10
.2 腏腙腕腜腞腐腎腄腍腊腅腃腋 腊腆腈腀腇腉腄腌腍腚腛 腙腕腜腞腒腑腂腓腗腖腚腛腝腔 : ,**0 +* +. 腋腴腔: 臷膝臬臂膽膮腲腅腦腚腈腋腑腔腊腕腛腨腪腠腇腅腆腈 腦腬腭腥腈腖腒腐腗腙腍 臞膟臷膝膈臣腉腁腳 臟膏腠腲腻腾腱膀膑臧致臇腟腡腉腋臜腠腤腶膕膝 臡腠膁腼腹膄膆腵腌膗膹腛腆腭腖腮腡膦膓腠膽膮腋 臹臟膣腊腪腣臉腟腪腘腚臜腠腤腶膕膝 臡腯臠膿 pHEh腔腮腢腠腲腻腾腱膀 臟膏腠腲腻腾腱膀膭臑腯腉腫腮腭腐腜腌 腑腮腚腇腭腋腫腛腆腭膽膮腡臟膏腠腲腻腾腱 膀膭臑臠膩臖腠腚腇膬腠腗腧膏臆臐腠膋腞腭 腟腊腇腚腤腶膕膝臡腯腟臮膳至腞膁腼腹膄膆腵腠腆腬腯膼腒腗腖腠膺膙+pH 腡臟臀腋腫腠膯腟膊臱腒腞腇腌腢腫腙 腎腗腧 - 膉臚臮腔腤腍,pH 腡臮膥腟腪腘腚 + 腄腊臃腌臣腓腭-pH 腠臮臻腡膏膡腋腫腠膯腟膊臱腒腞腇.pH 腠臮臊膤腋腫 IQ- +/* 腒腚腇腭腞腝腌腫腋腟腞腘腗腌腀腘腀腑 : 腲腻腾腱膀pH, 臊膤膴膤腽膃腺腳 腡腢腴腣腉腰腄腯腫腭腥腈 腦腱腮腧腟腩腈腞腲腳腜 膱臬臂膽膮腸膆腹腂 臒膎腉腋臜腠臟腥腒臡膲臨腯+膗膫腞膤膸臑臔腈臢: D VwVspl ,膗膫腞膤 腊腪腣腫膀腊腠臭膾 腫膀腟腫膀 臩膌腟腪腭臢: D VwVsael 腖腠膨臦腅腦 膕腯膚臥腒腗臶腋腍膌臝臟膏臅膔腛腡膘膧腠膢臫 腟腪腬D VwVspl 腟膾臙腒腗腒腋腒膧腠膢臍腠膵腬腒腟腪腬D VwVspl 臄腣臭 膖腒腗腦腗膘膧腠膢臫腟腪腬D VwVsael 膢臫膰膉臚 2* kPa 膉臚腠腶腴腷膂膆膍腠臊腟膾臙腒腗膉臚腠膺膙腡腥臛腛腠膢臫臍臗腶腰腴膅腌腞膇臗腠膵腬腒腜腋腹腞腱臡腯腨膛腒腙腙臜腠膤膸 腥腠膝臡腯膕腑腕腚腇腭臏臵腯臋腒腚腇腭腌腀腘腀腑 : 臺自臡臼膕臟臡 E#ects of Organic Matter, Clay, and Water Content on Water Repellency of Sandy Soils Tokyo University of Agriculture and Technology D.A.L. LEELAMANIE, Jutaro KARUBE E#ects of hydrophobic and hydrophilic organic compounds, clays, and water content on soil water repellency under wetting and drying processes were examined. Stearic acid or glucomannan or both were used as organic compounds and kaolinite or Na-mont- morillonite was used as a clay conditioner. Soil wa- ter repellency was estimated using water drop pene- tration time test. Repellency did not appear in sam- ples without stearic acid. In wetting process, addi- tion of + to ,clay increased soil water repellency. In drying process, critical water content increased with kaolinite content. Soil water repellency disap- peared with montmorillonite but not with kaolinite. Maximum repellency was observed not at oven dried but at air dried condition. The range of water con- tent at which soils exhibit water repellency increased with kaolinite content and further increased with glu- comannan addition. Soil water repellency was sen- sitive to water content at about air dried condition. Key words : soil water repellency, organic matter, clay, water content J. Jpn. Soc. Soil Phys. 臜腠腤腶No. +*/, p. .3/2 ,**1腎腙腓腏腊腕

No. +*/,p..3 /2 ,**10 - js-soilphysics.com"LMN O#P7 $ %Q 7&R,’ 78ˇS (,)12T

Embed Size (px)

