22
Multilayer Perceptron Models for Surface Ozone Study in Hong Kong under the Trans-boundary Air Pollution Impact WANG DONG DOCTOR OF PHILOSOPHY CITY UNIVERSITY OF HONG KONG SEPTEMBER 2007

Multilayer Perceptron Models for Surface Ozone Study in ...lbms03.cityu.edu.hk/theses/abt/phd-bc-b22182275a.pdf · Abstract i Abssttrraacctt Multilayer perceptron (MLP) models have

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Multilayer Perceptron Models for

    Surface Ozone Study in Hong Kong

    under the Trans-boundary

    Air Pollution Impact

    WANG DONG

    DOCTOR OF PHILOSOPHY

    CITY UNIVERSITY OF HONG KONG

    SEPTEMBER 2007

  • CITY UNIVERSITY OF HONG KONG

    香港城市大學

    Multilayer Perceptron Models

    for Surface Ozone Study in Hong Kong

    under the Trans-boundary

    Air Pollution Impact

    在跨界空氣汚染影響下用感知器

    模型對香港臭氧之研究

    Submitted to

    Department of Building and Construction

    建築系 In Partial Fulfillment of the Requirements

    For the Degree of Doctor of Philosophy

    哲學博士學位

    by

    Wang Dong

    王 東

    September 2007

    二零零七年九月

  • Abstract

    i

    AAbbssttrraacctt

    Multilayer perceptron (MLP) models have been experiencing a popularity resurgence

    for predicting surface ozone level, based on the data of its influential variables colleted

    locally from air quality monitoring and meteorology stations around the interested area.

    In this dissertation, MLP, not only used traditionally as a predictive model but also an

    assessment tool, will be employed to study ozone variation in three typical air

    monitoring stations in Hong Kong, the ozone variation of where are believed to be

    under different scale of trans-boundary air pollution impact. The optimal topology of

    each MLP model used for assessment or prediction was identified by 3-fold cross

    validation for two prediction horizons respectively. For assessment work, result from

    both prediction horizons shows no remarkable difference. While for prediction work,

    performance of all MLP models for 1-day ahead prediction was generally worse than

    that for the current-day prediction due to the prolonged prediction horizon.

    The preliminary statistical analysis showed the trans-boundary air pollution did exert

    different scale of influence on local ozone level in each target air monitoring station,

    according to the data for all local and regional ozone influential variables collected

    from the whole study area that are defined as Hong Kong territory, Guangdong

    Province and part of South China Sea.

    MLP trained by automatic relevance determination (named by MLP-ARD), a Bayesian

    MLP, was embedded into a two-staged variables selection scheme to assess what were

  • Abstract

    ii

    the ozone key influential variables for each air monitoring station respectively. The

    variables selection/assessment result from MLP-ARD was comparable with that from

    the best method in the literature. The ozone key influential variables from such

    selection scheme will further be used as input variables for MLP models developed

    later for ozone prediction.

    By comparing the predictive performance of MLP-ARD between with and without

    regional ozone influential variables as inputs, it was found that trans-boundary air

    pollution exerted the largest impact on Tap Mun (TM), the modest on Tung Chung

    (TC), and the least on Tsuen Wan (TW) air monitoring station in Hong Kong. The

    result also showed the advantage of MLP-ARD, which provided an interval estimation

    for the possible ozone variation, in the prediction for ozone episode days, over the

    MLP trained by Levenberg-Marquardt (LM) algorithm (named by MLP-LM), which

    only provided a point estimation.

    MLP-ARD, MLP-LM as well as most MLP models in the literature were trained by

    the gradient-based algorithm, which potentially suffered from local minimum problem.

    Two hybrid MLP models, based on the standard particle swarm optimization (PSO)

    algorithm, will be developed for avoiding this problem in ozone prediction. The reason

    for using hybrid model instead of using MLP trained by standard PSO (named by

    MLP-PSO) directly is that standard PSO for MLP training will probably not obtain

    good convergence reliability in the high dimension weight space, which could

    influence the models‘ performance on the ozone-polluted days.

