of 77 /77
New Frontiers in QCD (QCD-2011) Yonsei University, Seoul Korea, October 27 ~ 28, 2011 Observation of charged bottomonium-like states -and a few other items- Stephen Lars Olsen Seoul National University

New Frontiers in QCD (QCD-2011) Yonsei University, Seoul Korea, October 27 ~ 28, 2011

  • Upload
    carver

  • View
    41

  • Download
    0

Embed Size (px)

DESCRIPTION

Observation of charged bottomonium -like states -and a few other items-. Stephen Lars Olsen Seoul National University. New Frontiers in QCD (QCD-2011) Yonsei University, Seoul Korea, October 27 ~ 28, 2011. Constituent Quark Model. Λ = (uds). Mesons are quark-antiquark pairs. - PowerPoint PPT Presentation

Citation preview

Page 1: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

New Frontiers in QCD (QCD-2011)Yonsei University, Seoul Korea, October 27 ~ 28, 2011

Observation of charged bottomonium-like states

-and a few other items-

Stephen Lars OlsenSeoul National University

Page 2: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Constituent Quark Model

2

Λ= (uds))( ud

Mesons are quark-antiquark pairs Baryons are quark-quark-quark thriplets

Fabulously successfulQuarks are probably the most

well known particle physics quantityamong the general public

Page 3: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Are there other color-singlet spectroscopies?

Pentaquark: H-diBaryon

Glueball

Tetraquarkmesons

qq-gluon hybrid mesons

u cuc

c c

u du

sd

Other possible “white” combinations of quarks & gluons:

_

_

__

u d

usds

_

_ u c

uc

__

_

D0

D*0_

S=+1 Baryon tightly bound6-quark state

Color-singlet multi-gluon bound state

tightly bounddiquark-diantiquark

loosely boundmeson-antimeson“molecule”

Page 4: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

predictedmeasuredStrategy:

Search for a meson that decays to a final state containing a c and c quark, If it is a standardqq meson, it has to occupy one of the unfilledstates indicated above. If not, it is exotic.

__

unassigned

Page 5: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

cc production at B factories

Page 6: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

“XYZ” mesons

Zb(10610) 10608 ± 2 15 ± 3 1+ ±hb(1,2P),±Y(1,2,3S) Y5S Zb(10610)±

Zb(10610) 10653 ± 2 14 ± 3 1+ ±hb(1,2P),±Y(1,2,3S) Y5S Zb(10650)±

Page 7: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

The X(3872)

????

Study +J/y produced in BK + J/y decays

EB=Ecm/2

Polarized along flightdirection in B rest frame

Page 8: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

The X(3872) in BK +J/y discovered by Belle (140/fb)

M(J/y) – M(J/y)

y’+J/yX(3872)+J/y

PRL 91, 262001 (2003)

Page 9: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

X(3872)+J/y with all Belle data

B+XK+

B0XK0

3-dimensional fitsM(J/ψπ+π-) MB EB-Ecm/2

Page 10: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

diquark-diantiquark?

Predict : DM(Mx(B+)-Mx(B0)) =8±3 MeV

Maiani e al PRD71, 014028 diquark-diantiquark (tetra-quark) model

u cuc

d cdc

Xu= Xd=

X l (B0)

Xh (B±)

cos sin sin cos

XuXd

Expect two neutral states:

Plus charged partners:d c

ucu c

dcX+=

X-=

B(B+ →K 0X(3872)+) = 2 × B(B0 →K 0X(3872)0)

B(B0 →K −X(3872)+) = 2 × B(B+ →K +X(3872)0)

Isospin relations:

Page 11: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Two neutral states?B+XK+

B0XK0

DM = MX (from B±) −MX (from B0) = −0.69 ± 0.97 ± 0.13MeV

Predict : DM(Mx(B+)-Mx(B0)) =8±3 MeV

Maiani e al PRD71, 014028

Page 12: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

charged partners of the X(3872) ? X+(3872)+0J/y : Isospin triplet?

