24
Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation of Magnetic Fusion Plasmas 1 . Dusts in Tokamaks . Dust Charge & Temperature Models . Simulation Results . New Formula of Thermionic Emission . Summary Nam-Sik Yoon (Chungbuk National University of Korea), B. H. Park and J. Y. Kim (NRFI) A Dust Charging Model under Tokamak Discharge Conditions (6 th Japan-Korea Workshop on Theory and Simulation of Magnetic Fusion Plasmas, NIFS)

Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Embed Size (px)

Citation preview

Page 1: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions

6th Japan-Korea Workshop on Theory and Simulation of Magnetic Fusion Plasmas 1

1. Dusts in Tokamaks

2. Dust Charge & Temperature Models

3. Simulation Results

4. New Formula of Thermionic Emission

5. Summary

1. Dusts in Tokamaks

2. Dust Charge & Temperature Models

3. Simulation Results

4. New Formula of Thermionic Emission

5. Summary

Nam-Sik Yoon

(Chungbuk National

University of Korea),

B. H. Park and J. Y. Kim

(NRFI)

A Dust Charging Modelunder Tokamak Discharge Conditions

(6th Japan-Korea Workshop on Theory and Simulationof Magnetic Fusion Plasmas, NIFS)

A Dust Charging Modelunder Tokamak Discharge Conditions

(6th Japan-Korea Workshop on Theory and Simulationof Magnetic Fusion Plasmas, NIFS)

Page 2: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon, Chungbuk National University, Dust Transport Simulation in KSTAR 2

Dust is produced by various processes in Tokamaks;

- Arcing & explosive ejection of hot plasma- Flaking, blistering & fracturing of deposited layers- Brittle destruction of surface imperfections- Coagulation of metal atoms on hot carbon surfaces- Nucleation/Agglomeration processes from supersaturated

vapor- Growth of dust in cold edge, e.g. in a detached divertor- Dust from carbon is much more pronounced than from

metals because of large erosion rates.

Dust can play an important role in the performance of fusion devices in 'standard' condition. [2008, Plasma Phys. Control. Fusion 50]

Dust problem will become more significant for future high power loadings and longer operation time fusion devices.

Dust is produced by various processes in Tokamaks;

- Arcing & explosive ejection of hot plasma- Flaking, blistering & fracturing of deposited layers- Brittle destruction of surface imperfections- Coagulation of metal atoms on hot carbon surfaces- Nucleation/Agglomeration processes from supersaturated

vapor- Growth of dust in cold edge, e.g. in a detached divertor- Dust from carbon is much more pronounced than from

metals because of large erosion rates.

Dust can play an important role in the performance of fusion devices in 'standard' condition. [2008, Plasma Phys. Control. Fusion 50]

Dust problem will become more significant for future high power loadings and longer operation time fusion devices.

1. Dusts in Tokamaks1. Dusts in Tokamaks

Page 3: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon, Chungbuk National University, Dust Transport Simulation in KSTAR 3

The issues surrounding the dust production include

- Issues on Plasma Performance:* Impurity transport around the Scrape-Off Layer (SOL). * Impurity can transport into the core.

- Engineering Issues:* Dust deposition blocking gaps

- Operation Issues: * Startup could be impeded.* Dust may disrupt the fusion plasma.

- Safety Issues: * Mobile dust containing tritium and beryllium which are

chemically reactive and/or toxic and/or radioactive.- Diagnostics Issues:

* Degradation of in-vessel diagnostic components by deposition

end erosion* Dust can be used for some kinds of diagnostics.

The issues surrounding the dust production include

- Issues on Plasma Performance:* Impurity transport around the Scrape-Off Layer (SOL). * Impurity can transport into the core.

- Engineering Issues:* Dust deposition blocking gaps

- Operation Issues: * Startup could be impeded.* Dust may disrupt the fusion plasma.

- Safety Issues: * Mobile dust containing tritium and beryllium which are

chemically reactive and/or toxic and/or radioactive.- Diagnostics Issues:

* Degradation of in-vessel diagnostic components by deposition

end erosion* Dust can be used for some kinds of diagnostics.

Page 4: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon, Chungbuk National University, Dust Transport Simulation in KSTAR 4

DUSTT & DTOKS codes DUSTT(Dust Transport) code:

- A. Y. Pigarov(2005), R. D. Smirov, S. I. Krasheninnikov (U. of Calif.) - Y. Tanaka (Kanazawa University): extends for various materials.

