el interpolador de la tabla

x 0 1 2

y −1 1 3

(b) Resuelve el apartado (a) con Maple.

(a) ¯̄̄̄¯̄̄̄ 1 x x2 p(x)1 0 0 −11 1 1 11 2 4 3

¯̄̄̄¯̄̄̄ = 0

calculando el determinante, resulta

−2 + 4x− 2p(x) = 0

y despejandop(x) = −1 + 2x.

(b) Solución con Maple. Cargamos la librería de álgebra lineal linalg£> with(linalg);

Page 7: Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

Ejercicios: Aproximación e Interpolación 7

construimos la matriz£> m:=matrix([[1,x,x^2,p],[1,0,0,-1],[1,1,1,1],[1,2,4,3]]);

calculamos el determinante £> d:=det(m);

y resolvemos en p £> solve(d=0,p); ¤

Ejercicio 8 Consideramos la siguiente tabla de datos

x 0 1 2 −1y 0 1 3 0

(a) Determina un polinomio p(x) de grado menor o igual que 3 que inter-pole los valores de la tabla.

(b) ¿Hay algún polinomio de grado 3 que pase por los puntos de la tabla?¿Y de grado 4?

(c) Calcula el polinomio interpolador de la tabla con Maple.

(a) Si calculamos las diferencias divididas, resulta

x0 = 0 f [x0] = 0x1 = 1 f [x1] = 1 f [x0, x1] = 1

x2 = 2 f [x2] = 3 f [x1, x2] = 2 f [x0, x1, x2]=12

x3 = −1 f [x3] = 0 f [x2, x3] = 1 f [x1, x2, x3]=12 f [x0, x1, x2, x3] = 0

El polinomio interpolador es

p2(x) = x+1

2x (x− 1) ,

si operamos (no es necesario) obtenemos

p2(x) =1

2x+

1

2x2.

(b) No hay ningún polinomio de grado 3 que pase por los cuatro puntos, lospuntos están sobre una parábola. Hay infinitos polinomios de grado 4 queinterpolan los puntos de la tabla.

(c) Las órdenes son⎡⎣ > xx:=[0,1,2,-1];yy:=[0,1,3,0];p3:=interp(xx,yy,x);

¤

Page 8: Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

Ejercicios: Aproximación e Interpolación 8

Ejercicio 9 Calcula los polinomios de grado 2 que para x = 1 y x = −1toman el valor 1.

Interpolamos con los datos, donde hemos añadido un nodo y le hemos dadoel valor arbitrario a

x 1 −1 0

y 1 1 a

Construimos la tabla de diferencias

x0 = 1 f [x0] = 1x1 = −1 f [x1] = 1 f [x0, x1] = 0

x2 = 0 f [x2] = a f [x1, x2] = a− 1 f [x0, x1, x2]=a−1−1 = 1− a

de donde resulta el interpolador

p2(x) = 1 + (1− a)(x− 1)(x+ 1)= (1− a)x2 + a. ¤

Ejercicio 10 Aproxima2 log(4).

(a) Mediante interpolación lineal a partir de los valores

log(3) = 0. 47712 12, log(5) = 0. 6989700.

(b) Mediante interpolación parabólica usando los valores del apartado an-terior y, además, log(4.5) = 0.6532125.

(c) Determina cotas superiores para el error absoluto y relativo.

(d) Compara los valores obtenidos con el valor de log(4) que proporcionala calculadora. Calcula el error absoluto y relativo correspondientes acada caso y verifica la corrección de las cotas superiores de error.

Este ejercicio está resuelto en las páginas 25—27 del libro de Dominguez,Gilibets y Puente.(a) Interpolación lineal p1(4) = 0.5880456.(b) Interpolación cuadrática p2(4) = 0.6009852.

2 log(x) representa el logaritmo decimal. Recuerda que

d

dxlog(x) =

1

x ln(10)

donde ln(x) representa el logaritmo neperiano.

