19
Multiscale Methods for Crowd Dynamics Individuality vs. Collectivity Andrea Tosin Istituto per le Applicazioni del Calcolo “M. Picone” Consiglio Nazionale delle Ricerche Rome, Italy [email protected] http://www.iac.cnr.it/˜tosin Department of Mathematical Sciences Politecnico di Torino October 11, 2013 Andrea Tosin, IAC-CNR (Rome, Italy) Multiscale Methods for Crowd Dynamics, Individuality vs. Collectivity 1/9

Multiscale Methods for Crowd Dynamics - polito.itstaff.polito.it/nicola.bellomo/Torino13-TOSIN.pdfIndividuality vs. Collectivity Andrea Tosin, IAC-CNR (Rome, Italy) Multiscale Methods

Embed Size (px)

Citation preview

Multiscale Methods for Crowd DynamicsIndividuality vs. Collectivity

Andrea Tosin

Istituto per le Applicazioni del Calcolo “M. Picone”Consiglio Nazionale delle Ricerche

Rome, Italy

[email protected]://www.iac.cnr.it/˜tosin

Department of Mathematical SciencesPolitecnico di Torino

October 11, 2013

Andrea Tosin, IAC-CNR (Rome, Italy) Multiscale Methods for Crowd Dynamics, Individuality vs. Collectivity 1/9

Individuality vs. Collectivity

Andrea Tosin, IAC-CNR (Rome, Italy) Multiscale Methods for Crowd Dynamics, Individuality vs. Collectivity 2/9

Microscopic (Particle-Based) Models

“Social force” model (Helbing et al., 1995)xi = vi

vi =v0,i − vi

τ−

N∑j=1

∇Uij(xj − xi) + . . .

“Contact handling” model (Maury and Venel, 2007)

xi = PC(X)(Vdes(xi))

Vdes : Rd → Rd pedestrian desired velocity

PC(X) projection operator on the space ofadmissible velocities

Andrea Tosin, IAC-CNR (Rome, Italy) Multiscale Methods for Crowd Dynamics, Individuality vs. Collectivity 3/9

Microscopic (Particle-Based) Models

“Social force” model (Helbing et al., 1995)xi = vi

vi =v0,i − vi

τ−

N∑j=1

∇Uij(xj − xi) + . . .

“Contact handling” model (Maury and Venel, 2007)

xi = PC(X)(Vdes(xi))

Vdes : Rd → Rd pedestrian desired velocity

PC(X) projection operator on the space ofadmissible velocities

Andrea Tosin, IAC-CNR (Rome, Italy) Multiscale Methods for Crowd Dynamics, Individuality vs. Collectivity 3/9

Microscopic (Particle-Based) Models

“Social force” model (Helbing et al., 1995)xi = vi

vi =v0,i − vi

τ−

N∑j=1

∇Uij(xj − xi) + . . .

“Contact handling” model (Maury and Venel, 2007)

xi = PC(X)(Vdes(xi))

Vdes : Rd → Rd pedestrian desired velocity

PC(X) projection operator on the space ofadmissible velocities

Andrea Tosin, IAC-CNR (Rome, Italy) Multiscale Methods for Crowd Dynamics, Individuality vs. Collectivity 3/9

Macroscopic (Density-Based) Models

First order model (Hughes 2002, Colombo et al. 2005,Bruno-Venuti 2007, Coscia-Canavesio 2008, . . . )

∂ρ

∂t+∇ · (ρV (ρ)ν) = 0

V (ρ) speed-density relationship

ν preferred direction of movement

Second order model (Bellomo-Dogbe 2008, Coscia-Canavesio 2008, Twarogowska et al. 2013)∂ρ

∂t+∇ · (ρv) = 0

∂t(ρv) +∇ · (ρv ⊗ v) =

ρV (ρ)ν − ρvτ

−∇P (ρ)

Andrea Tosin, IAC-CNR (Rome, Italy) Multiscale Methods for Crowd Dynamics, Individuality vs. Collectivity 4/9

Macroscopic (Density-Based) Models

First order model (Hughes 2002, Colombo et al. 2005,Bruno-Venuti 2007, Coscia-Canavesio 2008, . . . )

∂ρ

∂t+∇ · (ρV (ρ)ν) = 0

V (ρ) speed-density relationship

ν preferred direction of movement

Second order model (Bellomo-Dogbe 2008, Coscia-Canavesio 2008, Twarogowska et al. 2013)∂ρ

∂t+∇ · (ρv) = 0

∂t(ρv) +∇ · (ρv ⊗ v) =

ρV (ρ)ν − ρvτ

−∇P (ρ)

Andrea Tosin, IAC-CNR (Rome, Italy) Multiscale Methods for Crowd Dynamics, Individuality vs. Collectivity 4/9

Macroscopic (Density-Based) Models

First order model (Hughes 2002, Colombo et al. 2005,Bruno-Venuti 2007, Coscia-Canavesio 2008, . . . )