- 3D equation of motion of dust particles - Dust charging module is coupled. - Dust energy and mass balance model is included. - Ignore the perturbations of background plasma parameters by individual grains - Ignore grain-grain interactions

DUSTT(Dust Transport) code: - A. Y. Pigarov(2005), R. D. Smirov, S. I. Krasheninnikov (U. of Calif.) - Y. Tanaka (Kanazawa University): extends for various materials.

- 3D equation of motion of dust particles - Dust charging module is coupled. - Dust energy and mass balance model is included. - Ignore the perturbations of background plasma parameters by individual grains - Ignore grain-grain interactions DTOKS(Dust in Tokamaks) code: - J. D. Martin(2006, Max-Planck-Institute) - Employs a different charging developed as an extension of OML - Adopts, in some cases, a simpler approach to the modeling of plasma-dust grain interactions

DTOKS(Dust in Tokamaks) code: - J. D. Martin(2006, Max-Planck-Institute) - Employs a different charging developed as an extension of OML - Adopts, in some cases, a simpler approach to the modeling of plasma-dust grain interactions

But, dust physics modeling & simulation are not complete.There are many problems to be solved.

Page 5: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 5

Electron bombardment

Thermionic emission

Secondary electronemission

Ion bombardment

2. Dust Charge & Temperature Models2. Dust Charge & Temperature Models

Ion bombardment

Ion backscattering

N

recombination

Electron bombardment

Thermionic emission

Secondary electronemission

Radiation dT

Charging Mechanism Energy Balance

dR

Page 6: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6

Charging Model

, , , , , ,1di OML e OML e th e se i OML tot e OML

dQI I I I I I

dt

,, ,

d OMLi OML e OML

dQI I

dt

tot se th Total emitted electron yield where,

,

e thth

e OML

I

I

1tot

1tot

Electron bombardment

Thermionic emission

Secondary electronemission

Ion bombardment

04d

dd

Q

R

,,

04d OMLd d

d d OMLd

QT T

e R e

00 ,

44 d d

d d d d OML

R TQ R Q

e

,d OML

dT

e

2-a. Dust Charging Model2-a. Dust Charging Model

Page 7: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 7

00

0 0

2 ( )

2t

qt t

U RI I

m

t 0

t 0

2

2 2

2 ( )

00

2 2m

t t

U R

mq

II I e e

2 20 0

2 2

0 0 00

0 0

0 0

( )

2 4

1 1 1

2

m m

t t

t m mq

t t t t

m m

U RI I erf erf

m

e e

t 00

2

2 2 ( )1q

t

I U RI

m

t 00

00 0

2 ( )

2t

qt t

U RI I

m

20

0 00

0 0

2 ( )

2

t

tq

t t t

e U RI I erf

m

For a repulsive pot. ( ) 0U r

( ) 0U r

The OML(Orbit Motion Limited) Theory (Drifted Maxwellian)

For an attractive pot.

2t

T

m 2

0 tI R qn

2 ( )m

U R

m

Page 8: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 8

0 0

21 1 0

q d

i

z e

T di e se th

e

Q eI e I I

t T

Q>0 Q<0

Maxwellian approximation & analytic solutions

Lambert W-function

0 0

21 1 0

d

e

eq d T

i e se thi

z eI I e I

T

0

0

21

2

q d

i

de e

e

z e

Ti i

eI I

T

I I e

20

20

e e et

i q i it

I R en

I R z en

0

0

2

21

d

e

e

Te e

q di i

i

I I e

z eI I

T

0

0

0

12 1

1

id

q

e qth

e se i

e se i

i e q

T ee W

z

T zI

I T

I T

I T z

0

0

0

12

1

d e

th i

i e q

e qi

e se i

ee T W

I T

I T z

T zI

I T

Page 9: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 9

3/22

2,

E

Tt

t

n Tf e

m

sec0

0

2

2e

se e

e

Ef E E dE

mT

Ef E dE

m

For Maxwellian electrons

* Numerical fit in DTOKS [10]

3 210 3 2 1 0log se e e e eT C T C T C T C

C WC0 -1.341 -1.4755 C1 0.7428 0.724C2 0.1149 0.1521C3 -0.0849 -0.0765

Secondary Electron Emission

2

3

1 04

expexp 1 , 0

d

ed d d d

d dd d

em WJ T T e e

h TT T

Traditional Modified

Richardson Equation

Page 10: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 10

• Heating Mechanisms− Ion Bombardment− Electron Bombardment− Neutral Bombardment

• Cooling Mechanisms− Ion Backscattering− Erosion Processes− Thermionic Emission− Secondary Electron Emission− Neutral Particle Emission− Radiative Cooling