B0X+K-

B+X+K0

Nevts =4.2±7.8

B(B0K-X+)xB(X++0J/y)<3.9 x10-6

No signals B(B+K0X+)xB(X++0J/y)<4.5x10-6

Rule out isospin triplet model

2-dim. Fit

B(B+ →K +X(3872)0) × B(X(3872)0 →π +π − J /ψ ) = (8.61± 0.82 ± 0.78) ×10−6

B(B0

→K0X(3872)

0)×B(X(3872)

0→π

− J/ψ)= (4.3±1.2±0.4)×10

−6

not 2x larger!!

Page 13: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

X(3872)+ J/y Massrecent results

~6000 evts!

MX = 3871.61 ± 0.16 ± 0.19 MeV

MX = 3871.85 ± 0.27 ± 0.19 MeV

MX = 3871.96 ± 0.46 ± 0.10 MeV

CDF Belle

LHCb

Page 14: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

X(3872) mass (in +J/y channel only)

MX(3872) –(MD0+MD*0)= -0.12 ± 0.35 MeV_

=3871.79 ± 0.30 MeV

Page 15: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

D0D*0 molecule?

an “old” idea

__

D0-D*0 “Binding Energy” smallDm = -0.12 ± 0.35 MeV

…coincidence??

_

Page 16: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

De Rujula, Glashow & Georgi (1976)PRL 38, 317 (1976)

DD* _

(DD*)molrJ/y_

+-

predictions:

JPC=1++

Also: L. Okun& M. VoloshinJETP Lett. 23, 333 (1974)

Page 17: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

+-system in X(3872)+-J/ycomes from r+-

M(+- )

Belle: hep-ex/0505038

r+- lineshape

X3872

r

+

J/y

CDF: PRL 96 102002

M(+- )

Page 18: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

CDF results on JPC

CDF: PRL 98 132002

O++

1- -

2- +2 adj. params1++ no adj. params

1++ fits well with no adjustable parameters

2-+ looks like 1++ for some choice of params, at least with current statistics

All JPC values otherthan 1++ or 2-+areruled out with highconfidence

Page 19: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Angular distributions for BKX(3872)KrJ/y

L: S-Wave D-waveS: 1 1,2

L: P-Wave F-waveS: 1,2 1,2

3872 MeV

775 MeV

3097 MeV

Only 1 amplitude: BLS=B01

1 free parameter:

2 amplitudes: BLS=B11& B12

3 free parameters

B11

B12

= δe iφ complex

normalization

Partial Wave basis:

normalization

X(3872)r J/y is right at threshold neglect higher partial waves

JPC of the X(3872)

Include relative phase f

1++ 2-+

Page 20: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

JPC of the X(3872)

22 sinsincoscos

)1(

++

ddd

J. Rosner PRD 70, 092023 (2004)

X

y /J

r

K

+

1++ fits data well withno free parameters.

2-+ has a free complexparameter; one value

gives an acceptable fit

+

+

2/dof =0.56/4

2/dof =1.56/4

2/dof =5.24/4

2/dof =4.60/4

Page 21: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

1++ cc assignment? c1‘_

huge for Isospin-violating decay c.f.: (y’0J/y)≈0.4 keV

‘•(c1 gy’) ~180 keV (c1 g J/y) ~14 keV

• (c1 gy’)/(c1 g J/y)>>1• expt’l upper limit: <2.1

•+ J/y=(3.4±1.2)gJ/y ~45 keV

•Mass is too low? • 3872 vs 3905 MeV• nr=2 splitting> nr=1

pinnedto:

M c2=3930 MeV

T.Barnes et al PRD 72, 054026

Page 22: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

X(3872) g y’ ??Belle 2010:

no signals!!