  • Abstract

    iii

    Therefore, the aim of two hybrid models was to improve such convergence reliability

    by using additional techniques before and after the standard PSO training for MLP

    respectively. The first hybrid model was HMC–MLP–PSO. It employed hybrid Monte

    Carlo (HMC) method to sample the weight matrix from the posterior probability

    distribution of the estimated optimal weight matrix first, and then these sampled

    weight matrices were used to initialize ―weight matrix swarm‖ of PSO, before MLP

    trained by standard PSO starts. Aiming at exploiting the advantage of both PSO and

    LM for MLP training, the other hybrid model was MLP–PSO–LM, which timely

    inserted LM to help MLP-PSO avoid stagnation problem.

    The performance of two hybrid models was better than MLP-ARD, MLP-LM and

    MLP-PSO in terms of several statistics and exceedance indicators. The predictive

    performance of all MLP models in this dissertation was finally evaluated. From the

    operational point of view, MLP–PSO–LM was recommended for government

    authority usage due to its smallest false negative rate for ozone-polluted day

    prediction.

  • Table of Contents

    v

    TTaabbllee ooff CCoonntteennttss

    ABSTRACT ......................................................................................................................................... I

    ACKNOWLEDGEMENTS .................................................................................................................... IV

    TABLE OF CONTENTS ........................................................................................................................ V

    LIST OF FIGURES .............................................................................................................................. IX

    LIST OF TABLES ................................................................................................................................ XI

    NOMENCLATURE ........................................................................................................................... XIV

    CHAPTER 1 GENERAL INTRODUCTION ........................................................................................... 1

    1.1 A REGIONAL VIEW OF AIR POLLUTION IN HONG KONG .............................................................................. 1

    1.2 BASICS ABOUT TROPOSPHERIC OZONE VARIATION .................................................................................... 5

    1.2.1 Ozone Chemistry ................................................................................................................ 5

    1.2.2 Meteorology–pollutant interactions .................................................................................. 7

    1.3 AIR POLLUTION MODELING ................................................................................................................. 8

    1.3.1 A brief review of two categories modeling approach ........................................................ 8

    1.3.2 Model comparison works in the literature ....................................................................... 10

    1.4 BASICS ABOUT MLP ........................................................................................................................ 12

    1.5 TWO CONCEPTS FOR DEVELOPING MLP TRAINING ALGORITHMS ............................................................... 13

    1.5.1 Training algorithms in maximum likelihood concept ....................................................... 14

    1.5.2 Training algorithms in Bayesian concept ......................................................................... 16

    1.6 REVIEW OF OZONE PREDICTION WITH ANN ......................................................................................... 18

    1.7 RESEARCH OBJECTIVES ..................................................................................................................... 21

    1.8 DISSERTATION OUTLINE .................................................................................................................... 23

  • Table of Contents

    vi

    CHAPTER 2 STUDY AREA AND PRELIMINARY ANALYSIS OF FIELD DATA ....................................... 28

    2.1 STUDY AREA................................................................................................................................... 29

    2.1.1 Hong Kong territory .......................................................................................................... 29

    2.1.2 Pearl River Delta region in Guangdong Province ............................................................. 33

    2.1.3 North part of South China Sea .......................................................................................... 37

    2.2 FIELD DATA ANALYSIS ....................................................................................................................... 38

    2.2.1 Missing data ..................................................................................................................... 38

    2.2.2 Statistical analysis for the imputed data set .................................................................... 40

    2.3 CONCLUSION REMARKS .................................................................................................................... 54

    CHAPTER 3 SELECTION AND ASSESSMENT FOR OZONE KEY INFLUENTIAL VARIABLES

    SITE-SPECIFICALLY .......................................................................................................................... 57

    3.1 SPATIAL INPUT VARIABLES SELECTION, STAGE ONE ................................................................................. 58

    3.1.1 Connection weight analysis and sensitivity analysis ........................................................ 58

    3.1.2 Performance indicators .................................................................................................... 62

    3.1.3 MLP in ARD framework .................................................................................................... 65