Page 9: Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

Ejercicios: Aproximación e Interpolación 9

(c) Cotas error interpolación lineal

|e1(4)| ≤ 0.2413× 10−1, |r1(4)| ≤ 4.103× 10−2,

cotas error interpolación cuadrática

|e2(4)| ≤ 0.268× 10−2, |r2(4)| ≤ 4.461× 10−3.

(d) Errores interpolación lineal

|e1(4)| = 0.14014× 10−1, |r1(4)| = 2.328× 10−2,

errores interpolación cuadrática

|e2(4)| = 0.10748× 10−2, |r2(4)| = 1.785× 10−3. ¤

Ejercicio 11 Consideramos la siguiente tabla de datos

x −2 −1 0 1 2

y 1 4 11 16 a

(a) Calcula el polinomio p(x) que interpola los cuatro primeros puntos dela tabla.

(b) ¿Qué valor debe tener a para que el polinomio que interpola los cincopuntos coincida con el del apartado anterior?

(c) Determina con Maple el polinomio que interpola los 4 primeros puntosde la tabla.

(d) Determina con Maple todos los polinomios de grado 4 que interpolanlos valores de la tabla.

(a) En forma de Newton, el polinomio interpolador es

p3(x) = 1 + 3 (x+ 2) + 2 (x+ 2) (x+ 1)− (x+ 2) (x+ 1)x,

si operamos (no es imprescindible), resulta

p3(x) = 11 + 7x− x2 − x3.

(b) Debe cumplirse a = p3(2)⇒ a = 13.

(c) Podemos obtener el interpolador de los 4 primeros puntos con las si-guientes órdenes ⎡⎣ > xx:=[-2,-1,0,1];

yy:=[1,4,11,16];p3:=interp(xx,yy,x);

Page 10: Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

Ejercicios: Aproximación e Interpolación 10

(d) Añadimos el nodo x4 = 2 y un valor arbitrario y4 = a⎡⎣ > xx:=[-2,-1,0,1,2];yy:=[1,4,11,16,a];p4:=interp(xx,yy,x);

¤

Ejercicio 12 Consideramos las siguientes tablas de datos

x 0 1 2

y 1 −2 −3x 0 1 2 −1y 1 −2 −3 6

(a) Calcula los polinomios que interpolan las tablas.

(b) ¿Qué relación hay entre ellos? ¿A qué se debe esta relación?

(c) Calcula los polinomios con Maple.

(a) Para la primera tabla, obtenemos las diferencias

x0 = 0 f [x0] = 1x1 = 1 f [x1] = −2 f [x0, x1] = −3x2 = 2 f [x2] = −3 f [x1, x2] = −1 f [x0, x1, x2]= 1

el interpolador es

p2(x) = 1− 3x+ x (x− 1)= 1− 4x+ x2.

Si añadimos x3 = −1 y f [x3] = 6 y completamos la tabla de diferencias,resulta

f [x0, x1, x2, x3] = 0,

por lo tantop3(x) = p2(x).

(b) Los polinomios son iguales, esto se debe a que el polinomio p2(x) pasapor el punto adicional (x4, y4).

(c) Ordenes Maple ⎡⎣ > xx:=[0,1,2];yy:=[1,-2,-3];p2:=interp(xx,yy,x);

¤

Page 11: Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

Ejercicios: Aproximación e Interpolación 11

Ejercicio 13 Consideramos la siguiente tabla de datos

x 1 2 3 5 6

y 4.75 4 5.25 19.75 36

Calcula valores aproximados para f(3.5) usando polinomios de Newton deorden 1,2,3,4, escogiendo, en cada caso, los puntos más adecuados.

Debemos tomar, en cada caso, los nodos que mejor encajan el valor x = 3.5.

• Interpolación lineal, x0 = 3, x1 = 5.

• Interpolación cuadrática, x0 = 3, x1 = 5, x2 = 2.

• Interpolación cúbica, x0 = 3, x1 = 5, x2 = 2, x3 = 6.

• Interpolación orden 4, x0 = 3, x1 = 5, x2 = 2, x3 = 6, x4 = 1.