B(B+K+ X3872)xB(X3872gy’)

B(B+K+ X3872)xB(X3872gJ/y)< 2.1 (90%)

B+

B0B0

B+

y’J/y+y’ l+l-

M(gy’) M(gy’)

Page 23: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

2-+ cc assignment? hc2

• huge for Isospin-violating decayc.f.: (y’0J/y)≈0.4 keV

•(hc2 gy’) ~0.4 keV•(hc2 g J/y) ~9 keV

(hc2 gy’)/(hc2 g J/y)<<1

•+ J/y=(3.4±1.2) gJ/y ~30 keV

•Mass is too high?: • 3872 vs 3837 MeV

pinned to:

My”=3770 MeV

Y. Jiaet al arXiv:0107.4541

hc2ghc(1S) & hc modes expected to dominate

•BKhc2 violates factorization• BKhc not seen• BKc2 barely seen

•hc2 DD* expected to be tiny

• Belle & BaBar::(XDD*)/(X+J/y)9.5±3.1

Y. Kalasnikovaet al arXiv:1008.2895

_

_

_

Page 24: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Belle (May 2010): B+ K+ g J/y

Belle: arXiv 1105.0177

Bf(B+K+ c1)=(49±3)x10-5

= 0.022 ± 0.007

factorizationsuppressionpenalty

Bf(B+K+ c2)=(1.11±0.37)x10-5

B(B+K+ c2)B(B+K+ c1)

3.6s

c1gJ/y

calibration reaction

B+K+ c2: 1st evidence

M(gJ/y)M(gJ/y)

Page 25: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Narrow width: <1.2 MeV

at = 0.95MeV90 %

Belle prev: <2.3 MeV<1.2 MeV @ 90% CLinflate by +0.23 MeV

for possible biases

= ~ 0.0 best fit

below experimental resolution

Page 26: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

B(B0 →X(K+π–)non_res) x B(X→J/ψπ+π–) = (8.1±2.0 )x10–6 dominant !

B(B0 →XK*0) x B(X→J/ψπ+π–) < 3.4x10–6 @90% CL small !!

+1.1 - 1.4

Mass(Kπ)

K*0→Kπnon-resonant Kπ

sideband bkgd

X(3872)→J/ψπ+π–

Nsig= 9019 (Nsig=8.2 10.0)

Belle arXiv:0809.1224(2008)

B0→X(3872)K+ (B→X(3872) K*?) 605 /fb

No K*K signal!!

Page 27: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

BKX(3872) is very different from other BKCharmonium

KX(3872)

M(K) / GeV

Belle arXiv:0809.0124

Belle arXiv:0809.0124

Ky′ KJ/y Kc1

M(K) M(K) M(K)

BaBar, Phys. Rev. D71(2005)032005

Belle, Phys. Lett.B634(2006)155

all K* comesfrom sideband

K* dominates

Page 28: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

B KD0D*0

605 fb-1

Agrees with M from J/y mode

X(3872)D0D*0 is observed

= (9.5±3.1)x Bf(+J/y)

D*0→D0γ

D*0→D0π0

& Belle PRL97, 162002(2006)

See also:BaBarPRD77, 011102(2008)

M = 3872.9 MeV + 0.6− 0.4

+ 0.4− 0.5

(BW) = 3.9 MeV+ 0.2− 1.1

+ 2.8− 1.4

Bf(BK X3872)xBf(X3872D*0D0) = (0.80±0.20± 0.10)x10-4

2-dim. Fits

PRD81, 031103(2010)

_

Page 29: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Molecular Picture

~ 10 fermis!!

E. Braaten, J. Stapleton PRD81, 0140189

If the X couples to D0 D*0 in an S-wave:

Page 30: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

X(3872)-J/y relative sizes

drms(J/y) ≈ 0.4 fm

•Overlap of the cc necessary to form the J/y in X +-J/y decays is rare

•How can such a fragile object be produced in H.E. pp collisions? heavy ion collisions??

Volume(J/y)

Volume(X3872) ≈ 10-3

-- arXiv 0906.0882: sCDF(meas)>3.1±0.7nb vs stheory(molecule)<0.11nb

_

_

C. Bignamini et al, PRL 103, 162001:

drms(X3872) ~ 5 fm

drms(208Pb nucleus)≈5.5 fm

++ +

++

+

++

++

++

++

++

++

+

J/y

X(3872)

208Pb

Page 31: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

X(3872) as a probe for Heavy Ion physics?

