35
1 IEEE NSS 2015 San Diego Combinatorial Approach to Bulk Detector Material Engineering I.V. Khodyuk, D. Perrodin, S.E. Derenzo, E.D. Bourret, G. A. Bizarri Lawrence Berkeley Na@onal Laboratory, Berkeley, CA - USA Combinatorial and high throughput material synthesis part of this work was supported by the US Department of Homeland Security/DNDO and crystal growth effort by the US Department of Energy/NNSA/DNN R&D and carried out at Lawrence Berkeley Na=onal Laboratory under Contract no. AC02-05CH11231. This work does not cons=tute an express or implied endorsement on the part of the government.

N3C1-5 Ivan Khodyuk IEEE NSS 2015

Embed Size (px)

Citation preview

Page 1: N3C1-5 Ivan Khodyuk IEEE NSS 2015

1 IEEENSS2015SanDiego

CombinatorialApproachtoBulkDetectorMaterialEngineering

I.V.Khodyuk,D.Perrodin,S.E.Derenzo,E.D.Bourret,G.A.BizarriLawrenceBerkeleyNa@onalLaboratory,Berkeley,CA-USA

CombinatorialandhighthroughputmaterialsynthesispartofthisworkwassupportedbytheUSDepartmentofHomelandSecurity/DNDOandcrystalgrowth effort by the US Department of Energy/NNSA/DNN R&D and carried out at Lawrence Berkeley Na=onal Laboratory under Contract no.AC02-05CH11231.Thisworkdoesnotcons=tuteanexpressorimpliedendorsementonthepartofthegovernment.

Page 2: N3C1-5 Ivan Khodyuk IEEE NSS 2015

2 IEEENSS2015SanDiego

Outline

q  IntroducHono  Globaltrendsinradia=ondetec=onmaterials

§  Complexhosts§  Co-doping

o  Parameterspaceforscin=llatorsR&Dq Toolstosearchthroughtheparameterspace

o  Combinatorialchemistryo  Fullfactorialdesigno  Frac=onalfactorialdesigno  Responsesurfacemethodology

q NaIperformanceengineeringo  Experimentaldesigno  Dataanalysisandresultverifica=ono  Bridgmancrystalgrowtho  NaI:TECcharacteriza=on

q Conclusionandfuturework

Page 3: N3C1-5 Ivan Khodyuk IEEE NSS 2015

3 IEEENSS2015SanDiego

Outline

q  IntroducHono  Globaltrendsinradia=ondetec=onmaterials

§  Complexhosts§  Co-doping

o  Parameterspaceforscin=llatorsR&Dq  Toolstosearchthroughtheparameterspace

o  Combinatorialchemistryo  Fullfactorialdesigno  Frac=onalfactorialdesigno  Responsesurfacemethodology

q  NaIperformanceengineeringo  Experimentaldesigno  Dataanalysisandresultverifica=ono  Bridgmancrystalgrowtho  NaI:TECcharacteriza=on

q  Conclusionandfuturework

Page 4: N3C1-5 Ivan Khodyuk IEEE NSS 2015

4 IEEENSS2015SanDiego

ApplicaHondrivenresearch

Howcanweenhancespectroscopiccapabili=esof“lowcost”scin=llators?

Isitpossibletodecreasepriceofexis=ng“advanced”materials?

RealworldapplicaHonsarethemaindrivingforcesbehindradiaHonmaterialsdiscoveryanddevelopment

NaI:TlCsI:Tl,Na

BeYerEnergyresolu=on

Isotopediscrimina=on

LaBr3:CeSrI2:Eu

Lowerprice Moreapplica=ons

DiscovernewmaterialsorImprovealreadyexisHng

Homelandsecurity:

Page 5: N3C1-5 Ivan Khodyuk IEEE NSS 2015

5 IEEENSS2015SanDiego

Discoveryofnewmaterial

Binary

Ternary

Quaternary

GlobaltrendinmaterialsforradiaHondetecHon

Time

Numberofelementsinthehost

NaI, CsI

LSO, YAG

GYAG, CLYC

Moreandmoresystemswithcomplexhostsareintroducedasscin=llators

SameorsimilartrendcanbeseeninscinHllators,semiconductors,phosphors…

Page 6: N3C1-5 Ivan Khodyuk IEEE NSS 2015

6 IEEENSS2015SanDiego

MixedmaterialsperformbeRerLuminosity

,arb.u

n.