Si construimos la tabla de diferencias con ese orden de nodos, resulta

f [x0] = 5.25, f [x0, x1] = 7.25, f [x0, x1, x2] = 2,

f [x0, x1, x2, x3] = 0.25, f [x0, x1, x2, x3, x4] = 0.

Usando esos valores, obtenemos:

• Interpolación lineal, x0 = 3, x1 = 5,

p1(x) = 5.25 + 7.25 (x− 3)p1(3.5) = 5.25 + 7.25 (3.5− 3) = 8.875.

• Interpolación cuadrática, x0 = 3, x1 = 5, x2 = 2,

p2(x) = p1(x) + 2 (x− 3) (x− 5)p2(3.5) = p1(3.5) + 2 (3.5− 3) (3.5− 5) = 7.375.

• Interpolación cúbica, x0 = 3, x1 = 5, x2 = 2, x3 = 6,

p3(x) = p2(x) + 0.25 (x− 3) (x− 5) (x− 2)p3(3.5) = p2(3.5) + 2.25 (3.5− 3) (3.5− 5) (3.5− 2) = 7.09375.

• Interpolación orden 4, x0 = 3, x1 = 5, x2 = 2, x3 = 6, x4 = 1. Como

f [x0, x1, x2, x3, x4] = 0

p4(x) = p3(x), p4(3.5) = p3(3.5). ¤

Page 12: Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

Ejercicios: Aproximación e Interpolación 12

Ejercicio 14 Para una función f(x), conocemos los siguientes valores

x 1 2 4 5 6

f(x) 0 2 12 21 32

(a) ¿Cual es la mejor elección de nodos para aproximar f(3) medianteinterpolación cuadrática?

(b) Aproxima f(3) mediante interpolación cuadrática usando una elecciónde nodos distinta a la del apartado anterior.

(c) Aproxima f(3) usando el polinomio interpolador de grado máximo.

(a) Los dos primeros nodos son x0 = 2 y x1 = 4. Como tercer nodo, podemostomar x2 = 1, o bien, x2 = 5 pues

d(3, 1) = d(3, 5) = 2.

En este primer apartado, tomamos x0 = 2, x1 = 4, x2 = 1.

x0 = 2 f [x0] = 2x1 = 4 f [x1] = 12 f [x0, x1] = 5

x2 = 1 f [x2] = 0 f [x1, x2] = 4 f [x0, x1, x2]= 1

p2(x) = 2 + 5 (x− 2) + (x− 2) (x− 4)p2(3) = 2 + 5− 1 = 6.

Si operamos esp2(x) = x

2 − x.

(b) Con la elección de nodos x0 = 2, x1 = 4, x̄2 = 5, resulta

x0 = 2 f [x0] = 2x1 = 4 f [x1] = 12 f [x0, x1] = 5

x̄2 = 5 f [x̄2] = 21 f [x1, x̄2] = 9 f [x0, x1, x̄2]=43

p̄2(x) = 2 + 5 (x− 2) + 43(x− 2) (x− 4) .

p̄2(3) = 2 + 5− 43=17

3= 5. 6667.

Si operamos, resulta

p̄2(x) =8

3− 3x+ 4

3x2.

Page 13: Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

Ejercicios: Aproximación e Interpolación 13

(c) Si tomamos los nodos

x0 = 1, x1 = 2, x2 = 4, x3 = 5, x4 = 6,

y formamos la tabla de diferencias, resulta

f [x0] = 0, f [x0, x1] = 2, f [x0, x1, x2] = 1,

f [x0, x1, x2, x3] =1

12, f [x0, x1, x2, x3, x4] = −

1

30,

resulta

p4(x) = 2 (x− 1) + (x− 1) (x− 2) + 1

12(x− 1) (x− 2) (x− 4)

− 130(x− 1) (x− 2) (x− 4) (x− 5)

p4(3) = 4 + 2− 2

12− 4

30= 5.7 ¤

Ejercicio 15 Consideramos la integral

v =

Z 1

0e−x

2dx

Es bien sabido que la función f(x) = e−x2no tiene primitivas que puedan

expresarse como combinación sencilla de funciones elementales. Para apro-ximar el valor de la integral, podemos construir un polinomio interpoladory calcular su integral.