Size is huge (but it is produced in pp collisions)

4 valance quarks unique probe for quark number scaling

_

Page 32: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

JPC = 1- - Y(4260) meson

Zb(10610) 10608 ± 2 15 ± 3 1+ ±hb(1,2P),±Y(1,2,3S) Y5S Zb(10610)±

Zb(10610) 10653 ± 2 14 ± 3 1+ ±hb(1,2P),±Y(1,2,3S) Y5S Zb(10650)±

Page 33: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Radiative return

ss cc

bb

Ecm(GeV)

10.58 GeV

gB-factoryenergies

3~5GeV

Page 34: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

e+e- gisr Y(4260) at BaBar

233 fb-1

Y(4260)

BaBar PRL95, 142001 (2005)

~50pb

M=4259 ± 8 +2 MeV

= 88 ± 23 +6 MeV -6

-9

fitted values:

+- J/y

Page 35: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Y(4260) confirmed by Belle

M=4247 ± 12 +17 MeV

= 108 ± 19 ±10 MeV -32

C.Z Yuan et al (Belle) PRL 99, 182004

M=4259 ± 8 +2 MeV

= 88 ± 23 +6 MeV -6

-9

BaBar values:

Page 36: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Not seen in e+e- hadrons

(Y4260+ J/y) > 1.0 MeV @ 90% CL

X.H. Mo et al, PL B640, 182 (2006)

BES data

~3nb

speak(Y(4260)+J/y)~50 pb Huge by charmonium

standards

J.Z.Bai et al (BES), PRL 88, 101802 (2006)

s(e+e- hadrons)s(e+e- +-)

4260 No sign of Y(4260)D(*)D(*)

_

Bf (ψ (3770) →π +π −J /ψ ) = (0.19 ± 0.03)%

Bf (Y (4260) →π +π −Υ(1S)) >~50pb3nb

=1.6%

Page 37: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Exclusive cross sections contribution to the total cross section

DD DD* D*D* DDπ

DD*π

DsDs +DsDs* +Ds

*Ds*

ΛcΛc

Contributions of D+D*–, D*+D*–, D0D–π+ and D0D*–π+ are scaled following isospin symmetry

Page 38: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

peaks in e+e- gISR +- y’ e+e-gISR+-y’

BaBar

Peak is 4324 MeV, distinct from 4260 MeV

M=4324 ± 24 MeV

= 172 ± 33 MeV

M(+-

y’)

Page 39: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

4325 MeV +y’ peak also seen

M=4324 ± 24 MeV

= 172 ± 33 MeV

548 fb-1

X.L. Wang et al (Belle)PRL 99, 142002 (2007)

Two peaks!

M=4664 ± 11 ±5 MeV

= 48 ± 15 ±3 MeV

M=4361 ± 9 ±9 MeV

= 74 ± 15 ±10 MeV

BaBar values

(both relatively narrow)(& neither consistent with 4260 MeV)

4260

Page 40: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

At least three peaks for only one unassigned 1- - level

33D1

4260MeV4361MeV

4664MeV

If these are mesons, they must be more complex than simply cc_

Page 41: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Zb mesons

Zb(10610) 10608 ± 2 15 ± 3 1+ ±hb(1,2P),±Y(1,2,3S) Y5S Zb(10610)±

Zb(10610) 10653 ± 2 14 ± 3 1+ ±hb(1,2P),±Y(1,2,3S) Y5S Zb(10650)±

Page 42: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

XYZ counterparts with b-quarks?

What about here?

W.S. Hou PRD 74, 017504 (2006)

Page 43: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

“bottomonium” bb mesons

2MB = 10358.7 MeV

_

(4S) + (1S) ?

Page 44: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Belle: (4S)+-(1S)

2S3S

4S

(4S) (1S) +

477 fb-1

52±

10 e

vts

N(4S) N(+-1S) B(Y4S1S) (Y4S1S) theory

535x106 52±10 9 ± 2 x10-5 1.75 ± 0.35 keV 1.47±0.03 keV

Page 45: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

2MB = 10358.7 MeV

(5S) + (1S) ?

Page 46: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Belle: (5S)+(1S)

23.6 fb-1 vs477 fb-1~1/20th the data~1/5ththe cross-section

K.F. Chen et al (Belle) PRL 100, 112001 (2008)

>6 times as many events!