    3.1.4 Ranking RI for spatial input variables by MLP-ARD for current-day prediction ................ 68

    3.1.5 Ranking RI for spatial input variables by NCW method for current-day prediction ......... 85

    3.1.6 The key spatial input variables selection for current-day prediction ................................ 88

    3.1.7 Ranking RI for spatial input variables by MLP-ARD for 1-day ahead prediction .............. 89

    3.1.8 Ranking RI for spatial input variables by NCW method for 1-day ahead prediction ...... 100

    3.1.9 The key spatial input variables selection for 1-day ahead prediction ............................ 102

    3.2 TEMPORAL INPUT VARIABLES SELECTION, STAGE TWO ........................................................................... 103

    3.3 CONCLUSION REMARKS .................................................................................................................. 108

    CHAPTER 4 INTERVAL PREDICTION AND THE TRANS- BOUNDARY AIR POLLUTION IMPACT

    ASSESSMENT, FOR OZONE VARIATION WITH MLP-ARD MODEL ..................................................... 110

    4.1 INTRODUCTION ............................................................................................................................ 110

    4.2 METHODOLOGY ........................................................................................................................... 112

  • Table of Contents

    vii

    4.2.1 Prediction by MLP-ARD................................................................................................... 112

    4.2.2 Experiment setting ......................................................................................................... 114

    4.3 RESULTS AND DISCUSSION .............................................................................................................. 115

    4.3.1 Topic 1: prediction performance comparison between MLP-ARD and MLP-LM ............ 115

    4.3.2 Topic 2: impact assessment for the trans-boundary air pollution on ozone variation

    site-specifically.............................................................................................................................. 123

    4.4 CONCLUSION REMARKS .................................................................................................................. 137

    CHAPTER 5 IMPROVE POINT PREDICTION FOR OZONE POLLUTED DAYS BY USING HMC-MLP-PSO

    MODEL 140

    5.1 INTRODUCTION ............................................................................................................................ 140

    5.2 METHODOLOGY ........................................................................................................................... 144

    5.2.1 Hybrid Monte Carlo and MLP weight matrix sampling .................................................. 145

    5.2.2 Particle swarm optimization .......................................................................................... 147

    5.2.3 HMC-MLP-PSO ................................................................................................................ 150

    5.2.4 Experiment setup ............................................................................................................ 150

    5.3 RESULTS AND DISCUSSION .............................................................................................................. 152

    5.3.1 Initializing strategy comparison ..................................................................................... 152

    5.3.2 Models performance comparison with different initializing strategy ............................ 156

    5.3.3 Performance comparison between MLP trained by PSO-based algorithms and MLP

    trained by the individual-based algorithms .................................................................................. 163

    5.3.4 Performance comparison between air monitoring stations during ozone polluted days for

    the PSO-trained MLP .................................................................................................................... 164

    5.4 CONCLUSION REMARKS .................................................................................................................. 170

    CHAPTER 6 IMPROVE POINT PREDICTION FOR OZONE POLLUTED DAYS BY USING MLP-PSO-LM

    MODEL 175

    6.1 INTRODUCTION ............................................................................................................................ 175

    6.2 METHODOLOGY ........................................................................................................................... 177

  • Table of Contents

    viii

    6.2.1 MLP model trained with LM algorithm .......................................................................... 177

    6.2.2 MLP trained with standard particle swarm optimization (MLP-PSO) ............................ 178

    6.2.3 MLP-PSO-LM, MLP alternatively trained by PSO and LM ............................................... 178

    6.2.4 Experiment preparation and models setup .................................................................... 179

    6.3 RESULTS AND DISCUSSION .............................................................................................................. 180

    6.3.1 Comparison of convergence history ............................................................................... 180

    6.3.2 Prediction comparison between MLP-PSO-LM, HMC-MLP-PSO and MLP-PSO .............. 185

    6.4 CONCLUSION REMARKS .................................................................................................................. 200

    CHAPTER 7 CONCLUSIONS AND DISCUSSIONS ........................................................................... 203

    7.1 CONCLUSIONS FOR THE SPECIFIC CHAPTERS ........................................................................................ 203