Citation preview

� .2��������� ����������������������

����

� � : ,**0� +*� +.� ������ � : �������� ���

���������� ��������������

����� ��� ������������� !" ���#���$%�&'()*+,�-./012 34!56�� 78" 9�:�;<=>�:� <?@" �#���$%ABC �D pH" � Eh� E4F" �#�������A�G�H" ��������IJA�K841LM,N�O4@P178/012 �� !" ��������IJ�BQR���M�S�TU" �VW��XY1Z��� ;P@" �#��$%A�[� \�]"^_�Y&'()*+�0` Aa!]T2 3�bc"+� �# pH!�d78�e" fg]YP," F8hHTU -#ij\�EkG",� �# pH!\�l <?@ +m$%n,�o1"-� �#pH�\�p!"�q78�e" fg]YP".� �# pH�\�!" r�%" s%" \��t78 IQ-

+/*,&]@P1"Yu,�87 Y?T2����� :�����"�#pH, �t�vt�wxyz

����� !"#$����%&'()�*+,-

�{�|�� }*(~����'��(������ �

���#��)*%��A" +��-��Yt�+�,$ �J�� A-��) : D �Vw�Vs�plM" ,� -��Yt�+�,$ �.�� ;<=/0%��� �/0��/0�r� <1�) : D �Vw�Vs�ael )�" 3����,$AN�]T2 �7Gr����1�/!" ����� <`" D �Vw�Vs�pl!" �2 ��]T2 ]7]" �3��� �¡`4] <`" D �Vw�Vs�pl!" ¢=�

£]T2 ¤T" ����� <`" D �Vw�Vs�ael!��]" ��¥%ij �2* kPaij� �¦§¨©*5ª�6�7«8� ��]T2 ij�bc!" ¬�/���� �¦­§®," 9�Y¯:M.��¡`4]M8� " �;°<=�6�*%A«±,]hh" �#�t�²)>³9%A,$O´@P1µ¶A·]@P12����� : ?¸�" ¹º%,»"¯:"@¼$"6�%

E#ects of Organic Matter, Clay, and Water

Content on Water Repellency of Sandy Soils

Tokyo University of Agriculture and Technology

D.A.L. LEELAMANIE, Jutaro KARUBE

E#ects of hydrophobic and hydrophilic organic

compounds, clays, and water content on soil water

repellency under wetting and drying processes were

examined. Stearic acid or glucomannan or both were

used as organic compounds and kaolinite or Na-mont-

morillonite was used as a clay conditioner. Soil wa-

ter repellency was estimated using water drop pene-

tration time test. Repellency did not appear in sam-

ples without stearic acid. In wetting process, addi-

tion of + to ,� clay increased soil water repellency.

In drying process, critical water content increased

with kaolinite content. Soil water repellency disap-

peared with montmorillonite but not with kaolinite.

Maximum repellency was observed not at oven dried

but at air dried condition. The range of water con-

tent at which soils exhibit water repellency increased

with kaolinite content and further increased with glu-

comannan addition. Soil water repellency was sen-

sitive to water content at about air dried condition.

Key words : soil water repellency, organic matter, clay,

water content

J. Jpn. Soc. Soil Phys.

�#���%No. +*/, p. .3./2 /,**10

1�23��4 5

������������ ��

������������ �� ���������� �� �������� �

��� ��������� �������������������������������� !"# ��� $��%�&'���()$*+# ,,��-.������ $���/� �01"()�/��('2"� "345��� $��%�!�6!"/� &'�78# ���,������#$%&�9:��� 6�; <��!�6=>?@/�Key words : Air Permeability, Air Permeability Test-

ing Device, Sandy Soil, Soil Pollution

�������� ��������

AB�����'C��01D EF GHIJK��(� )*+,LM����- ./01

���2345$N�O�PQR6���S��7�T�+58�U+�# VWX��9Y:Z;$<%�[\]�"3=># #$># Y:$���# &'?�^@�/� VW>�A��B��C_DE`#F qinia*.,*

"# 3=>G�bc# Hde�#$$I�fYJ"��;�Y:Z;�67g@/�eK qinih*.-*"#3=> i2345>j �A�# de�#$$I# e��Y:Z;67g@/� 2345>6de�#$$IX"9:�; ��/k�# LYTgfYJlmT5n%#�oM6N����� �/k���2345# 3�C_#$>pO"�de�#$$IX�q+�# N�O�PQR6�Pr"3������� : 2345# N�O�PQ# #�Qs# �9

Y:Z;# VW

!"#$�� %&'()*+,�-./�012�34

�R����01Dt ST�UVueW�#Lfv

wAX�#oMQxyz$�Y%�/k# {|}~���$�Zq9�wAZX�[�\��# ��]����q��W^#_$���/� wA`Z�W^#_�Z�6�;+a8����T�b�$=�/� �/#wAc-�d#_�aX#��eX-�����fg b���Oh%�/k�# e�?�iTgj��mT