325±20 evts!

Page 47: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

“(5S)” is very different from other states Belle PRL100,112001(2008) (MeV)

X10--2

Anomalous production of (nS) +-

Recall Y(4260) with anomalous (J/y +-) Is there a Yb equivalent close to (5S)

Bf (Υ(4S) →π +π −Υ(1S)) = (0.008 ± 0.0003)%

Bf (Y (5S) →π +π −Υ(1S)) = (0.53 ± 0.06)%

Page 48: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Belle PRD82,091106R(2010)

Nature of (5S) is puzzling and not yet understood

(5S)hadrons

Comparison of s(e+e-+-) vs s(e+e- hadrons)

(5S)+-

~2s discrepancies in thepeak mass and width

5S:

Page 49: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

121.4 fb-1

X=(1S) (2S) (3S)hb(2P)hb(1P)

Look at +- recoil mass in (5S)+-+ X

MM(+-) residuals

MM(+-) spectrum

hb(1,2P)JPC=1+-

1st observations

Page 50: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

MM(0)

hb(1,2P)(bb) : S=0 L=1 JPC=1+

DMHF test of hyperfine interaction

_

Expected mass (Mb0 + 3 Mb1 + 5 Mb2) / 9

(3S) → 0 hb(1P)

BaBar

arXiv:1102.4565

3.0s

Previous search

Deviations from CoG of bJ masses

hb(1P) (1.6 ± 1.5) MeV/c2

hb(2P) (0.5 +1.6 ) MeV/c2-1.2

Agrees with expectations

Page 51: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

((5S) hb(nP) +- ) is large

Mechanism of (5S) hb(nP) +- decay is exotic

for hb(1P)

for hb(2P)no spin-flip

=

Process with spin-flip of heavy quark is not suppressed

spin-flip

hb(1P)~50,000 evtshb(2P)~85,000 evts

Page 52: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Resonant structure of “(5S)” hb(nP)+-

M(hb(1P)+)

measure (5S)hb yield in bins of MM()

data

MeV/c2M1 =

MeV/c2M2 = MeV2 =

MeV1 =

non-res.~0

PHSP

~BB* threshold_

~B*B* threshold__

data

PHSP

M(hb(2P)+)

MeV/c2

MeV

MeV/c2

MeV

Page 53: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

53

Look at “Υ(5S)”Υ(nS) +-

Υ(1S)π+π- Υ(2S)π+π- Υ(3S)π+π-

M2(π+π-) > 0.10 GeV2M2(π+π-) > 0.16 GeV2M2(π+π-) > 0.20 GeV2

9.43 GeV <MM(π+π-) < 9.48 GeV 10.05 GeV <MM(π+π-) < 10.10 GeV 10.33 GeV <MM(π+π-) < 10.38 GeV

Dalitz distributions for events in Y(nS) signal regions.

M2(π+π-)M2(π+π-)M2(π+π-)

To exclude contamination from gamma conversions we require:

Page 54: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Fitting the Dalitz plots

Signal amplitude parameterization:

S(s1,s2) = A(Zb1) + A(Zb2) + A(f0(980)) + A(f2(1275)) + ANR

ANR = C1 + C2∙m2(ππ)

Parameterization of the non-resonant amplitude is discussed in [1] M.B. Voloshin, Prog. Part. Nucl. Phys. 61:455, 2008.

[2] M.B. Voloshin, Phys. Rev. D74:054022, 2006.

A(Zb1) + A(Zb2) + A(f2(1275))A(f0(980))

– Breit-Wigner – Flatte

(5S) Zb, Zb (nS) – no spin orientation changeS-wave

S-wave

Spins of (5S) and (nS) can be ignored

Angular analysis favors JP=1+

Page 55: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Fit results

M(Υ(2S)π)max M(Υ(3S)π)maxM(Υ(1S)π)max

(5S) (1S)+- (5S) (2S)+- (5S) (3S)+-

M=10611±4±3 MeV=22.3±7.7±4.0 MeV

M=10609±2±3 MeV=24.2±3.1±3.0 MeV

M=10608±2±3 MeV=17.6±3.0±3.0 MeV

M=10657±6±3 MeV=16.3±9.8±6.0 MeV

M=10651±2±3 MeV=13.3±3.3±4.0 MeV

M=10652±1±2 MeV=8.4±2.0±2.0 MeV

Zb1

Zb2

Page 56: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Consistent peaks in all three channels