(a) Calcula el polinomio p2(x) que interpola a f(x) en los nodos

x0 = 0, x1 = 0.5, x2 = 1.

(b) Construye con Maple una representación conjunta de f(x) y p2(x).

(c) Calcula el valor

v̄ =

Z 1

0p2(x) dx.

(d) Calcula con Maple un valor aproximado de v. Determina el error ab-soluto que se produce cuando aproximamos v mediante la integral delpolinomio interpolador.

(e) Repite todo el ejercicio tomando ahora 5 puntos igualmente repartidosen el intervalo y un polinomio de grado 4. Para obtener 5 nodosigualmente espaciados en [a, b], hacemos

xj = a+ jh, j = 0, 1, 2, 3, 4. h =b− a4.

En nuestro caso es, h = 0.25 y resulta

x0 = 0, x1 = 0.25, x2 = 0.50, x3 = 0.75, x4 = 1.

Page 14: Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

Ejercicios: Aproximación e Interpolación 14

(a) Usamos la función f(x) = e−x2para calcular los valores

x 0 0.5 1

y 1 0.77880 0.36788

La tabla de diferencias es

x0 = 0 f [x0] = 1x1 = 0.5 f [x1] = 0.77880 f [x0, x1] = −0. 44240x2 = 1 f [x2] = 0.36788 f [x1, x2] = −0. 82184 f [x0, x1, x2]= −0. 37944

Interpolador

p2(x) = 1− 0. 44240x− 0. 37944x (x− 0.5) .

(b) La representación conjunta se puede construir como sigue⎡⎢⎢⎢⎢⎢⎢⎣

> f:=x->exp(-x^2);xx:=[0,0.5,1];yy:=map(f,xx);yy:=map(evalf,yy);p2:=interp(xx,yy,x);plot([f(x),p2],x=0..1,colour=[black,red]);

La orden yy:=map(evalf,yy); aplica evalf sobre la lista de valores y laguarda con el mismo nombre. La opción colour=[black,red]asigna orde-nadamente colores a las gráficas.

(c) Para integrar, escribimos el polinomio en la forma

p2(x) = 1− 0. 25268x− 0. 37944x2

v̄ =

Z 1

0p2(x)dx = 1−

0. 25268

2− 0. 37944

3= 0. 74718.

(d) Si tenemos definida f(x) = e−x2como función con la orden£

> f:=x->exp(-x^2);

calculamos la integral con∙> v:=int(f(x),x=0..1);vf:=evalf(v);

El resultado esvf := 0.74682

Page 15: Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

Ejercicios: Aproximación e Interpolación 15

Error

|e2| =¯̄̄̄Z 1

0e−x

2dx−

Z 1

0p2(x)dx

¯̄̄̄= |0.74682− 0. 74718| = 0.000 36.

(e) Con los nodos

x0 = 0, x1 = 0.25, x2 = 0.50, x3 = 0.75, x4 = 1,

se obtiene el interpolador

p4(x) = 0.0416063x4 + 0.4882003x3 − 1.1845557x2 + 0.0226286x+ 1.

La aproximación con p4(x) es

v̄4 =

Z 1

0p4(x)dx = 0. 7468337,

|e4| =¯̄̄̄Z 1

0e−x

2dx−

Z 1

0p4(x)dx

¯̄̄̄= |0. 7468241− 0. 7468337| = 0.9 6×10−5.

Tenemos 4 decimales exactos. ¤

Ejercicio 16 Consideramos los valores

x 0 1

y 1 2

y0 1 −1

(a) Plantea un sistema de ecuaciones que permita determinar el polinomiode grado ≤ 3 que interpola los valores de la tabla.

(b) Resuelve el sistema y verifica que, efectivamente, el polinomio cumplelas condiciones exigidas.

Es un polinomio de grado ≤ 3

H3(x) = a0 + a1x+ a2x2 + a3x

3,

la derivada esH 03(x) = a1 + 2a2x+ 3a3x

2.