5#�=@6kl�/������ : W^#_# wA# m��nA# LaU=�

5678�921:;�<=>?@ABCDE�FGHIJK�LMNO:P

o���'C��01D pqrs����lt��D�- pTu��vw�x

������-yz��{ � |�o����}a01y|�� �O��

�a�q+���%&$~�%�!���"3:#��� �¡|¢�U+�� �016�?@�+���01"�£�3�¤zy|¥� iMFHPPj �<���U+�# TDRy|¥����78� Suction-Con-

trolled Flux Sampler iSCFSj �9¦�§#?@/����#�$�78$�¨B6��# DE`#F q, ����: EC, ���$���>�U+�^@�/� �78# MFHPP6��� �¡|¢©����<�"3���786=?@/������ : �£�3�¤zy|¥�# ���$# ��

#$-QARS3T�?U���V�-WXYZ[�\]

�������lt��D�01D fw |����lt��D�- pTu��vw�x

������-yz��{ � |�o����}a01y|�� �O��

���aX#$�%�sª�«t.�# �����9:¬6�­�63:# ��$��%�!�6®�"3�� ��$��%�/k�# �8��6¯8?"3��°±# ²³"����#$��Tg|�§�%����´k$*¦/� ²³�����#|�§#�����¢�zµ¶P·�$�+/� &¸�L{���$���# §#$*+# §��/n�§#>�¹P~|�:$���/� §#>���>$�¨�/�!4# ��>�OX��¦�§#>­G���+�!�6º�";/� �/# §��/nX�¹P~|6º�?@# !���$�+�S�����#$§#";�!�6$T¦/������ : �»^# ����## ¢�zµ¶P·�#

L{

���t(� � +*/¼ i,**1j50

���������� �����������

���������������� ������������� � �������

��� �������� ������������� �!"�#���$%&� ���'�(���)�*+%,-&��"./�� �#��0(�+%��&$%1 �0� 23�4!5 "#$%($6+%-� 4!5&�&078�'(�!"88)9*:�;%<+�&$%1 =,�� 4!5 "#$%>07?,(-/�@�.!�#��(���21 / �#@��A 0BC$8DE"&1FG2&� �$>07?,(H2+%,-�� 4!3-43(@�.�IJ�K��!6-C���'�(5�L�+%0B&67+%,-&8FG21 MN�� 9:OD����+%��&;M6� ��� �!"P<-!G21����� : /Q=>?� ��� �������

'($%� @ARB

������ !"#�$%�& !�'�()�*+,�-�./�(0123

������������ ���CDSE�����

TF��G��HIUJ� K LVM� ���� NO�WX(YZ+C -��� P[.!QQ���>G)\]�!6� P^_�>`�#�OG�R��2aS TU!GD) V�&b/N;%1 =,��c Wd.!*aS-��� �����A&*���X#M;%�Y� Z[&\�-b/� >? �e(]G��^ E"(8_�21 `ab(cd-+%Ve�2P[��� 0f!A$%g%aSM;2��-TU.!aS�F!M;�"!"����f�g���E"&^�"%1 >?'(* 8_(cd-�2Z[(hh�2-,i� >? '(�� ij3j�� ���'��E"&$D� TU!aS ���"k; kC�6� >?&ll �eFN�^ E"(mn]%,-&^o21����� : >?'(*� P[�� >?�#� QQ��

+4�56��789:;<=��>?�@A

TFmpGn��o�e� cqpInstituto de Investigaciones Agropecuarias, Chile

Pablo Undurrage DIŒAZ

Gn��P<��� �rst�qurs�t'#u(v"�� wvg>wOxyx�)> �z{yz{)>? |}(*|~(���21 >?*}~���* h��+/�* cm ����� wvg>��h E"�O%(*|~ -#&;M6� ���g�&�!(*�(�+%,-&�F3N;21 ��� yx�)>�����g��8 (*|~&;M6� >?&}�V�6-(*|~ �K!��&�N;21 , 23� wvg>�����"���}�V�K� �*| NO�!D>+6� �-2x�*+%-T�07(9�2�;&��+%-b/N;21����� : �t'#u� wvg>� yx�)>� (*

|~� T�07

BC!D�EF?G�H�IJ�K�!�LMNO ���#PQ?