Ion bombardment

Ion backscattering

N

recombination

Electron bombardment

Thermionic emission

Secondary electronemission

Radiation

Heating & Cooling Mechanisms

dT

2-b. Dust Temperature Model2-b. Dust Temperature Model

Page 11: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 11

Ion & Electron Bombardment

2i i d iK T e 0Q

0Q

2e e eK T K: heat flux

2i i d iK T e

2e e eK T

04d

dd

Q

R

04d d

dd

Q T

R e

Neutral Bombardment

12 ,

4n n d n n e eK T T n neglected in DTOKS

Page 12: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 12

Ion Backscattering

64

1 2,

3 5

2/3 2/3

ln,

1

0.0325

TFN E AA

TF TF

d iTF

i d i d i d

A A E eR

A E A E

M EE

m M Z Z Z Z

Thomas-Fermi reduced energy

2

22i i

i i d

mE T e

0dQ

0dQ 13.6 1.1rec d iK T

13.6 1.1 1rec d N iK T R

Neutral recombination

Electron emission

2 3emit d th se iK T W W

Thermal radiation

4 4rad d wK T T

a: emissivity(1 for black body, 0.8 for C, 1 for Ws: Stefan-Boltzmann constant

Page 13: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 13

4

2 1 13.6 1.1

2 3

net i i d E d

e e th se d

K T e R T

T W T

4

2 1 13.6 1.1 1

2

net i i d E d N

e e d

K T e R T R

T W T

For a negatively charged dust

For a positively charged dust

64

1 2,

3 5

2/3 2/3

ln,

1

0.0325

TFN E AA

TF TF

d iTF

i d i d i d

A A E eR

A E A E

M EE

m M Z Z Z Z

2 3 244 4 3

3B dd d d d d

d d d net d d d d B net netB

d k TdT R C eV dTM C R K R C R k K K

dt dt k dt

0Q

0Q

2

22i i

i i d

mE T e

Particle extinction process (melting/evaporation/sublimation)

24 d net

Mh R K

t

d

d net

Rh K

t

RadiusMass variation

Page 14: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 14

Various data for C & W (from J. D. Martin, 2006)

Page 15: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 15

Charge number of dust

Potential of dust (V) Temperature (eV) of dust

Time (m sec)

Time (m sec)Time (m sec)

18 3 610 , 40 , 10i e i e dn n m T T eV R m

Steady state temperature of carbon

-100000

-95000

-90000

-85000

-80000

-75000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-140

-135

-130

-125

-120

-115

-110

-105

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Method 1: Steady state charging modelMethod 2: Time varying charging model

Method 1

Method 2

Method 1

Method 2

Method 1

Method 2

3. Simulation Results3. Simulation Results

Page 16: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 16

Evaporation of carbon

19 3

8

10

300

10

i e

i e

d

n n m

T T eV

R m

Charge number of dust

Potential of dust (V) Temperature (eV) of dust

Time (m sec)

Time (m sec)Time (m sec)

-7500

-7000

-6500

-6000

-5500

-5000

-4500

-4000

-3500

-3000

-2500

0 2e-5 4e-5 6e-5 8e-5 0.0001 0.00012 0.00014 0.00016 0.00018 0.0002

-1100

-1000

-900

-800

-700

-600

-500

-400

-300

0 2e-005 4e-005 6e-005 8e-005 0.0001 0.00012 0.00014 0.00016 0.00018 0.0002

Method 1

Method 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2e-005 4e-005 6e-005 8e-005 0.0001 0.00012 0.00014 0.00016 0.00018 0.0002

Method 1

Method 2 Method 1

Method 2

Page 17: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 17

Thermionic current

Electron OML current

Ion OML current

Time (m sec) Time (m sec)

Time (m sec)

Radius of dust

9.5e-009

9.55e-009

9.6e-009

9.65e-009

9.7e-009

9.75e-009

9.8e-009

9.85e-009

9.9e-009

9.95e-009

1e-008

0 2e-005 4e-005 6e-005 8e-005 0.0001 0.00012 0.00014 0.00016 0.00018 0.0002

Time (m sec)