Zbϒ(1S) Zbs must contain a bb quark pair

charge = ± 1 Zbs must contain additional quarks

_

“minimal” quarkconfiguration

d bub _

__

Zb+=

Page 57: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

57

Summary of parameter measurements

Zb(10610)M=10607.2±2.0 MeV

=18.4±2.4 MeV

Zb(10650)

M=10652.2±1.5 MeV

=11.5±2.2 MeV

[preliminary]

mB+

mB*

2mB*

Page 58: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

B-B* & B*-B* molecules??

B

B*

b

b_

B-B* “molecule”

B*

B*

b

b_

B*-B* “molecule”_ _

_ _

Zb(106010)± Zb(106050)±

MZb(106010) –(MB+MB*) = + 3.6 ± 1.8 MeV MZb(106010) –2MB* = + 3.1 ± 1.8 MeV

Slightly unbound threshold resonances??

M=10608.1±1.7 MeV=15.5±2.4 MeV

M=10653.3±1.5 MeV=14.0±2.8 MeV

PDG: MB + MB* = 10604.5±0.6 MeV MB* + MB* = 10650.2 ± 1.0 MeV

Bellepreliminary

Page 59: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Are similar things happening withthe Y(4260)?

is it decaying to Zc-, +J/y ? ( & +hc ?)

+

I

c-quark counterpart of Zb+

Y(4260)

BaBar data

Page 60: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Belle results on Y(4260)+-J/y

M2(±J/y)

(MD+

MD*

)2

see D.V.Bugg hep-ex/0701002

C.Z.Yuan et al (Belle), PRL99,182004

Inconclusive. Need~ 10x more data,expected in BelleII

Page 61: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

SummaryProperties of X(3872) consistent with expectations for DD* S-wave molecule-like state

- JPC=1++ favored (2-+ not ruled out)- Mass = MD0 + MD*0to a part in 104

- No isospin partners are seen- Isospin violating X(3872)rJ/y is a strong decay mode- <1.2 MeV

Y(4260) seen in three experiments- JPC = 1 ++; no unassigned cc state available for it- Very large partial decay width to +-J/y

Anomalously large “ϒ(5S)”+-ϒ(1,2,3S) widths due to “ϒ(5S)”Zb1,2-; Zbϒ(nS)+

Similarly large widths for “ϒ(5S)”+-hb(1,2P) also due to “ϒ(5S)”Zb1,2-; Zbhb+

MZb1-( MB + MB* ) = +3.6 ±1.8 MeV; MZb2- 2MB* = 3.1 ±1.8 MeV more S-wave molecules?

Why such large widths to hidden charm and hidden beauty?

+

+ +

+

_

Page 62: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Large decay widths to hidden quarkonia

Zb(10610) 10608 ± 2 15 ± 3 1+ ±hb(1,2P),±Y(1,2,3S) Y5S Zb(10610)±

Zb(10610) 10653 ± 2 14 ± 3 1+ ±hb(1,2P),±Y(1,2,3S) Y5S Zb(10650)±

Page 63: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Lots of pieces

Y(4360)

Y(46

60)

Y(4260)

Y(40

08)

X(3872)

X(3940

)

Z b(10

610

)

Z(4430) Y(3940)Are

they

all f

rom th

e sam

e puz

zle?