TFmpGn��o�e� ;� ���)c�w]%������� ����(����������� �D���'v+�6�,;N ��~��l"�� ��) ��>? �S.�� Z[(���21 )��~��g��8_ ��� ���g g�¡¢£� ¤g¥¢£� wOx�¦§�o��£ ^¨��(�.-~� ��>? �S�(��-~-+%�-����&�N;2182����g g�¡¢£�¤g¥¢£wOx©*�¢£�l"����>? �S� 5 k&¡^M;21����� : ¢�£��� ����� ��� )��~��

g��8_� 5 k

Partitioning Interwell Tracer Test RPITTS�LMTU�V�.��23

Kª�����G��¤�����¥�¦�«^ §�¬� ­

������ NAPL� ¨���@-M;% PITT ©ª�(�NF�+%23� § *�®(¯"���¤��$-RB¨«- °|(Z�21 = ��� Q=±¥z�®��8¬���¤� ­²³® ¯%_��� ,°´ µK&¨;� 82�$ ;M!±d��¯%���FN���¤�0�8²�f�g�0³&��2&� �$ �K!±d�f�g�0³&!FG21 MN�� �$ ;M!�& NAPL� ¨�´%�FG21OG�� �$&�K"-���¤� NAPL: 8¬&µ¶¶�8¬���¤��··&��k� �¸�67+% NAPL�(²�¹¸+%¹º&$%-b/N;%1

º .2�>?�S�»��}�£z }�e�o����R� ¼>?�S�� 5»®¼R��¼ 51

PITT���������������������� : � ������ ������� �

��������� �

������ ��������������������

���� � !"���#�$�%! �����&'( �� )

*�+�����,-.�/0123��45�6�� ���78�93�:�;<7�=�>�?@<123�� A;A��<� B1C7�=DE���F�7�� �G�7H�DE7!I9A2JKK@���,"LMN�O#�P7$��%Q�7&R,'����78��S(,)12T<U� V7�*,�WX<123�3� VB+DE�� ��F�MY�.��$�%Q�7,-Z[.�/K�,-01�\2]�B9� ���78�93�:�;<�=��>J�^�,AK� CK3,-01�43K5_`a;<� 6b �c�d7e,&R]�89:��� *��d*fg+]��,;<]�B9�=<;,AK������ : �=� $�%Q�� ���>� �45�6�

F>h

!"#$%&'()*+,-./0�1�23456

?��i�j@k�jDEl �ABm�nC D?��j�jEFDEl AG H

oIp�q� �r4AKst�uv5_;<7w=�� JK�x��7Lh�:MA� p�q� r4�w=N�,yz]{|�}OAK� uv -.0P7 /~7w=�aQ,� Rr4� oIp�q� ,* t�ha�J�Hr4�� 3 .* t�ha�J�Hr4�� VA2JKr4,* t�ha �p�q� �5��� 7�����A� S��T���A2 +7e7:M���K� Rr4�;<7JK�x��� w=��8�a�7����K� ,*

t�ha�J�Hr4�;<7����Rr4�,�3U.� ��7VPW�,'3���WX�u���AK� JKr4�T^� .* t�ha�J�Hr4��;<7���8fe�XAY�Z8AK������ : oIp�q� � w=� �[8� st�

789:���;<.�=)*�>34?@ABCDEF56

=��j�j\ ]^�����j�j\ ��_���l��

�����DE �¡� ¢�)£��`¤¥�a�b¦�c§¨d

e©f7ª�;<«¬6C70C­C���,TY�«f�7®¯T9: �NO--N� gP99:°�3±hi �d+/N� �j²AK� �6k,���U3³P«f��7 NO--NgP�´�A� l7µk��J3³P¶.��K� mnµk97·¸�¹�º�;�K� ��\�� ��op^»hjqrop79:�U.��A23�9SX<1K������ : �s4� ®¯T9:gP� 9:°�3±

hi� GIS

Measurements of Moisture Properties of

Takamatsuzuka Tumulus Soil

National Institute of Cultural Properties Tokyo

Magdi KHALIL, Takeshi ISHIZAKI

The University of Tokyo Masaru MIZOGUCHI

There are many beautiful mural paintings inside

the stone chamber of tumulus in Asian countries. In

Japan, mural paintings of Takamatsuzuka tumulus

were painted in eighth century. The special commit-

tee for the conservation of these paintings decided to

keep these paintings in the tumulus in the similar con-

dition before the excavation. Recently fungi were

found on the wall surface and caused severe damages

for paintings. In order to clarify the cause of the fun-

gi and find suitable protective measures, it is neces-

sary to know the moisture and temperature condi-

tions and other necessary physical properties of the

mound soil and stone chamber. For this purpose, soil

samples were obtained from the mound by air boring

method and moisture, thermal and mechanical prop-

erties were obtained. These measured physical prop-

erties were used to propose protective measures of

the Takamatsuzuka Tumulus.