Cs(Br,I) (La,Ce)F3 La(Cl,Br)3

(Lu,Y)AP (Lu,Gd)SO Gd(Al,Ga)G

Y(Al,Ga)G (Zn,Mg)WO (Ca,Sr)S

From:GekHn,A.V.;Belsky,A.N.;Vasil'ev,A.N.,"ScinHllaHonEfficiencyImprovementbyMixedCrystalUse,"inNuclearScience,IEEETransac1onson,vol.61,no.1,pp.262-270,Feb.2014

InmanycasescomplexhostsleadtobeRerscinHllaHonperformance

Page 7: N3C1-5 Ivan Khodyuk IEEE NSS 2015

7 IEEENSS2015SanDiego

Trendinmaterialsdiscovery

Sta=s=calanalysisof500+scin=llatormaterialsfromscinHllator.lbl.gov

NumberofcomposiHonsgrownasapowerlawofnumberofelements

PublicaHonyear1960 2015

102

103

104

105

Nofp

ossiblecompo

siHo

ns

Page 8: N3C1-5 Ivan Khodyuk IEEE NSS 2015

8 IEEENSS2015SanDiego

Example1-MixedcaHons

PublicaHonyear1960 2015

Gd3Al5O12

(Gd,Y)3Al5O12

(Gd,Y)3(Ga,Al)5O12

Dorenbos,P.etal.,Rad.Eff.Def.inSol.,p.135,1995 Cherepy,N.Jetal,IEEETNS56(3)p.873,2009

K.Kamadaetal.,CrystalGrowth&Design,11,p.4484,2011

Significantimprovementoflightoutputinmixedca=onssystems

From10,000to60,000ph/MeV

Page 9: N3C1-5 Ivan Khodyuk IEEE NSS 2015

9 IEEENSS2015SanDiego

CsI

CsBa2I5

BaBr2

BaBrI

J.BonanomiandJ.Rossel,Helv.Phys.Acta.,vol.25,p.725,1952.

E.D.Bourret-Courchesneetal.,NIMA,612:138,2009.

J.Sellingetal.,J.ofAppl.Phys.,101:034901,2007.

E.D.Bourret-Courchesne,NIMA,613:95,2010.

Example1-Mixedanions

SignificantimprovementofenergyresoluHonandlightoutput

PublicaHonyear1960 2015

From50,000to~90,000ph/MeV

From>5%to~3%at662keV

Page 10: N3C1-5 Ivan Khodyuk IEEE NSS 2015

10 IEEENSS2015SanDiego

ImprovementofexisHngmaterials

Developmenthasbeendonebydifferentmeans:

Crystalgrowth• CondiHons• Techniques

ControlofimpuriHes• Rawmaterials• Synthesis

Defectengineering• Bandgap• Co-doping

Forexampleco-dopingwassuccessfullyusedtotargetspecificproperHes

Wekeepthelacceandtrytoimproveperformance

Globalapproach:

Page 11: N3C1-5 Ivan Khodyuk IEEE NSS 2015

11 IEEENSS2015SanDiego

Targetedimprovementbyco-doping

Mechanicalproper=eswereaddressedby

aliovalentco-doping:Sr,Ca,Ba,Mg

Improvedscin=lla=onperformancehasbeendiscovered:Ba,Sr,Ca

RecordEnergyResolu=on

ImprovedMechanicalproper=es

LSO:Ce Ca Decay time

Light Output

PbWO4 LaTraps

removalDecay=me

ThereareafewexampleswhenspecificproperHesofexisHngmaterialshavebeenimprovedbyco-dopingwithasmallamountofop1callypassiveelements

Zoominexample:LaBr3:CeandCeBr3

SignificantimprovementofscinHllaHonandmechanicalproperHeshasbeenachievedbyco-dopingwithfewhundredppmofSr2+