Condiciones de interpolación⎧⎪⎪⎨⎪⎪⎩H3(0) = 1H 03(0) = 1

H3(1) = 2H 03(1) = −1

⎧⎪⎪⎨⎪⎪⎩a0 = 1a1 = 1a0 + a1 + a2 + a3 = 2a1 + 2a2 + 3a3 = −1

⎧⎪⎪⎨⎪⎪⎩a0 = 1a1 = 1a2 + a3 = 02a2 + 3a3 = −2

Page 16: Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

Ejercicios: Aproximación e Interpolación 16

Obtenemos ⎧⎪⎪⎨⎪⎪⎩a0 = 1a1 = 1a2 = 2a3 = −2

El polinomio esH3(x) = 1 + x+ 2x

2 − 2x3. ¤

Ejercicio 17 Calcula el interpolador de Hermite de la tabla

x 0 1

y 1 3

y0 0 −1

usando diferencias divididas. Verifica que el polinomio obtenido toma losvalores adecuados.

La tabla de diferencias divididas es, inicialmente

x0 = 0 f [x0] = 1x0 = 0 f [x0] = 1 f [x0, x0] = 0

x1 = 1 f [x1] = 3 f [x0, x1] = f [x0, x0, x1]

x1 = 1 f [x1] = 3 f [x1, x1] = −1 f [x0, x1, x1] f [x0, x0, x1, x1]

de donde obtenemos

x0 = 0 f [x0] = 1x0 = 0 f [x0] = 1 f [x0, x0] = 0

x1 = 1 f [x1] = 3 f [x0, x1] = 2 f [x0, x0, x1]= 2

x1 = 1 f [x1] = 3 f [x1, x1] = −1 f [x0, x1, x1] = −3 f [x0, x0, x1, x1] = −5

El polinomio de Hermite es

H3(x) = 1 + 0x+ 2x2 − 5x2 (x− 1)= 1 + 7x2 − 5x3. ¤

Ejercicio 18 Consideramos los valores

x x0 x1y y0 y1y0 y00 y01

Page 17: Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

Ejercicios: Aproximación e Interpolación 17

puede demostrarse que el polinomio de Hermite que interpola la tabla ante-rior queda determinado por la expresión¯̄̄̄

¯̄̄̄¯̄1 x x2 x3 p(x)1 x0 x20 x30 y00 1 2x0 3x20 y001 x1 x21 x31 y10 1 2x1 3x21 y01

¯̄̄̄¯̄̄̄¯̄ = 0

Usando la expresión anterior, determina el interpolador de Hermite para latabla

x 0 1

y 1 2

y0 1 −1

Obtenemos el determinante¯̄̄̄¯̄̄̄¯̄1 x x2 x3 p(x)1 0 0 0 10 1 0 0 11 1 1 1 20 1 2 3 −1

¯̄̄̄¯̄̄̄¯̄ = 0

como se trata de un determinante de orden 5, es preferible operar con lasfilas y columnas para simplificarlo

(1a − 2a)

(4a − 2a)

¯̄̄̄¯̄̄̄¯̄0 x x2 x3 p(x)− 11 0 0 0 10 1 0 0 10 1 1 1 10 1 2 3 −1

¯̄̄̄¯̄̄̄¯̄ = 0

Desarrollamos por la primera columna y obtenemos¯̄̄̄¯̄̄̄ x x2 x3 p(x)− 11 0 0 11 1 1 11 2 3 −1

¯̄̄̄¯̄̄̄ = 0

Operamos ahora por columnas, restando la primera a la cuarta columna¯̄̄̄¯̄̄̄ x x2 x3 p(x)− 1− x1 0 0 01 1 1 01 2 3 −2