    7.2 GENERAL CONCLUSIONS ................................................................................................................. 207

    7.3 DISCUSSIONS ............................................................................................................................... 209

    7.3.1 Comparative review for prediction result in the literature study ................................... 209

    7.3.2 Original Contributions .................................................................................................... 212

    7.3.3 Limitations and future study recommendations ............................................................ 213

    LIST OF PUBLICATIONS .................................................................................................................. 216

    REFERENCE ................................................................................................................................... 217

    APPENDIX ..................................................................................................................................... 228

  • List of Figures

    ix

    LLiisstt ooff FFiigguurreess

    Figure 1-1 Annual average of major air pollutants in Hong Kong in four types of monitoring station

    ................................................................................................................................................ 3

    Figure 1-2 A simplified tropospheric ozone dynamic equilibrium without anthropogenic emissions

    ................................................................................................................................................ 6

    Figure 1-3 Ozone accumulation with VOCs or hydrocarbons presented ......................................... 6

    Figure 2-1 Study area ................................................................................................................. 29

    Figure 2-2 Hong Kong environment and the studied monitoring sites ......................................... 30

    Figure 2-3 Distribution of average concentrations of nitrogen dioxide in PRDR-AQMN ................ 35

    Figure 2-4 Annual averaged diurnal variation of major pollutants at TW, TM and TC ................... 45

    Figure 2-5 Annual averaged diurnal trend of temperature in Hong Kong ..................................... 46

    Figure 2-6 Annual averaged weekly variation of major pollutants at TW, TM and TC ................... 48

    Figure 3-1 Average performance of MLP-ARD with different topology for ozone prediction ........ 74

    Figure 3-2 Convergence process for three hyperparameters in three air monitoring stations ...... 75

    Figure 3-3 Contour plot of the ranking matrices for the current day prediction ........................... 78

    Figure 3-4 Average performance of MLP-ARD with different topology for ozone prediction ........ 92

    Figure 3-5 Convergence for three hyperparameters .................................................................... 93

    Figure 3-6 Contour plot of the ranking matrices for the 1 day ahead prediciton .......................... 95

    Figure 4-1 Performance comparison between MLP-ARD and MLP-LM in current-day prediction 121

    Figure 4-2 Performance comparison between MLP-ARD and MLP-LM in 1-day ahead prediction

    ............................................................................................................................................ 123

    Figure 4-3 Performance comparison between MLP-ARD-OKIV and MLP-ARD-LOIV in current-day

    prediction ............................................................................................................................ 133

    Figure 4-4 Performance comparison between MLP-ARD-OKIV and MLP-ARD-LOIV in 1-day ahead

    prediction ............................................................................................................................ 136

  • List of Figures

    x

    Figure 5-1 Random versus HMC initialization (on validation data set, current day prediction) ... 154

    Figure 5-2 Random versus HMC initialization (on validation data set, 1 day ahead prediction) .. 155

    Figure 6-1 General flowchart of MLP-PSO-LM ........................................................................... 179

    Figure 6-2 Comparison of convergence history ......................................................................... 184

    Figure 6-3 Models comparison for current and 1 day ahead prediction on test dataset ............. 194

    Figure 6-4 Models comparison for current and 1 day ahead prediction on test dataset ............. 197

  • List of Tables

    xi

    LLiisstt ooff TTaabblleess

    Table 1-1 MLP models in this dissertation .................................................................................. 27

    Table 2-1 Major sources and pollutants generated in Hong Kong in 2005 .................................... 30

    Table 2-2 Contribution of major sectors to regional year pollutant emission inventory ............... 34

    Table 2-3 Information of SYNOP stations .................................................................................... 38

    Table 2-4 Percentage of missing in original data from year 2001 to 2004 .................................... 40

    Table 2-5 Statistics for the collected data (imputed) ................................................................... 41

    Table 2-6 Bivariate granger causality test results including the sample 2 , P- value and degree of

    freedom ................................................................................................................................ 51