∂ρ

∂t+∇ · (ρV (ρ)ν) = 0

V (ρ) speed-density relationship

ν preferred direction of movement

Second order model (Bellomo-Dogbe 2008, Coscia-Canavesio 2008, Twarogowska et al. 2013)∂ρ

∂t+∇ · (ρv) = 0

∂t(ρv) +∇ · (ρv ⊗ v) =

ρV (ρ)ν − ρvτ

−∇P (ρ)

Andrea Tosin, IAC-CNR (Rome, Italy) Multiscale Methods for Crowd Dynamics, Individuality vs. Collectivity 4/9

Multiscale Descriptive Approach by Flow Maps and Measures

Get inspiration from a simple first order particle model:

xi = Vdes(xi) +∑

xj∈SR,α(xi)

K(xj − xi) R α

xi

xj

Vdes(xi)dt

dxi

K(xj−xi)dt

Label pedestrians by means of their initial position:

Xt : Rd → Rd (flow map)

x = Xt(ξ) : position at time t > 0 of the walker who initially was in ξ ∈ Rd

Fix a walker ξ and rewrite the particle model using the flow map:

Xt(ξ) = Vdes(Xt(ξ)) +

∫X−1t (SR,α(Xt(ξ)))

K(Xt(η)−Xt(ξ)) dµ0(η)

Andrea Tosin, IAC-CNR (Rome, Italy) Multiscale Methods for Crowd Dynamics, Individuality vs. Collectivity 5/9

Multiscale Descriptive Approach by Flow Maps and Measures

Get inspiration from a simple first order particle model:

xi = Vdes(xi) +∑

xj∈SR,α(xi)

K(xj − xi) R α

xi

xj

Vdes(xi)dt

dxi

K(xj−xi)dt

Label pedestrians by means of their initial position:

Xt : Rd → Rd (flow map)

x = Xt(ξ) : position at time t > 0 of the walker who initially was in ξ ∈ Rd

Fix a walker ξ and rewrite the particle model using the flow map:

Xt(ξ) = Vdes(Xt(ξ)) +

∫X−1t (SR,α(Xt(ξ)))

K(Xt(η)−Xt(ξ)) dµ0(η)

Andrea Tosin, IAC-CNR (Rome, Italy) Multiscale Methods for Crowd Dynamics, Individuality vs. Collectivity 5/9

Multiscale Descriptive Approach by Flow Maps and Measures

Get inspiration from a simple first order particle model:

xi = Vdes(xi) +∑

xj∈SR,α(xi)

K(xj − xi) R α

xi

xj

Vdes(xi)dt

dxi

K(xj−xi)dt

Label pedestrians by means of their initial position:

Xt : Rd → Rd (flow map)

x = Xt(ξ) : position at time t > 0 of the walker who initially was in ξ ∈ Rd

Fix a walker ξ and rewrite the particle model using the flow map:

Xt(ξ) = Vdes(Xt(ξ)) +

∫X−1t (SR,α(Xt(ξ)))

K(Xt(η)−Xt(ξ)) dµ0(η)

Andrea Tosin, IAC-CNR (Rome, Italy) Multiscale Methods for Crowd Dynamics, Individuality vs. Collectivity 5/9

Multiscale Descriptive Approach by Flow Maps and Measures

Get inspiration from a simple first order particle model:

xi = Vdes(xi) +∑

xj∈SR,α(xi)

K(xj − xi) R α

xi

xj

Vdes(xi)dt

dxi

K(xj−xi)dt

Transport µ0 by means of Xt, i.e., µt := Xt#µ0 , to discover:∂µ

∂t+∇ · (µv[µ]) = 0

v[µt](x) = Vdes(x) +

∫SR,α(x)

K(y − x) dµt(y)x ∈ Rd, t > 0

Description compatible with both a discrete and a continuous view of the crowd:

discrete: µ0 =

N∑i=1

δξi , continuous: µ0 = ρ0Ld

Andrea Tosin, IAC-CNR (Rome, Italy) Multiscale Methods for Crowd Dynamics, Individuality vs. Collectivity 5/9

Multiscale Descriptive Approach by Flow Maps and Measures

Get inspiration from a simple first order particle model:

xi = Vdes(xi) +∑

xj∈SR,α(xi)

K(xj − xi) R α

xi

xj

Vdes(xi)dt

dxi

K(xj−xi)dt

Transport µ0 by means of Xt, i.e., µt := Xt#µ0 , to discover:∂µ

∂t+∇ · (µv[µ]) = 0

v[µt](x) = Vdes(x) +

∫SR,α(x)

K(y − x) dµt(y)x ∈ Rd, t > 0

Description compatible with both a discrete and a continuous view of the crowd:

discrete: µ0 =

N∑i=1

δξi , continuous: µ0 = ρ0Ld

Andrea Tosin, IAC-CNR (Rome, Italy) Multiscale Methods for Crowd Dynamics, Individuality vs. Collectivity 5/9

Discrete and Continuous: So Close. . .

