26
2004,Torino Aram Kotzinian 1 Neutrino Scattering Neutrino interactions Neutrino-electron scattering Neutrino-nucleon quasi-elastic scattering Neutrino-nucleon deep inelastic scattering Variables Charged current Quark content of nucleons Sum rules Neutral current

Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 1

Neutrino Scattering

Neutrino interactionsNeutrino-electron scatteringNeutrino-nucleon quasi-elastic scatteringNeutrino-nucleon deep inelastic scattering

VariablesCharged currentQuark content of nucleonsSum rulesNeutral current

Page 2: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 2

NeutrinoNeutrino--electron scatteringelectron scattering−− +→+ ee ee ννTree level Feynman diagrams:

0Z

eν eν

−e−e

−W

eν−e

−e

Effective Hamiltonian:

[ ][ ]{ }eggeGAVee

F ))1(1()1(2 55 γγνγγν µ

µ +−+−=

[ ][ ] [ ][{ }eggeeeGH AVeeeeF

eff )()1()1()1(2 5555 γγνγγννγγγγν µ

µµ

µ −−+−−= ]

(through a Fierz transformation)

Page 3: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 3

Only charged current:

−W

µν

eν−e

−µ

−− +→+ µνν µ ee

( ) )()(2)()( 2 LABinEmepps e µµ νν =+=

( )22 )()( µν µ ppqt −==

( ))(

)()()(

)()()()()(

LABinE

EEpep

ppepy

µ

µ

µ

µ

νµν

νµν −

=⋅

−⋅=

)()(2)( 2

22

22

LABinEmGmq

msGdy

ed eF

W

WFCCµ

µ νππ

νσ≈

−=

Inelasticity variable (0<y<1)

2432

10104.0)( cm

MeVEsGe F

CC

×== −−

πνσ µ

(cross-section proportional to energy!)

Total cross-section:

Page 4: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 4

Only neutral current:−

−−

+→+ ee µµ νν)()(

0Z

µν)(−

−e

µν)(−

−e

eegeegegge RLAV )1()1()( 555 γγγγγγ µµµ ++−=−

WAVL ggg θ2sin21)(

21

+−=+=

WAVR ggg θ2sin)(21

=−=

−+

+−

−=

−24

22

22

22

)1(sinsin21)(

ymq

msGdy

edWW

Z

ZFNC θθπ

νσ µ

+−

+−

−=

WWZ

ZFNC ymq

msGdy

edθθ

πνσ µ 42

22

22

22

sin)1(sin21)(

Page 5: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 5

Only neutral current (total cross-section):

24342

22

101015.0sin

31sin

21)( cm

MeVEsGe WW

FNC

×=

+

+−= −− ν

µ θθπ

νσ

24342

22

101014.0sinsin

21

31)( cm

MeVEsGe WW

FNC

×=

+

+−= −− ν

µ θθπ

νσ

−−

−−

+→+ ee µµ νν)()(

Can obtain value of sin2θWfrom neutrino electron scattering (CHARM II):

0059.00058.02324.0sin2 ±±=Wθ

)1(22 ymE ee −=Θ

Page 6: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 6

Back to (charged and neutral currents)−− +→+ ee ee νν

WWAVL ggg θθ 22 sin211sin

21)11(

21

+=++−=+++=

1WAVR ggg θ2sin))1(1(

2=+−+=

Then: ( )

−+

+=

−24

22

2

1sinsin21)( ysG

dyed

WWFe θθπ

νσ

24342

22

10109.0sin

31sin

21)( cm

MeVEsGe WW

Fe

×=

+

+=⇒ −− νθθ

πνσ

This cross-section is a consequence of the interference of the charged and neutral current diagrams.

Page 7: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 7

Neutrino pair production: eeee νν +→+ −+

Contribution from both W and Z graphs.