    Table 2-7 Number and direction of MSLPG when daily maximum ozone level over 240 3/ mg

    .............................................................................................................................................. 53

    Table 3-1 List of performance indicators ..................................................................................... 63

    Table 3-2 Aggregation for inputs and output for all air monitoring stations for current day

    prediction .............................................................................................................................. 69

    Table 3-3 Distribution of number of data points in dataset ......................................................... 71

    Table 3-4 Ranking result from MLP-ARD with topology scoring the highest 2d in ozone

    prediction .............................................................................................................................. 83

    Table 3-5 Ranking result from MLP-LM with topology scoring the highest 2d by using NCW

    method in ozone prediction ................................................................................................... 87

    Table 3-6 The key spatial input variables for each air-monitoring station .................................... 89

    Table 3-7 Aggregation for inputs and output for all air monitoring stations for 1 day ahead

    prediction .............................................................................................................................. 90

    Table 3-8 Distribution of number of data points in dataset ......................................................... 91

  • List of Figures

    xii

    Table 3-9 Ranking result from MLP-ARD with topology scoring the highest 2d in ozone

    prediction .............................................................................................................................. 98

    Table 3-10 Ranking result from MLP-LM with topology scoring the highest 2d by using NCW

    method in ozone prediction ................................................................................................. 101

    Table 3-11 The key spatial input variables for each air-monitoring station ................................ 103

    Table 3-12 The ozone key influential variables (including key spatial and temporal input variables)

    for current-day prediction .................................................................................................... 106

    Table 3-13 The ozone key influential variables (key spatial and temporal input variables) for 1-day

    ahead prediction ................................................................................................................. 107

    Table 4-1 Statistics for models comparison for current and 1 day ahead prediction on test dataset

    (MLP-ARD v.s. MLP-LM) ....................................................................................................... 118

    Table 4-2 Local key ozone influential variables for current-day prediction ................................ 127

    Table 4-3 Local key ozone influential variables for 1-day ahead prediction ................................ 128

    Table 4-4 Statistics for models comparison for current-day prediction on test dataset

    (MLP-ARD-OKIV v.s. MLP-ARD-LOIV) .................................................................................... 129

    Table 4-5 Statistics for models comparison for 1-day ahead prediction on test dataset

    (MLP-ARD-OKIV v.s. MLP-ARD-LOIV) .................................................................................... 130

    Table 4-6 Difference of 2R between MLP-ARD-OKIV and MLP-ARD-LOIV ............................... 130

    Table 5-1 Parameters in HMC and PSO for both HMC-MLP-PSO and MLP-PSO .......................... 152

    Table 5-2 Statistics for models comparison for current day prediction (HMC-MLP-PSO v.s.

    MLP-PSO, low v.s. high dimension weight space) ................................................................. 158

    Table 5-3 Statistics for models comparison for 1 day ahead prediction (HMC-MLP-PSO v.s. MLP-PSO,

    low v.s. high dimension weight space) ................................................................................. 160

    Table 5-4 Statistics for models comparison for current and 1 day ahead prediction on test dataset

    (HMC-MLP-PSO v.s. MLP-PSO) ............................................................................................. 165

    Table 5-5 Exceedance prediction with respect to ozone level threshold 120 3/ mg .............. 169

  • List of Tables

    xiii

    Table 6-1 Statistics for models comparison for current and 1 day ahead prediction on test dataset

    (MLP-PSO v.s. MLP-PSO-LM) ................................................................................................ 188

    Table 6-2 Statistics for models comparison for current and 1 day ahead prediction on test dataset

    (HMC-MLP-PSO v.s. MLP-PSO-LM) ....................................................................................... 190

    Table 6-3 Exceedance prediction with respect to ozone level threshold 120 3/ mg .............. 198

    Table 7-1 Summary of some selected literature models ............................................................ 211