Key words : Takamatsuzuka Tumulus, mural paint-

ings, soil physics properties

�7��t u +*/¼ �,**1�52

,���������� ����������������

�������������� ������������ �� ������������� ���

���������� ��� !�"#$%&!'��� (��)���)*+,-�.�)�/�01&!2�3�.�45!6 ���43� 78������+, 9:�,"!�!����:�8;"+� #$� +

%&�:�!��'� ,%&8(<+� =>���(��?"� ���)@+A6 B������+,CDEFG=HIJKL*0M�N"� ���(��+,B-./�O�� ���0�B-P1QR� 9+A6 2L*0M8G",����8=!���(���3#4���� IJKL*8G",358L*ST8�3+A6UA� "V��6�8G",W�����0X+A6�83�788B-P1#4���A6����� : ����� B���� �!��� ,%&� �

��(�

�� !"#�$%�&'���()*+,-�*./

YZ������������9�[\�]^ _

:`����� ;<ab+,=cdT�>?�8G",� +,=c88Ref�.@g�3hA�ij+A6 =+!��=�.hA3� generalized Clausius-Claypeyron kGCCl mnD471:�!#�BC=c+,43 GCCmnD�opD30ED�q� 9+A6 r�A�� sFmnD�Gt+A6 r�u��",=c88Ref�.hA�vwxy�z+Ac{� =c88�H�I�J�!2�40ED�opD3"*|K+A6����� : �=��Generalized Clausius-Claypeyron

mnD� +,=c� }~�+

Comparison of the Penman-Call model with

the Classical Models in Predicting Soil-Gas

Di#usivity for Volcanic Ash Soils

Graduate School of Science and Engineering,

Saitama University

Augustus C. RESURRECCION, Ken KAWAMOTO,

Toshiko KOMATSU

Dept. of Biotechnology, Chemistry and

Environmental Engineering, Aalborg University

Per MOLDRUP

The soil-gas di#usion coe$cient (Dp) govern the

transport and emission of greenhouse gases and vol-

atile organic chemicals in the unsaturated zone. Ac-

curate description of Dp is needed to realistically sim-

ulate the transport of gaseous phase contaminants.

In this study, we compare the performance of the re-

cently developed Penman-Call linear model with the

universally-used Millington-Quirk (+30+) and the clas-

sical Buckingham-Burdine-Campbell models for vol-

canic ash soils. The classical models failed to pre-

dict measured Dp especially at high soil-air contents

(dry soil conditions) whereas the Penman-Call model

captured the observed linear behavior of Dp for vol-

canic ash soils.

Key words : soil-gas di#usion coe$cient, air permea-

bility, organic matter, soil-water reten-

tion

0123��4567�89�:;<=>

������� L|M�������N�����

O� ��LP;���LQ��+,�R�S kWater Repellency, ��WRl 3� ����e�T�:�� 7I+,�UH�0V�� W��X�<YZ�[�� �7\�X�r�8�*+,U]����)!6 ���43�^ _+�`a8WR�M�N"� WR8b��c��.c#��&���d�!��W8� }�*+�WR5S��e��N�A6����� : R�S� ����Df�g��M� +,b

�hi�bc� �^ _+

��?@5�ABCDEFGHI�JKLMN�OP�QR

������� �jk��������N�����

O� ��Augustus C. RESURRECCION�ZlO m�LP;��

¡n¢�+S�£)! 0+, k12�ol �p`E¤¥¦§q Dp�D* �¨p� e�©§=>+,ª«�¬­&���S�7&®¯°��X�O�A6 X�+,r�5S�7& Campbell b��p©©§�±s+� X²

t .2³+,�N�´v µ¶·F µ¤���¸v¹ X7 º+,�N���»uvºX7w¼ 53

+.2�/.0�b �R,�*.3+� ������� � �� ��������������� Dp�D* �e� ��� ��� ������������� : ������ � ����� ���

��� !

������ ������������

"��#�#$�#%&'��(�����)*���+���� �

,���� �������-� .����/0�-�!"- � #�$% 1&234567-895�' (:)*���� 895���+��,� �-;� #<�=�>?0�6�@7A-�.�>?0/�0��� ����� BC�(:D<� �= , mmE1��6�@7A�2�� F3,� <.��4G-FHI5 ���= *.+/ mmEJ�2�<6K ?LM� 0�2�� �� *N,*�DF3,� <O�DPM� ,*��7Q0-89I5 � ��R���4G-FHI5 � �=HSM���DT0.��:U�P0�-� F3,� �� .���.HS06K�;/�-�.LM������ : ,�� ��� F3� �+�

�������� !"#$%&'()