¯̄̄̄¯̄̄̄ = 0

Page 18: Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

Ejercicios: Aproximación e Interpolación 18

desarrollamos por 2a fila¯̄̄̄¯̄ x

2 x3 p(x)− 1− x1 1 02 3 −2

¯̄̄̄¯̄ = 0

restamos la primera columna a la segunda¯̄̄̄¯̄ x

2 x3 − x2 p(x)− 1− x1 0 02 1 −2

¯̄̄̄¯̄ = 0

y desarrollamos por 2a fila¯̄̄̄x3 − x2 p(x)− 1− x1 −2

¯̄̄̄= 0

finalmente−2x3 + 2x2 − p(x) + 1 + x = 0

de donde obtenemos

p(x) = −2x3 + 2x2 + 1 + x. ¤

Ejercicio 19 Para un objeto móvil, conocemos la posición (en metros) y lavelocidad (en m/s) en los instantes t = 4 s y t = 5 s. Estima el valor de laposición y la velocidad para t = 4.5 s.

t 4. 5.

e(t) 40 65

v(t) 1 −1

La tabla de diferencias divididas es

t0 = 4 f [t0] = 40t0 = 4 f [t0] = 40 f [t0, t0] = 1

t1 = 5 f [t1] = 65 f [t0, t1] = 25 f [t0, t0, t1]= 24

t1 = 5 f [t1] = 65 f [t1, t1] = −1 f [t0, t1, t1] = −26 f [t0, t0, t1, t1] = −50Polinomio interpolador

H3(t) = 40 + (t− 4) + 24 (t− 4)2 − 50 (t− 4)2 (t− 5) .

Estimación de la posición, representamos por e(t) la posición

e(4.5) ' H3(4.5) = 52. 75.

Derivada

H 03(t) = 1 + 48 (t− 4)− 100 (t− 4) (t− 5)− 50 (t− 4)2 .

Estimación de la velocidad, representamos por v(t) la velocidad

v(4.5) ' H 03(4.5) = 37. 5 ¤

Page 19: Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

Ejercicios: Aproximación e Interpolación 19

Ejercicio 20 Demuestra que el máximo absoluto de la función

h(x) = (x− x0)2 (x− x1)2

sobre el intervalo [x0, x1] se produce en

xM =x0 + x12

y que el valor del máximo es

M = maxx∈[x0,x1]

h(x) =(x1 − x0)4

16.

La función objetivo es

h(x) = (x− x0)2 (x− x1)2 .

Queremos obtener el máximo absoluto sobre [x0, x1]. Se trata de un problemade extremos absolutos sobre un intervalo cerrado. Observemos que h(x) escontinua en todo R. Los posibles extremos se pueden producir en x = x0,x = x1 o en los puntos críticos interiores.

h0(x) = 2 (x− x0) (x− x1)2 + 2 (x− x0)2 (x− x1)= 2 (x− x0) (x− x1) (x− x1 + x− x0)= 2 (x− x0) (x− x1) (2x− x1 − x0)

El único punto crítico interior es

xc =x1 + x02

.

El valor en xc es

h(xc) =

µx1 + x02

− x0¶2µx1 + x0

2− x1

¶2=

µx1 − x02

¶2µx0 − x12

¶2=

(x1 − x0)4

16.

Como h(x0) = h(x1) = 0 y h(xc) > 0, h(x) toma el máximo absoluto sobre[x0, x1] en xc. ¤

Ejercicio 21 Consideramos la función f(x) = sinx.

Page 20: Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

Ejercicios: Aproximación e Interpolación 20

(a) Construye el polinomio de Hermite que interpola f(x) en los nodosx0 = 0 y x1 = π/4.

(b) Usando el polinomio del apartado anterior, aproxima el valor de sin(0.5).Calcula una cota superior de error absoluto.

(c) Calcula una cota superior de error absoluto válida para todo x ∈[0,π/4].

(a) Tenemosf(x) = sinx, f 0(x) = cosx.

La tabla de valores es

x x0 = 0 x1 = 0. 78539 82

y 0 0. 70710 68

y0 1 0. 70710 68

la tabla inicial de diferencias es

x0 = 0 f [x0] = 0

x0 = 0 f [x0] = 0 f [x0, x0] = 1

x1 = 0. 78539 82 f [x1] = 0. 70710 68 f [x0, x1] =

x1 = 0. 78539 82 f [x1] = 0. 70710 68 f [x1, x1] = 0. 70710 68

de donde obtenemos

f [x0] = 0, f [x0, x0] = 1, f [x0, x0, x1] = −0.1269212,

f [x0, x0, x1, x1] = − 0.1516184.