Page 64: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Thank You

감사합니다

Page 65: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Backup Slides

Page 66: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Experiment X mass

CDF 2 3871.61 ± 0.16 ± 0.19 MeV

BaBar (B+) 3871.4 ± 0.6 ± 0.1 MeV

BaBar (B0) 3868.7 ± 1.5 ± 0.4 MeV

D0 3871.8 ± 3.1 ± 3.0 MeV

Belle (This result) 3871.84 ± 0.27 ± 0.19 MeV

World Average 3871.62 ± 0.19 MeV

LHCb (new) 3871.96 ± 0.46 ± 0.10 MeV

World Average again

3871.67 ± 0.17 MeV

M(D0)+M(D*0) PDG2010

3871.79 ± 0.30 MeV

X(3872) mass in +J/y channel only

“Binding Energy” getting smaller:

Old: m = -0.32 ± 0.35 MeVNew: Dm = -0.17 ± 0.36

MeV

Dm(deuteron) = -2.2 MeV

New: Dm = -0.12 ± 0.35 MeV

<MX>prev_WA= 3871.46 ± 0.19 MeV

Page 67: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

67

(5S) (nS)+-(nS) +-

(n = 1,2,3)

(1S)

(2S)

(3S)

reflections

Y(nS) +- selections

Page 68: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

68

(5S) (1S) (5S) (2S) (5S) (3S)

(3S) (1S) (2S) (1S) Shapes of signals

tail (8%) – ISR of soft gs = 5.7 – 7.5 MeV

CrystalBall function

Calibration channels(5S) (nS)+-

(nS) +-(n = 1,2,3)

Shapes of reflections

Page 69: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

69

Residuals(1S)

Example of fit

BG: Chebyshev polynomial: max C.L. of fit

Signal: shape is fixed from +-+- data

“Residuals” – subtract polynomial from data points

KS contribution: subtract bin-by-bin

6th or 7th order

Description of fit to MM(+-)Three fit regions

1 2 3

in region #3 only

Page 70: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

70

Fits to MM(+-) spectra in MM() bins

(2S)hb

Page 71: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

71

Fitting theDalitz PlotsSignal amplitude parameterization:

S(s1,s2) = A(Zb1) + A(Zb2) + A(f0(980)) + A(f2(1275)) + ANR

ANR = C1 + C2∙m2(ππ)

Parameterization of the non-resonant amplitude is discussed in [1] M.B. Voloshin, Prog. Part. Nucl. Phys. 61:455, 2008.

[2] M.B. Voloshin, Phys. Rev. D74:054022, 2006.

and references therein.

A(Zb) = BW(s1,MZ,ΓZ) + BW(s2,MZ,ΓZ)

Zb amplitudes are parameterized by Breit-Wigner functions and symmetrized with respect to interchange of the two pions π1 and π2:

A(f0(980)) – Flatte function with parameters m=950 MeV, gππ=0.23 and gKK=0.73 determined from the analysis of B→Kππ.

A(f2(1275)) – Breit-Wigner function

Page 72: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

72

Dalitz Plot

It will also produce a signal like reflection on the other axis

If there is a signal in the Yπ system

M2( U(2S)+), (GeV2/c4)

M2 ( U

(2S)- ),

(GeV

2 /c4 )

Page 73: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

73

Results: Y(2S)π+π-

Page 74: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

Results: Y(2S)π+π-

74

Page 75: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

75

Expectations1+ isotropic1-

2+

2-

neglect Zb recoil motion(<0.02 very good approximation)

(5S) Zb1 [(2S) 2] 1

– beam direction

1, 2 – polar angles of 1st and 2nd pions

p – angle btw planes defined by (1) 1& Z axis, (2) 1& 2 .

many thanks to

A. Milshtein

(BINP)

also formulae for hb are available

Interference terms vanish after integration over other angular variables subtraction of non-resonant contribution is possible.

Consider 1D projections

Page 76: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

76

Example : (5S) Zb+(10610) - [(3S)+] -

JP=1+ 1- 2+ 2-

Best discrimination: cos2 for 1-; cos for 2+ and 2-

Example : (5S) Zb+(10610) - [hb(1P)+] -

Page 77: New Frontiers in QCD (QCD-2011) Yonsei  University, Seoul Korea,     October 27  ~ 28,  2011

77

Summary on angular analyses

All angular distributions are consistent with JP=1+ for Zb(10610) & Zb(10650).

All other JP with J2 are disfavored at typically 3s level.

The probabilities at which different JPhypotheses are disfavored to1+

[preliminary]