Harrison,M.J.etal.,IEEETNS56(3)2009 Yang,K.etal.,IEEENSS/MIC2012N1-135 Alekhin,M.S.Appl.Phys.LeR.102,161915(2013)

Page 12: N3C1-5 Ivan Khodyuk IEEE NSS 2015

12 IEEENSS2015SanDiego

IdealscinHllatorsdiscoveryandimprovement

Lapce

• ElementalcomposiHon• Stoichiometry• EnhanceddefectformaHon

Dopants

• DopanttypeandconcentraHon• Co-dopant1typeandconcentraHon• Co-dopant2…

Synthesis

• SynthesistechniqueandcondiHons• Purityofraw• IniHalreactants

EvenwithverygoodguidancewehavefromphysicsandcrystalgrowthitisessenHaltohaveeffecHvetoolstosearchthroughtheparameterspace

EnergyResoluHon

LightOutput

MechanicalproperHes

DecayHme

Price

SelfAbsorpHon

ParameterspaceisexpandingdrasHcallywhenweaccountforallpossiblecombinaHons

Page 13: N3C1-5 Ivan Khodyuk IEEE NSS 2015

13 IEEENSS2015SanDiego

Outline

q  IntroducHono  GlobaltrendsinradiaHondetecHonmaterials

§  Complexhosts§  Co-doping

o  ParameterspaceforscinHllatorsR&Dq Toolstosearchthroughtheparameterspace

o  Combinatorialchemistryo  Fullfactorialdesigno  Frac=onalfactorialdesigno  Responsesurfacemethodology

q  NaIperformanceengineeringo  Experimentaldesigno  DataanalysisandresultverificaHono  Bridgmancrystalgrowtho  NaI:TECcharacterizaHon

q  Conclusionandfuturework

Page 14: N3C1-5 Ivan Khodyuk IEEE NSS 2015

14 IEEENSS2015SanDiego

Combinatorialchemistry

Veryefficientforpowdersandthinfilmswhenprobingluminescent

proper=es

BiSrCaCuOx

DescripHonCombinatorialchemistry-allthepossiblecombina=onsintheparameterspaceareprobedRequirementsPossibilityofsimultaneoussynthesisDesiredproper=esofthematerialscanbeautoma=callytested

Page 15: N3C1-5 Ivan Khodyuk IEEE NSS 2015

15 IEEENSS2015SanDiego

CombinatorialchemistryandscinHllator?

•  Cannot use powder/thin film •  Need single crystal of representative quality

Requirement to access scintillation properties: Gamma response and photopeak for energy resolution and light output

The speed of the approach is as fast as the slowest part of the process.

Numerous possibility Extremely time

consuming

Not applicable!

Crystal growth/ Material Synthesis

A = Li, Na, K, Cs X = F, Cl, Br, I Y = 0.01, 0.05, 0.1, 0.2

54 = 625 crystals

Cs2ALa1-yCeyX6:IIA

5factorsx4levels Fullfactorialdesign

IIA = Mg, Ca, Sr, Ba [IIA] = 0.05%, 0.1%, 0.25%, 0.5%

Page 16: N3C1-5 Ivan Khodyuk IEEE NSS 2015

16 IEEENSS2015SanDiego

FromFULLtoFRACTIONALfactorialdesign

F2

F3

F1

Can we search through the parameter space more efficiently?

Cs2ALa1-yCeyX6

33 = 27 crystals

3factorsx3levels Fullfactorialdesign

A, X, Y -> factors Li, Na, Cs -> levels of Factor A

A=Li, Na, Cs X=Cl, Br, I Y=0.01, 0.05, 0.1

Example:

Page 17: N3C1-5 Ivan Khodyuk IEEE NSS 2015

17 IEEENSS2015SanDiego

Factor Level 1 Level 2 Level 3 F1 L11 L21 L31

F2 L12 L22 L32

F3 L13 L23 L33

Fractional factorial design 33 using L9 OA

F2

F3

F1

FracHonalfactorialdesign

L9 Orthogonal Array Design F1 F2 F3

1 L11 L12 L13

2 L11 L22 L23

3 L11 L32 L33

4 L21 L12 L23

5 L21 L22 L33

6 L21 L32 L13

7 L31 L12 L33

8 L31 L22 L13

9 L31 L32 L23

33 = 27 9 crystals 54 = 625 16 crystals

Page 18: N3C1-5 Ivan Khodyuk IEEE NSS 2015

18 IEEENSS2015SanDiego

Fractional factorial design 33 using L9 OA

Example:Cs2ALa1-yCeyX6

Orthogonal Experimental Set Design A X Y

1 Li Cl 0.01

2 Li Br 0.05

3 Li I 0.1

4 Na Cl 0.05

5 Na Br 0.1

6 Na I 0.01

7 Cs Cl 0.1

8 Cs Br 0.01

9 Cs I 0.05

Factor Level 1 Level 2 Level 3 A Li Na Cs

X Cl Br I

Y 0.01 0.05 0.1

#1 Cs2LiLaCl6:1%Ce #5 Cs2NaLaBr6:10%Ce #9 Cs3LaI6:5%Ce

X

Y

A

#1

#5

#9

Page 19: N3C1-5 Ivan Khodyuk IEEE NSS 2015

19 IEEENSS2015SanDiego

Complementaryspaceprobing

Projection of all 9 points on YZ plain

Orthogonalarraybasedexperimentaldesignrequiresthefewestnumberofexperimentstoprobefullcombinatorialspace

KnotsarearrangedtoformcompleteprojecHononallplanes:XY,XZ,YZ

Page 20: N3C1-5 Ivan Khodyuk IEEE NSS 2015

20 IEEENSS2015SanDiego

FullspacereconstrucHon

Visualiza=oncanbeusedonlyforfactorsthatcanberepresentedbycon=nuousfunc=on–concentra=on,ra=o,temperature,etc.

Combinatorialtechniqueitselfisnotlimitedtothat!

Byhavingall3projecHonstakenthefullmapofthespacecanbereconstructed

Risk – part of the information can be lost Advantage – minimal N of experiments

Page 21: N3C1-5 Ivan Khodyuk IEEE NSS 2015

21 IEEENSS2015SanDiego

Outline

q  IntroducHono  GlobaltrendsinradiaHondetecHonmaterials

§  Complexhosts§  Co-doping

o  ParameterspaceforscinHllatorsR&Dq  Toolstosearchthroughtheparameterspace

o  Combinatorialchemistryo  Fullfactorialdesigno  FracHonalfactorialdesigno  Responsesurfacemethodology

q NaIperformanceengineeringo  Experimentaldesigno  Dataanalysisandresultverifica=ono  Bridgmancrystalgrowtho  NaI:TECcharacteriza=on

q  Conclusionandfuturework

Page 22: N3C1-5 Ivan Khodyuk IEEE NSS 2015

22 IEEENSS2015SanDiego

NaI–Performanceengineering

Factor Level1 Level2 Level3 Level4

Dopant Tl - - -

[Dopant],% 0.0 0.1 0.25 0.5

Co-dopant Mg Ca Sr Ba

[co-dopant] 0.1 0.2 0.4 0.8

[Eu2+],% 1.0 0.5 0.1 0.0

Fullfactorialdesignwouldrequiretrialof256differentcrystalsL16orthogonalarraybasedFracHonalFactorialdesign-only16crystals

Goal:ImprovementofNaIEnergyResoluHonbyco-doping

Benchmark:NaI:Tl–40,000ph/MeVand6.3%at662keVBestvaluereported-Shiranetal.:NaI:Tl,Eu–48,000ph/MeVand6.2%at662keVBestunreportedvalue:NaI:Tl-44,000ph/MeVand5.9%at662keV

Factorial(parametric)spacetodiscover:

Shiran,N.V.etal,IEEETNS57(3)p.1233,2010

Page 23: N3C1-5 Ivan Khodyuk IEEE NSS 2015

23 IEEENSS2015SanDiego

SynthesisandcharacterizaHon

Workflow

DesignofExperiment

Selectedcrystalgrowth

Pulse-heightcharacteriza=onDataanalysis

ForeverycomposiHon3-5singlecrystallinepiecesof3x3x3mm3weremeasured

Page 24: N3C1-5 Ivan Khodyuk IEEE NSS 2015

24 IEEENSS2015SanDiego

DesignofExperimentFracHonalfactorialdesignusingL16orthogonalarray

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160

5

10

15

20

Homemadereference

C ommerc ia lreference

Ene

rgyRes

olution@

662

keV(%)