  • Nomenclature

    xiv

    NNoommeennccllaattuurree

    Symbols

    A Hessian matrix of wS evaluated at MPw

    1b input-layer bias group in model MLP-ARD

    2b hidden-layer bias group in model MLP-ARD

    h

    ib bias of neuron i in the hidden layer

    o

    kb bias of neuron k in the output layer

    1C and 2C cognition and social components in PSO algorithm

    D dataset

    2d Index of agreement

    we sum of squares error

    DE error function generated by training data in model MLP-ARD

    kWE error function generated by weight matrix in model MLP-ARD

    f general function representing the MLP‘s mapping from input to output

    h

    if transfer function of neuron i in the hidden layer

    o

    kf transfer function of neuron k in the output layer

    wxf n ; MLP output with respect to the thn input data

    k

    iFV fitness value of k

    iPo

    kGbest the particle with the best fitness value among all the particle population at the

    thk generation in

    PSO algorithm

    h element in the hidden layer

    I identity unit matrix

  • Nomenclature

    xv

    ki Number of weight in the thk weight group in model MLP-ARD

    kwJ Jocobian matrix evaluated at weight matrix w in thk iteration

    l number of the total data points in D

    L number of neurons in the output layer

    0L number of leapfrog steps (trajectory length) algorithm in HMC

    N number of neurons in the input layer

    o element in the output layer

    iO the thi measured data corresponding to the thi input data

    1k

    iPbest the

    thi particle‘s position, which gives the best fitness value within 1k generations in PSO

    algorithm

    wDp ; likelihood function with respect to w

    wxOp ;, joint pdf of x and O

    k

    iPo position of the thi particle at the thk generation

    wxOp ;| conditional pdf of O given input x

    DwP | posterior probability distribution

    xp unconditional pdf of input x

    zq normal distribution function

    1Q number of the first inner iteration in model MLP-ARD

    2Q number of the second inner iteration in model MLP-ARD

    1rand and

    2rand

    two random numbers in PSO algorithm

    jRI RI of thj input variable in percentage

    2R coefficient of determination

    S number of neurons in the hidden layer

    0S number of outer iteration in model MLP-ARD

    wS total error function in model MLP-ARD

  • Nomenclature

    xvi

    nt the thn target data

    v number of weight component

    k

    iV the velocity of the thi particle at the thk generation in PSO algorithm

    maxV velocity limit in PSO algorithm

    kwV cumulative error vector

    w weight matrix

    1w input-layer weight group in model MLP-ARD

    2w hidden-layer weight group in model MLP-ARD

    MPw most probable values of weight matrix in model MLP-ARD

    h

    jiw weight that connects the neuron j in the input layer with the neuron i in the hidden layer

    o

    ikw weight that connects the neuron i in the hidden layer with the neuron k in the output layer

    optw optimal weight matrix

    x one of MLP input data

    ix the thi input data

    o

    ky output of neuron k in the output layer

    sZ normalization factor in model MLP-ARD

  • Nomenclature

    xvii

    Greek Alphabet Symbols

    hyperparameter in model MLP-ARD

    1b hyperparameter with respect to 1b in model MLP-ARD

    2b hyperparameter with respect to 2b in model MLP-ARD

    1w hyperparameter with respect to 1w in model MLP-ARD

    2w hyperparameter with respect to 2w in model MLP-ARD

    jw1 hyperparameter associated with thj input neuron in model MLP-ARD

    MP

    k most probable values of in the in the thk weight group in model MLP-ARD

    GYMSLPG hyperparameter associated with input variables GYMSLPG in model MLP-ARD

    xNO hyperparameter associated with input variables NOx in model MLP-ARD

    SZAPI hyperparameter associated with input variables SZAPI in model MLP-ARD

    MP most probable values of in model MLP-ARD

    hyperparameter in model MLP-ARD

    k number of well-determined parameters for weight group k in model MLP-ARD

    time lag between ozone and key spatial input variables

    t standard deviation in the output of model MLP-ARD

    time step-size in leapfrog algorithm in HMC

    intrinsic data noise with a pdf zq

    k useful feature in LM algorithm

    0 parameter determining when LM should be inserted into PSO training in model

    MLP-PSO-LM

    MPw most probable values of weight matrix in model MLP-ARD

  • Nomenclature

    xviii

    Abbreviations

    i]-Ave[D previous thi daily average data

    10]-[04Ave 1-D average of hourly data from 04:00-10:00 in previous day

    ACC auto-correlation coefficient

    ACF auto-correlation function

    AIC Akaike's information criterion

    ANN artificial neural network

    AOE number of all observed exceedances.