El interpolador es

H3(x) = x− 0.1269212x2 − 0.1516184x2 (x− 0. 78539 82)= x− 0.007 8404x2 − 0.15161 84x3.

(b) Aproximación de sin(0.5)

H3(0.5) = 0. 47908 76.

Cota superior de error

|e3(0.5)| =

¯̄̄̄¯f (4)(t)4!

(0.5− 0)2³0.5− π

4

´2 ¯̄̄̄¯ , t ∈³0,π

4

´≤

sin(π4 )

24(0.5)2 (−0. 28539 82)2 = 0.00059995.

Page 21: Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

Ejercicios: Aproximación e Interpolación 21

tenemos 2 decimales exactos. El error exacto es

|e3(0.5)| = |sin(0.5)−H3(0.5)| = 0.000 337934.

(c) Cota superior de error en todo el intervalo [0, π4 ].

|e3(x)| =

¯̄̄̄¯f (4)(t)4!

(x− x0)2 (x− x1)2¯̄̄̄¯ , t ∈

³0,π

4

´≤ sin t

24(x− x0)2 (x− x1)2 .

según el ejercicio anterior se cumple

(x− x0)2 (x− x1)2 ≤(x1 − x0)4

16,

entonces

|e3(x)| ≤sin¡π4

¢24

¡π4

¢416

= 0.7007× 10−3.

tenemos 2 decimales exactos en todo el intervalo. ¤

Ejercicio 22 Consideramos la función f(x) = ex.

(a) Construye el polinomio de Hermite que interpola f(x) en los nodosx0 = 0 y x1 = 0.5.

(b) Usando el polinomio obtenido, aproxima el valor de e0.25. Calcula unacota superior de error absoluto.

(c) Determina cotas superiores para el error absoluto válidas para cual-quier x ∈ [0, 0.5].

(a) Tenemosf(x) = ex, f 0(x) = ex.

La tabla de valores es

x x0 = 0 x1 = 0. 5

y 1 1. 64872 1

y0 1 1. 64872 1

la tabla inicial de diferencias es

x0 = 0 f [x0] = 1

x0 = 0 f [x0] = 1 f [x0, x0] = 1

x1 = 0.5 f [x1] = 1. 64872 1 f [x0, x1] =

x1 = 0.5 f [x1] = 1. 64872 1 f [x1, x1] = 1. 64872 1

Page 22: Métodos Numéricos: soluciones Tema 2 Aproximación e ...fpq/numerico/ejercicios/soluciones/aprox-inter… · Ejercicios: Aproximación e Interpolación 6 obtendrás como resultado

Ejercicios: Aproximación e Interpolación 22

de donde obtenemos

f [x0] = 1, f [x0, x0] = 1, f [x0, x0, x1] = 0.5948851,

f [x0, x0, x1, x1] = 0.2153448.

El interpolador es

H3(x) = 1 + x+ 0.5948851x2 + 0.2153448x2 (x− 0.5)= 1 + x+ 0. 48721 27x2 + 0. 21534 48x3.

(b) Aproximación de e0.25

H3(0.25) = 1. 2838156,

Cota superior de error

|e3(0.25)| =

¯̄̄̄¯f (4)(t)4!

(0.25− 0)2 (0.25− 0.5)2¯̄̄̄¯ , t ∈ (0, 0.5) ,

≤ e0.5

24(0.25)2 (0.25)2 = 0.2 6834× 10−3.

tenemos 3 decimales exactos. El error exacto es

|e3(0.25)| =¯̄e0.25 −H3(0.25)

¯̄= 0.20986× 10−3.

(c) Cota superior de error en todo el intervalo [0, 0.5].

|e3(x)| =

¯̄̄̄¯f (4)(t)4!

(x− x0)2 (x− x1)2¯̄̄̄¯ , t ∈ (0, 0.5)

≤ e0.5

24

(0.5)4

16= 0.2 683× 10−3.

Obtenemos 3 decimales exactos en todo el intervalo. ¤