�<��=%&>V?�=%&>@�A �B�C*��DEW�@FXG

HYIZJ[KLZJ\MN]O^_�P`QE�a��_

RS�?D<?TUJ�Ob� cVWdefgX�hYZ[?ij�1\]�T �0� ���^- �� RS��V_`kJH�a �lm�-�nQ��0� ��D� bcdgX���o1p � RS�?�?J�q�1ers0fg�t��u?vh �0� o1pX��i�j2L�?J�q<� ko1pX��iSwxmyar�0z{�lm� ?J -* cmHmM �n�� -|}R�opq�~o1pX��iD�Tm� rfg��hs.���tt��;ur������� : RS?� �hs.�� ?J�q

*+,-.�/012-.�/��3456789�:;<

�v�#wx�#N y���z�sfg-{|fg�?JX�}~t���0�-

�!"- � ,* m{��rfg-����$% / m

{��{|fgHS0z�sfg��� ���-�'/0fgX��������Hl���R��������-� � ����� z�sfg��� ���D<rfgL����-��?m?J�q��eLH�J � ���c��~X�r���-���r�� ��Sw� z�sfgH<j2L�?JX�hY��OH�Krs0t��Pw� ����$% {|fgH<rfg-���X�t��P0-nQ�������� : z�sfg� rfg� {|fg� ��(?�

���

=�>?@A��3BC� ���5DEF(G�/�HIJKL

������x���4�7��#:2'�1 �

���#�#O�'#N ��=l�D2�#�# ����

rfglS���{|fg��� � ��H?J�q��4��7!DT0?J�q-����L�?0?J��)*�M* ��Kj2D� O���7��-H�q6�rs0��HS0 9A��-���Z ¡��q�fg�� ¢£���j2D 9A���£M� ����� �q6������¤<� O�¡zH¥b�?J�q�¢��¦Y-?w�  9A��D�§?`k�£e/-�¤ ������ : ��Kj2�  9A�?J¨�� fg�?J

�q�4��7!

5M��NOPQE>RS%T�UVW>

"��#�#$�#%&' ��+���� �����¥¦2�6K§�d�LH/0©H� �r *N-* cm, -*N0* cm, 0*N3* cm������ ª4�«ª�¥¦�¨G ©�ª 2*��2�-«¬�¥¦�¨G ­�®��2��¬­®#:�£� ¯�¥¦¯ª6KL�°hK� «K� ±¥§�²°�#±� ¥¦2�6K�°hK� «K� ±¥�³-/0�´µ¥²- �nQ� ¯2�6K� *¶µ¥�D·u �� ��³��µ¥�ª� �´©� ����� ·¸��2�6K�ª�¹~�Tm� J¸Dºr�-���r�� ���.µ��» �¥¦2�6K�t¶ S·-/02�� ·¸�H¸¹�º»/S·?µ�D?-t��ºr-nQ��0������ : °hK�«K�±¥�µ¥�ª� ��´µ¥

���s� ¼ +*/¼ �,**1�54

����������� �

����������� ����������������� ���

��� ������� ���� � � ������ �Br�� ����� !��"#����$!%&'()*�+,-.�/0,1'2 +3456�7*�1'�8� 9:;��+< Br�=����>,-.� ()*���?�@A<��B�C'2 101� � =���,�:� ��,�8 '&� ��,-D��=�E0F'2 A'� � BG/��<8D�H�IJK,�LD �!,-F;���>"#=MN�$�E.� OO0/��!%P<8DQ&#BRSTL'2����� : ��� �������� Br�, ���

�>

��������������� !"#$%�&�����'

������������U '()�������������� ���

*+,V-W,X.9DY5Z*/01,[ ;� 23\ �,V\� �45\ �G678\� !9];� ��:;�8!^<1'2 ,VB=_1; D�8,=� >T /* cm,[ ;?\�`,@a8� b)cZdB^<TL'2 e�A=23\,[ ;� *.2f+.. mm�dB<g.� ,V,ChDE ! �Eib)cZd� = 31

mm�21 d<gF'2 A'� F3j`23\�MhB45\-.`Gk�l���BmH1;[.� n*I �*�-2

cm� ,[ ;J ++ kg NO--N�haG0F'2����� : *+,V� :;��� �o>pK� o>

qrst7L� b)cZd

()*����������� !"#$%�&�����'

������������U MN �������������� ���

GE3-W�Y5Z*/01,[ ;E3�F3,Ch �:;���!<$1'2 E3u,=*+=�,**

cm H,OA<vO1� >T 0-./ cm!Pw1'�a8�Eib)cZd= ,+.. mm<gF'2 OL,41F3u�*+=�/* cm H,O�@�x*+ y��H<Q�1� Eib)cZd= .0. mm�EF'2 :;=F3 �RS,-F;�8k�T��1'2 >T +** cmA<!4U�9D�� VIJ!,WX9DF3 BRY1'