Comparison between discrete and continuous models in terms of statisticaldistributions of pedestrians:

µdiscr0 =

1

N

N∑i=1

δξi , µcont0 =

1

Ld(Ω)Ld

h

Ω

KN W1(µdiscr

0 , µcont0 ) ≤

√d

2h+

diam(Ω)

Ld(Ω)Ld(Ω \KN )

N→∞−−−−→ 0

Continuous dependence estimate (for smooth Vdes and K):

W1(µdiscrt , µcont

t ) ≤ CW1(µdiscr0 , µcont

0 ) ∀ t ∈ (0, T ]

hence µdiscrt ≡ µcont

t for all t in the limit N →∞.

Andrea Tosin, IAC-CNR (Rome, Italy) Multiscale Methods for Crowd Dynamics, Individuality vs. Collectivity 6/9

Discrete and Continuous: So Close. . .

Comparison between discrete and continuous models in terms of statisticaldistributions of pedestrians:

µdiscr0 =

1

N

N∑i=1

δξi , µcont0 =

1

Ld(Ω)Ld

h

Ω

KN W1(µdiscr

0 , µcont0 ) ≤

√d

2h+

diam(Ω)

Ld(Ω)Ld(Ω \KN )

N→∞−−−−→ 0

Continuous dependence estimate (for smooth Vdes and K):

W1(µdiscrt , µcont

t ) ≤ CW1(µdiscr0 , µcont

0 ) ∀ t ∈ (0, T ]

hence µdiscrt ≡ µcont

t for all t in the limit N →∞.

Andrea Tosin, IAC-CNR (Rome, Italy) Multiscale Methods for Crowd Dynamics, Individuality vs. Collectivity 6/9

Discrete and Continuous: So Close. . .

Comparison between discrete and continuous models in terms of statisticaldistributions of pedestrians:

µdiscr0 =

1

N

N∑i=1

δξi , µcont0 =

1

Ld(Ω)Ld

h

Ω

KN W1(µdiscr

0 , µcont0 ) ≤

√d

2h+

diam(Ω)

Ld(Ω)Ld(Ω \KN )

N→∞−−−−→ 0

Continuous dependence estimate (for smooth Vdes and K):

W1(µdiscrt , µcont

t ) ≤ CW1(µdiscr0 , µcont

0 ) ∀ t ∈ (0, T ]

hence µdiscrt ≡ µcont

t for all t in the limit N →∞.

Andrea Tosin, IAC-CNR (Rome, Italy) Multiscale Methods for Crowd Dynamics, Individuality vs. Collectivity 6/9

Discrete and Continuous: . . . So Far

Does the limit N →∞ really make sense for crowds?Often it does not: pedestrians in a crowd are not as many as 1023 gas molecules.For finite N physical mass distributions matter.

L

Bx

B b

0

0.2

0.4

0.6

0.8

1

1.2

1.34

1 45 57 223 281 446 561

u(N

) [m

/s]

N [ped]

L = 10 mL = 50 m

L = 100 m

Andrea Tosin, IAC-CNR (Rome, Italy) Multiscale Methods for Crowd Dynamics, Individuality vs. Collectivity 7/9

SIMAI Activity Group on Complex Systems – http://sisco.simai.eu

Andrea Tosin, IAC-CNR (Rome, Italy) Multiscale Methods for Crowd Dynamics, Individuality vs. Collectivity 8/9

References

• N. Bellomo, B. Piccoli, and A. Tosin.Modeling crowd dynamics from a complex system viewpoint.Math. Models Methods Appl. Sci., 22(supp02):1230004 (29 pages), 2012.

• L. Bruno, A. Tosin, P. Tricerri, and F. Venuti.Non-local first-order modelling of crowd dynamics: A multidimensional framework with applications.Appl. Math. Model., 35(1):426–445, 2011.

• A. Corbetta and A. Tosin.Bridging discrete and continuous differential models of crowd dynamics: A fundamental-diagram-aided comparative study.Preprint: arXiv:1306.2472, 2013.

• A. Corbetta, A. Tosin, and L. Bruno.From individual behaviors to an evaluation of the collective evolution of crowds along footbridges.Preprint: arXiv:1212.3711, 2012.

• E. Cristiani, B. Piccoli, and A. Tosin.Multiscale Modeling of Pedestrian Dynamics.In preparation.

• E. Cristiani, B. Piccoli, and A. Tosin.Multiscale modeling of granular flows with application to crowd dynamics.Multiscale Model. Simul., 9(1):155–182, 2011.

• B. Piccoli and A. Tosin.Pedestrian flows in bounded domains with obstacles.Contin. Mech. Thermodyn., 21(2):85–107, 2009.

• B. Piccoli and A. Tosin.Time-evolving measures and macroscopic modeling of pedestrian flow.Arch. Ration. Mech. Anal., 199(3):707–738, 2011.

• A. Tosin and P. Frasca.Existence and approximation of probability measure solutions to models of collective behaviors.Netw. Heterog. Media, 6(3):561–596, 2011.

Andrea Tosin, IAC-CNR (Rome, Italy) Multiscale Methods for Crowd Dynamics, Individuality vs. Collectivity 9/9