D es ignnumber

Mg

C a

S r

B a

B aMg

C a S r

B a

Mg

C a

S r

B aMg

C aS r

S tatis tica llimitfor44000photons /MeV

Noneoftheexperimentalcomposi=onssignificantlyoverperformthereference

InformaHononthedirecHonofimprovementisencodedinthedesign

Page 25: N3C1-5 Ivan Khodyuk IEEE NSS 2015

25 IEEENSS2015SanDiego

Experimentaldesignoutput

ProjecHonsof4dimensionalparametricspaceonsurface:

Zoneofinterest

MulH-regressionanalysisisnecessarytoesHmateopHmalconcentraHons

Page 26: N3C1-5 Ivan Khodyuk IEEE NSS 2015

26 IEEENSS2015SanDiego

OpHmumcomposiHonsynthesis

0 1000 2000 3000 4000 50000

100

200

300

400

Cou

nts

P MT 1C hannel

S 4

L Y = 46200ph/MeV*E R = 5.4%

*LOcorrectedforPMTQENaI:0.25%Tl,0.1%Eu,0.2%Ca

Quickop=malcomposi=onsynthesisandperformanceevalua=on

OpHmalcomposiHonoverperformthebenchmarkreferenceevenwhenweoperateinthenominalconcentraHonsparametricspace

Factor Level1 Level2 Level3 Level4

Dopant Tl - - -

[Dopant],% 0.0 0.1 0.25 0.5

Co-dopant Mg Ca Sr Ba

[co-dopant] 0.1 0.2 0.4 0.8

[Eu2+],% 1.0 0.5 0.1 0.0

Factorialspacetodiscover:

Page 27: N3C1-5 Ivan Khodyuk IEEE NSS 2015

27 IEEENSS2015SanDiego

OpHmumcomposiHoncrystalgrowth

NaI:0.25%Tl+,0.1%Eu2+,0.2%Ca2+–nominalconcentraHonsinthemelt

Partofboule [Tl+],ppmwt

[Ca2+],ppmwt

[Eu2+],ppmwt

nominalinmelt 3470 540 1000top 14641 580 890center 1500 490 940boRom 880 580 940

InducHvelyCoupledPlasmaMassSpectrometry(ICP-MS)results:

42 43 44 45 46 47 48 49 50 51 522.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

topcenterbottom

Ene

rgyRes

olution@

662

keV(%)

L ig htO utput(photons /keV )

5.2% (51.1ph/keV )

S ta tis tica llimitfor44000photons /MeV

R eferenceNa I:T l#0

C ommerc ia lNa I:T l

ThereisasignificantdifferencebetweennominalandrealTlconcentaHonPartsofthecrystalwithlowerTlconcentraHonperformbeRer

Page 28: N3C1-5 Ivan Khodyuk IEEE NSS 2015

28 IEEENSS2015SanDiego

NaI:TECwithcorrectedTlconcentraHon

NaIwithlowerconcentra=onofTl+–0.1mole%inthemeltwasgrownusingthesameBridgmantechnique

52000ph/MeV4.9%at662keV

NaI:TEC(Tl,Eu,Ca)–with52,000ph/MeVand4.9%resoluHonat662keV

Page 29: N3C1-5 Ivan Khodyuk IEEE NSS 2015

29 IEEENSS2015SanDiego

CharacterizaHon:XRLanddecayHme

250 300 350 400 450 500 550 600 650

Na I:T E CNa I:T lre ference

XRLem

ission

intens

ity,a

rb.u

n.