W

+e

−e

eνZ

+e−e

Then:

+

+=→−+

41sin2

21

12)(

22

2

WF

eesGee θ

πννσ

Only neutral current contribution to: µµ νν +→+ −+ ee

+

−=→−+

41sin2

21

12)(

22

2

WF sGee θπ

ννσ µµ

Page 8: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 8

NeutrinoNeutrino--electron scattering electron scattering Summary neutrino electron scattering processes:

−− +→+ ee µµ νν

−− +→+ ee µµ νν

−− +→+ ee ee νν

( )

+− WW

F sG θθπ

4222

sin341sin2

4

( )

+− WW

F sG θθπ

4222

sin41sin231

4

( )

+− WW

F sG θθπ

4222

sin341sin2

4

( )

++ WW

F sG θθπ

4222

sin41sin231

4

πsGF

2

++ WW

F sG θθπ

422

sin4sin221

12

+− WW

F sG θθπ

422

sin4sin221

12

Total cross-sectionProcess

−− +→+ ee ee ννee νµν µ +→+ −−

eeee νν +→+ −+

µµ νν +→+ −+ ee

)()(2 frameLABtheinEms e µν=

Page 9: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 9

Neutrino-nucleon quasi-elastic scatteringQuasi-elastic neutrino-nucleon scattering reactions (small q2):

−W

µν

pn

−µ

pn +→+ −µν µ pp +→+−−

µµ νν)()(

np +→+ +µν µ

+W

µν

p n

+µ0Z

µν)(−

p p

µν)(−

== − nHpM eff ,, µνµ

factorformvectorqFV =)( 2

factorformvectoraxialqFA −=)( 2)(975.0cos angleCabbiboC =θ

[ ] ( )[ ]nqFqFpGAV

cF5

225 )()()1(

2cos γγνγγµθ

µµµ +−

Page 10: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 10

Neutrino-nucleon quasi-elastic scattering

028.02573.1)0( ±−== AA gF

Form factors introduced since proton, neutron not elementary. Depend on vector and axial weak charges of the proton and neutron.Two hypotheses:

- Conservation of Vector Current (CVC):- Partial conservation of Axial Current (PCAC):

( )22

2

71.0/1)0()(

qFqF V

V−

= 1)0( =VF

( )22

2

065.1/1)0()(

qFqF A

A−

=

For low energy neutrinos (Eν<<mN):( ) [ ]22

22

)0(3)0(cos)()( AVCF

ee FFEGpn +==πθνσνσ ν

22

42

101075.9 cm

MeVE

×≈ − ν

Page 11: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 11

Inelastic neutrino-nucleon scattering• Parton model is used to make predictions for deep inelastic neutrino-nucleon scattering. • Neutrino beams from pion and kaon decays, dominated by muon neutrinos are used to study this process.

νµ + nucleon → µ+ + Xνµ + nucleon → µ− + X

Since parity is not conserved in weak interactions, there are more structure functions for weak processes, like neutrino scattering, than for electromagnetic processes, like electron scattering.Again the variables x = Q2/2Mν and y = ν /E can be used.

Page 12: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 12

Weak structure functionsGeneral form for the neutrino-nucleon deep inelastic scattering cross-section, neglecting lepton masses and corrections of the order of M/E:

dσν,ν

dxdy=

GF2 MEπ

1− y( )F2νN + y 2xF1

νN m y −y2

2

xF3

νN

The functions F1 , F2 and F3 are the functions of Q2 and ν . In the scaling limit they are the functions of x only.

Page 13: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 13

Scaling behaviour

Compilation of the data on structure functions in deep inelastic neutrino scattering (1983)

Page 14: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 14

Neutrino proton CC scattering:= number of u-quarks in proton between x and x+dx

Some of the quarks are from sea:

For proton (uud):

Xppp +′→+ − )()( µν µ

[ ]∫∫ =−=1

0

1

02)()()( dxxuxudxxuV

Scattering off quarks:

dxxu )(

)()()( xuxuxu SV += )()()( xdxdxd SV +=)()( xuxuS = )()( xdxdS =

[ ]∫∫ =−=1

0

1

01)()()( dxxdxddxxdV

πνσνσ µµ EmG

dyqd

dyqd qFCCCC

22)()(==

( )22

12)()(

yEmG

dyqd

dyqd qFCCCC −==

πνσνσ µµ

( )θcos1211 −=

′−=

EEywith

Page 15: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 15

Scattering off proton:

[ ] [ ]{ }22

)1()()()()(2)(

yxcxuxsxdxMEGdxdy

pd FCC −+++=π

νσ µ

[ ] [ ]{ })()()1()()(2)( 2

2

xsxdyxcxuxMEGdxdy

pd FCC ++−+=π

νσ µ

Structure functions:Callan-Gross relationship: )()(2 21 xFxxF =

[ ])()()()(2)(2 xcxsxuxdxxF p +++=ν

[ ])()()()(2)(3 xcxsxuxdxxxF p −+−=ν

[ ])()()()(2)(2 xsxdxcxuxxF p +++=ν

[ ])()()()(2)(3 xsxdxcxuxxxF p −−+=ν

Neutron (isospin symmetry):[ ])()()()(2)(2 xcxsxdxuxxF n +++=ν

[ ])()()()(2)( xcxsxdxuxxxF n −+−=ν3

Page 16: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 16

Scattering off isoscalar target (equal number neutrons and protons):

csduq +++≡ csduq +++≡

[ ])()()(2 xqxqxxF N +=ν

( )[ ])()(2)()()(3 xcxsxqxqxxxF N −+−=ν

( )[ ])()(2)()()(3 xcxsxqxqxxxF N −−−=ν

{ }22

)1()()()(

yxqxqxMEGdxdy

Nd FCC −+=π

νσ µ

{ })()1)(()( 2

2

xqyxqxMEGdxdy

Nd FCC +−=π

νσ µ

Total cross-section:

GeVcmQQMGEN FCC /1067.0

31/)( 238

2−×=

+=

πνσ µ

GeVcmQQMGEN FCC /1034.0

31/)( 238

2−×=

+=

πνσ µ

Page 17: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 17

Page 18: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 18

Rise of mean q2 with energy

Mean q2 was found to be linear function in neutrino (antineutrino) energy.

Page 19: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 19

Quark content of nucleons from CC cross-sectionsDefine:

Experimental values from y distribution of cross-sections yields:

If

.,)(1

0etcdxxxuU ∫=

03.015.0 ±=+ QQQ

03.000.0 ±=+ QQS

01.016.0 ±=++

QQSQ

)(495.0)()( measured

NNr

CC

CC =≡νσνσ

19.03

13≈

−−

=⇒r

rQQ

33.0≈−= QQQV08.0≈== QQQ SS

49.0)(1

0 2 ≈+=∫ QQdxxF Nν

Quarks and antiquarks carry 49% of proton momentum, valence quarks only 33% and sea quarks only 16%.

Page 20: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 20

Some details

Note that for right-handed incident anti-neutrinos the e term changes sign. Note also that the e term is orthogonal to the asymmetric hadronicterm that is proportional to since q = l – l’ and gives zero when dotted into

where both signs for the last term appear in the literature.

Page 21: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 21

To obtain these expressions we have used

Page 22: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 22

Finally we can put the pieces together to obtain the corresponding cross sections(in the limit )

We recognize this to be similar to the EM result but with replacements, an extra factor of 4 and the (new)

term.

Page 23: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 23

We now consider the scaling limit

Substituting in terms of the scaling variables

we find the result

Page 24: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 24

For scattering on structureless fermions/antifermions (e.g., point particle quarks) we have

Thus measures the difference between quarks and antiquarks.

Page 25: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 25

For elastic neutrino scattering from quark and antiquark we have:

and

Working the details out explicitly in terms of the parton momentum and mass, we find

Thus for pointlike quarks we have

Page 26: Neutrino Scatteringpersonalpages.to.infn.it/~kotzinia/lectures/pdf/l6-neutrino.pdf · vector form factor F. A (q. 2) = axial − vector form factor. cosθ. C =0.975(Cabbibo angle)

2004,Torino Aram Kotzinian 26

Gross-Llewellyn-Smith (2 names) sum rule

In terms of the parton distributions in the proton we have

Thus we have

and hence