B� >T +/ cm,>Z1' Br����� .-�B*+[,m\1� ]^�,-Dz6cZd_���`�E:a{�I*<�l���|b�}~B��/L'2����� : z�7�7�+� F3� b)cZdc

+�,-./01�01.�23.4567��&���89

����������� ��d������������������eGfg�

��z)�db�7b��Zt���PTFs�!h '*+ �"#�i$!jk,� t�64�����,*-l� ,2-m�*+!4U�1;*#� vOno�'�p�'!� �q�"#!<$1� van Genuchtenr�PTFs!sh1;*+ �"#!�i1'2 van Gen-

uchtenr=�<A!-k��1'B� PTFs=�<A!_�k,10��<8E 1�Bg.� PTFs,-D*+ �"#�i$,=� Gk����sK�-.t�Eu�QK�vw#B��/L'2����� : *+ �"#� ��z)�db�7b��

Zt�� �PTFs�� van Genuchtenr

:;<.=/,(>?5��� !"@A�B)

x�������� yz ��{z��x������ |} ~

�����! +2* kg-N ha�+ ���\�� /.* kg-N ha�+

�-�\��  ���! +2* kg-N ha�+ � ���\� eL¡L +*� �,*n� �@�h1; D01,[ ;*[�Q:#¢£ �*.+ N¤¥R�c�� V¢£ ��¥��¥�w¤�¥¥¦�§c� �>TTa��o�Z!<$1��C01<_¨L'w©�<$Vª��«1'2 e�Vª� ����� -�\<=� *+¬�­�!��D¢£B*+,�E1; '2 V¢£�Q:#¢£�®!�:#¢£�9D��h,CF;V¢£,�&D�:#¢£!B¯�9D°aB±/L'2 A'� ²�kE¢£�E�o���0/� ¢£B�I,:a1; DQ&#BRSTL'2����� :��3dz�¢£�*+¬�­��'��c

C�D��� !"EFGHI��J�KLMN&OP

³�����_��´��x �µ��������¶�

� .2·*+p��¸t�3¹�* 3d�7�ct���� º*+p����» �º��w¼ 55

����������� ������� ����� �� �

������������������������������� �������������� ��!�"#�$"% � ��"$�& ���!"#$#%'(!&'�)!* (���+� ,)��*+-�.*��,)#-/%./(!01� 01234526%�!347�#890* :;<�����=>,� 560* cm%78 07*?@A��2345# ,*B1* cm%26(!CD%�E� ,)��*#7�F9D�90* G0� & :;HI"$,)��*�*���$"D�E� #%: J 6K%�!J #$L;�+� ��*�%?M��D<=��!J ���N"��0*����� : ,)��*� 2345� ������ ?

M��

���� Octave�� ������������������

>O����P?��@����� Q AB��*:#$RC�./D"$� ��*:#$ST

U�#V/(!01�ECWXYZ[\T]#� FDKGHZ[\T]^_ Octave%�9�`I � ?a�b?cD �d` 0* C�Z[\T]#J�CD��Brooks and CoreyK� van GenuchtenK� KosugiK�DurnerK%�!��*:#$STU��KG#(!CD��e!* LHM�ECWXYZ[\T]DNf!D� C�Z[\T]+� ��*:#$ghA%#i ��!01� 01M%OP�QjD�RS �k�!���#T�)!* C�Z[\T]�JHU%l��m ������*:#$h�n�oUNSODA�h�"$� Vp�OHW#X 0*����� : ��*:#$� ECWXY� GNU Octave

��� �!�"�� #$%& �'���()*+�%,�

>O����P?��@�����qr A�YZ-s�t s[

=\uv]�^w���� � �_x`%�!ag�c�4\h�#Na(!01%� ?@�Ay��*:�z�M�b�M�ci#%'(!{d�`I�|1$���!* C�'|%}~!{dD �(��e�+� ?@�Ay2��#H���f#��g��?����hi#a�A�]�.(!4

o�]�`I%�Ej���!* C�Ik�+� ��4o�]��'%l��l�(!D�%� �o�Ik�m��n�#�~��$?@�Ay��%-�!g�a\{d�F9$Dopq%l���r 0�*����� : ��hi� g�a\� ?@�Ay2�

�� IT

-./01& 2%��-$��34�567

>O����P?��@�����Zs�t�s(usv�� w�Q AB�

xy z��� ��qr A��>{�+� |�M%}F��~��A�a�����)!�� ����%+�����q���* (��+� ��k�%���������!�qD� �������qD���*:�1� �#�$"%(!CD#�MD 0* ��HI� ���������!�q�)�� �E�k��¡�L� ¢£%��*:+�¤�¥C!CD��$"D�90* G0� ,�qD¦RS!�I��F9$�§~$�0* �,*%l��+� ¨>��,*!1�X©��0*����� : �A�a��� ����� ��>{�

89:;<=>?@A��-$��34�BC DE

>O����P?��@�������ª����«�Q AB�qr A��� ��xy z

(��+��¬­#��0��£����¬­���*:�1%�~!®¯#�$"%(!CD#�MD ��y°4���a±����¬­��²#��0m�D������m����n³%�!*:�1#./ 0* ��HI� ���%�!±3[���*:�1%�ek®¯#�~��!CD#/� 0* G0� �*$���D�!MED�³#8�� �*$+¬­�²�����k��²�%¦I´(!CD#�$"% 0* ��¬­���*:�1%�~!®¯D �+� +µ��¶·�� D��#¡!RS!��¤)!�+¸¢� ,µ ¬­�¹e¥C(����*$� �£l�¤'D§~$�!*����� : ������� ��¬­� *:�1� �*

$� ±3[��

����¥$ ¦ +*/º »,**1¼56

ECH,O-TE�������� �� ��������������

�������������������� �

Decagon��������� EC�� ��� +����������� � TDR!"#$� ECH,O-TE

�%&� �'(&)*�*� ECH,O!"#$+,���-��.�/�0�����1'(23�) 4�����+� ECH,O-TE��32�56� ��"#7� 89:�;������*� ECH,O-TE;<��������;=>�?@&) 4;AB� ECH,O-TE;CD�+�56� ��"#7;������EF�G�����0 ���HI&)����� : ECH,O-TE, ������ EC�� ��

����� !"#$%&'()�*+,-#�./

012345�6789:(;<=0

����J����� K� L�MNOP QR��������� !�ST

��"#�U�VWW0�X$YZ[;\]%;&^�W32_`��) a'�bc�3��3d(�\]%;()�*�We#f;gh�+,�*� i-�j.;/k�l&���mn�;o0�0&�"p;\]%�1q�� %�2�-rs�t;u34;����tvw�X$����x5�*2y3� vw�t;6z��-7�8{� 9:3�>|H};��+���;<*&)�(�~V� U=�;\]%;2��u34�~��t>?�;=@/�A��������+,�0�) ��+� ��&^�B�(&��;����C���)����� : \]%� u34� 9:3�>|� 6z��

Biomass Decomposition and It’s E#ect On

Soil Physical and Hydraulic Properties

United Graduate School of Agricultural Sciences,

Iwate University

Moniruzzaman Khan EUSUFZAI

Faculty of Agriculture, Iwate University

Katsumi FUJII

A Field experiment was carried out to investigate

the e#ect of straw, sawdust and compost on three-

phase composition, water retention and hydraulic con-

ductivity. The rate of decomposition was also meas-

ured by the fine mesh litterbag study. The experi-

mental design was nine split blocks incorporated with

Sawdust, Rice straw and Compost at *�, +*�, ,*�and -*� of apparent soil volume. Mesh bags were

randomly assigned to three plots and buried below /

cm from the surface soil. Hanging water column and

centrifuge method was used to measure the water

retention curve. Hydraulic conductivity was deter-

mined by the disc permeameter (Perroux and White,

+322) method. Among the all amendments -*� in-

corporation reduced the solid phase as /.0*�, /.+0�and ..*2� for compost, sawdust and straw, respec-

tively. Compost incorporated soil retained high soil

moisture at any suction level than straw and saw-

dust amended soil. Unsaturated hydraulic conduc-

tivity K (h), increased for compost and straw but de-

creased for sawdust incorporated soil for the same

potential used. Field saturated hydraulic conductiv-

ity (Kfs) increased by / times and - times for compost

and straw amended soil.

Key words : Biomass, decomposition, three-phase com-

position, hydraulic conductivity, water re-

tention

>?@9:(;�ABC��D�89

D�y�E\�F]�����G ��F�HI�J KI

&@LM�;NOK�P�&�Q��32��*& +

m�"�;��AB����6�>?E�~���RST����#����~I2?@& + m�"�;��������~�� ¡�U¢2£VV*���y3� W�¤X;Y���� u¥Z;���?@&) ¦L����W�¤X�=d�&^-§¨;��AB�©�ª«*&AB� ?@&W�¤X;Y���� u¥Z;��+3¬(­[<H­;�\]'(&) �;AB���&@LM����� + m�"�;��AB����� ¡� + m�"�;����#����~I2B����~V� W�¤X;®^ ¯Y°���� ±�u¥Zl�;���²�<_����\I&)����� : &@L� W�� "�`^

a .2��t�b�³��´µ¶7 ´·f#¸¹���cd º�t�b��;»efºcd>¼ 57

����

���� � +*/� ,**1�58