W aveleng th,nm

X-rayluminescence ScinHllaHondecayHme

XRLemissionmaxat450nm 85%ofthelightemiRedthrough“long”1.4μscomponent

0 1000 2000 3000 4000 5000

0.01

0.1

1

τ1 = 240ns -15%

τ2 = 1390ns -85%

Cou

nts/bin

T ime,ns

Na I:T E CNa I:T l

τ = 225ns

backg round

Page 30: N3C1-5 Ivan Khodyuk IEEE NSS 2015

30 IEEENSS2015SanDiego

EnergytransferfromTl+toEu2+

6sà6p

4fà5d

Tl+

Eu2+

[Eu2++Vac]

Tl+

Page 31: N3C1-5 Ivan Khodyuk IEEE NSS 2015

31 IEEENSS2015SanDiego

Tl-Eu energy transfer

maximization

Beneficial defect

creation

Impurity removal

Mechanismsofimprovement

MulHplemechanismsworkinsynergytowardtheimprovementoflightoutputandenergyresoluHon

High Oxygen affinity of Ca and Eu Trapping of carriers

during early stages of scintillation process with subsequent release [Eu2+

Na + VacNa] – hole trap

[Tl0Na + Ca2+Na]

– electron trap

FurtherinvesHgaHonaswellasindustrialverificaHonisrequiredtopushperformanceofNaI:TECevenfurther

Page 32: N3C1-5 Ivan Khodyuk IEEE NSS 2015

32 IEEENSS2015SanDiego

Outline

q  IntroducHono  GlobaltrendsinradiaHondetecHonmaterials

§  Complexhosts§  Co-doping

o  ParameterspaceforscinHllatorsR&Dq  Toolstosearchthroughtheparameterspace

o  Combinatorialchemistryo  Fullfactorialdesigno  FracHonalfactorialdesigno  Responsesurfacemethodology

q  NaIperformanceengineeringo  Experimentaldesigno  DataanalysisandresultverificaHono  Bridgmancrystalgrowtho  NaI:TECcharacterizaHon

q Conclusionandfuturework

Page 33: N3C1-5 Ivan Khodyuk IEEE NSS 2015

33 IEEENSS2015SanDiego

Conclusion

•  Therearetrendsinradia=ondetec=onmaterialsdiscoveryandimprovementwhichsignificantlyincreasepoten=alcombinatorialspace

•  Experimentaldesigntechniquescanbeveryusefultoolstoprobethisspaceinamoreefficientway

•  FracHonalfactorialdesignhasbeenusedtospeedupdiscoveryofEu2+andIIAinfluenceonscin=lla=onperformanceofNaI:Tl

•  Op=malcomposi=on–NaI:TEC(0.1%Tl+,0.1%Eu2+,0.2%Ca2+)determinedwithmul=-regressionanalysisgives52000photons/MeVand4.9%grownbyBridgman

•  NaI:TECunderX-raysandop=calexcita=onisemicnglightpredominantlythroughEu2++Vacclusterwithmaxat450nmandmaindecaycomponentsof240nsand1.4μs

J. Appl. Phys. 118, 084901 (2015); http://dx.doi.org/10.1063/1.4928771

Page 34: N3C1-5 Ivan Khodyuk IEEE NSS 2015

34 IEEENSS2015SanDiego

Futurework

Formulavalida=on Scalingup Industrial

verifica=on

NaI:TEC–Canweget2x2incheswithER<5?

Methodologyimprovement

Goalsbroadening

Materialsdiversifica=on

Experimentaldesign

Page 35: N3C1-5 Ivan Khodyuk IEEE NSS 2015

35 IEEENSS2015SanDiego

AcknowledgementsTheauthorswouldliketothankS.Hanrahan,D.Wilson,M.BoswellandDr.J.PowellfortheirtechnicalandengineeringsupportandDrs.G.Gundiah,M.Gascon,E.SamulonandT.Shalapskafortheirscien=ficinput.CombinatorialandhighthroughputmaterialsynthesispartofthisworkwassupportedbytheUSDepartmentofHomelandSecurity/DNDOandcrystalgrowtheffortbytheUSDepartmentofEnergy/NNSA/DNNR&DandcarriedoutatLawrenceBerkeleyNa=onalLaboratoryunderContractno.AC02-05CH11231.Thisworkdoesnotcons=tuteanexpressorimpliedendorsementonthepartofthegovernment.

Thankyou!