    APE number of all predicted exceedances.

    API air pollution index

    AQMN Air Quality Monitoring Network

    ARD automatic relevance determination

    ARIMA regressive integrated moving average

    Ave[04-10] average of hourly data from 04:00-10:00

    Ave[D-1] previous daily average data

    BP back-propagation algorithm

    CA cloud amount

    CCC cross correlation coefficient

    CCF cross correlation function

    CO carbon monoxide

    CPE number of the correctly predicted exceedances.

    CV cross-validation

    DF degree of freedom.

    DSMSLPG mean sea level pressure gradient at Dongsha with respect to HKIA

    exce. Exceedance of defined ozone level

    FNR False negative rate

    FPR False positive rate

    GA genetic algorithm

    GDEMC Guangdong Provincial Environmental Protection Monitoring Centre

    GYMSLPG mean sea level pressure gradient at Gaoyao with respect to HKIA

    GZ Guangzhou

  • Nomenclature

    xix

    H(w, MV) the total energy in HDS

    HDS Hamiltonian dynamical system

    HKEPD Hong Kong Environmental Protection Department

    HKIA Hong Kong international airport

    HKO Hong Kong Observatory

    HMC hybrid monte carlo method

    K(MV) kinetic energy in HMC

    LM Levenberg-Marquardt algorithm

    LXMSLPG mean sea level pressure gradient at Lianxian with respect to HKIA

    MAE Mean absolute error

    Max[0-24] daily maximum of hourly data

    MBE Mean bias error

    ML maximum likelihood

    MLP Multilayer perceptron

    MLP-ARD-LOIV MLP-ARD only with local ozone influential variables as input variables

    MLP-ARD-OKIV MLP-ARD with ozone key influential variables as input variables

    MSE Mean square error

    MSLP mean sea level pressure

    MSLPG mean sea level pressure gradient

    MV momentum vector in HMC

    NCW new connection weight method

    NO nitric oxide

    NO2 nitrogen dioxide

    NOx nitrogen oxide

    O3 ozone

    obs. observations

    NFr normalized Spearman‘s footrule

    PCA principal component analysis

    pdf probability density function

    PRDR Pearl River Delta region

    PSO particle swarm optimization

    purelin linear transfer function

  • Nomenclature

    xx

    QYMSLPG mean sea level pressure gradient at Qingyuan with respect to HKIA

    iRank j rank number for the thi variable in the thj variables ranking realization

    RH relative humidity

    RI relative importance

    RK

    rank with respect to RI, from the most important variable or high rank to the least

    one or low rank

    RMSE Root mean square error

    RSP respirable suspended particulates

    SCG scaled conjugate gradient algorithm

    SI success index

    SO2 sulphur Dioxide

    SR solar radiation

    STMSLPG mean sea level pressure gradient at Shantou with respect to HKIA

    SYNOP surface synoptic observation stations

    SZ Shenzhen

    SZMSLPG: mean sea level pressure gradient at Shenzhen with respect to HKIA.

    T temperature

    tansig hyperbolic tangent function

    TC Tung Chung air-monitoring station

    TM Tap Mun air-monitoring station

    TNR True negative rate

    TPR True positive rate

    TS

    number of times for corresponding variable ranked at some rank such position within

    30 MLP-ARD runs.

    TSP total suspended particulate

    TW Tsuen Wan air-monitoring station

    USEPA United States Environmental Protection Agency

    VAR vector autoregressive

    VC Vapnik-Chervonenkis

    VOCs volatile organic compounds

    WD wind direction

    WS wind speed

  • Nomenclature

    xxi

    ZH Zhuhai

    ZJMSLPG: mean sea level pressure gradient at Zhanjiang with respect to HKIA