-1.6e-009

-1.4e-009

-1.2e-009

-1e-009

-8e-010

-6e-010

-4e-010

-2e-010

0

0 2e-005 4e-005 6e-005 8e-005 0.0001 0.00012 0.00014 0.00016 0.00018 0.0002

-9e-009

-8e-009

-7e-009

-6e-009

-5e-009

-4e-009

-3e-009

-2e-009

-1e-009

0

0 2e-005 4e-005 6e-005 8e-005 0.0001 0.00012 0.00014 0.00016 0.00018 0.0002 9e-011

1e-010

1.1e-010

1.2e-010

1.3e-010

1.4e-010

1.5e-010

1.6e-010

1.7e-010

1.8e-010

0 2e-005 4e-005 6e-005 8e-005 0.0001 0.00012 0.00014 0.00016 0.00018 0.0002

Method 1

Method 2

Method 1

Method 2

Method 1

Method 2

Method 1

Method 2

Page 18: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 18

Charge number of dust

Potential of dust (V) Temperature (eV) of dust

Time (m sec)

Time (m sec)Time (m sec)

18 3

7

1 10

40

10

i e

i e

d

n n m

T T eV

R m

Steady state temperature of tungsten

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

0 0.5 1 1.5 2 2.5 3

Method 1

Method 2

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

0 0.5 1 1.5 2 2.5 3

Method 1

Method 2

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0 0.5 1 1.5 2 2.5 3

Method 1

Method 2

Page 19: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 19

19 3

8

2 10

500

10

i e

i e

d

n n m

T T eV

R m

Charge number of dust

Potential of dust (V) Temperature (eV) of dust

Time (m sec)

Time (m sec)Time (m sec)

Melting & evaporation of tungsten

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

0 1e-006 2e-006 3e-006 4e-006 5e-006 6e-006

-12000

-10000

-8000

-6000

-4000

-2000

0

0 1e-006 2e-006 3e-006 4e-006 5e-006 6e-006 0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 1e-006 2e-006 3e-006 4e-006 5e-006 6e-006

Method 1

Method 2

Method 1

Method 2

Method 1

Method 2

Page 20: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 20

0

1e-009

2e-009

3e-009

4e-009

5e-009

6e-009

7e-009

8e-009

9e-009

1e-008

0 1e-006 2e-006 3e-006 4e-006 5e-006 6e-006

Radius of tungsten dust

Time (m sec)

Page 21: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 22

, 1Q e Z

2 3 2 2

0 020 0

1 4 6 2 3 11 1

8 41 1 / 2R RZe E Ze E

W W WR d W R W

2

04

ed

W

2

R

eE

R, 1Q e Z

2 3 2

0 020

1 4 6 2 1 3

4 81 1 / 2R

m R R R

Ze EW U r W W ZE ZE E

R d W

2 2 6 2 24 exp , 1.20173 10d dd

WI T R AT A Am K

T

d

R

A New Work Function Formula for Spherical Dust (including Schottky Effect)

Modern Interpretation of the Nature of the Workfunction

- Debye(1910) & Langmuir(1916)'s image potential model (1910)- Schottky's concept of microscopic cutoff distance (1923) - Halas's metallic plasma model (1998)

Page 22: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 23

, 1Q e Z

2 3 2

0 2

00 0 0

1 4 6 2= 1 exp 1

1 1 / 2

3 1 1 1 1 1 1 1

8 4 4

D

R R RR

D

e dW W Z

R d

E E R EW E Z

W W W

Work function of metal sphere with Debye shielding

, 1Q e Z mW U r U R d 22 2

22 2

1exp

22 D

Z ee R e R R rU

r rr R

2

11

3 1

5

8

m

m

Z

eU r Z Z

R

Page 23: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 24

18 3

6

10

100

10

i e

i e

d

n n m

T T eV

R m

Calculation with new work function formula: carbon

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Work function (eV)Dust temperature (eV)

Time (m sec)Time (m sec)

result from new formula

-240000

-220000

-200000

-180000

-160000

-140000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time (m sec)

Charge number of dust

Page 24: Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation

Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 25

C & W dust particle charging mechanisms were simulated

based on the DUSTT & DTOKS physics models.

A dust charging model including a new thermionic electron emission formula is developed.

We have a plan to make a full dust code which includes

the particle dynamics.

C & W dust particle charging mechanisms were simulated

based on the DUSTT & DTOKS physics models.

A dust charging model including a new thermionic electron emission formula is developed.

We have a plan to make a full dust code which includes

the particle dynamics.

5. Summary5. Summary