22
Chapter 1 NUMERICAL SERIES 1. Sequences……………………………………………………. 1 2. Definitions. General Criteria………………………………… 17 3. Series with Nonnegative Terms……………………………. 28 4. Approximate Computation of Sums……………………….. 38 5. Improper Integrals and Series……………………………… 42 6. Infinite Products……………………………………………… 59 7. SOLVED PROBLEMS Exercise 38. (a) 1 ln lim = n n n (b) = n n n ! lim (c) 1 ! ln lim = n n n (d) e n n n n n n n 4 ) )...( 2 )( 1 ( 1 lim = + + + (e) n n k n k 0 sin lim 1 = = π (f) 0 )! 2 ( ) 2 ( lim = n n n n (g) 0 )! 2 ( ) ! ( lim 2 = n n n (h) 1 ln ! ln lim = n n n n (i) = + + + n n n n n n ... 2 1 lim (j) = = n k n k n 1 2 1 1 lim (k) = + = + n k k n n k n 1 lim (l) = = + n k n k n k n n 1 3 ) 2 2 ( 2 1 lim Solutions: (a) Using Cauchy’s criterion we have: 1 ln ) 1 1 ln( lim 1 ln ) 1 1 ln( ln lim ln ) 1 ln( lim ln lim = + + = + + = + = n n n n n n n n n n n n n . 64

Numerical Series

Embed Size (px)

Citation preview

Page 1: Numerical Series

Chapter 1 NUMERICAL SERIES

1. Sequences……………………………………………………. 1 2. Definitions. General Criteria………………………………… 17 3. Series with Nonnegative Terms……………………………. 28 4. Approximate Computation of Sums……………………….. 38 5. Improper Integrals and Series……………………………… 42 6. Infinite Products……………………………………………… 59

7. SOLVED PROBLEMS

Exercise 38. (a) 1lnlim =∞→

n

nn (b) ∞=

∞→

n

nn!lim

(c) 1!lnlim =∞→

n

nn

(d) e

nnnnn

nn

4))...(2)(1(1lim =+++∞→

(e) nn

kn k0sinlim

1

=∏=

∞→

π

(f) 0)!2()2(lim =

∞→ nn n

n (g) 0

)!2()!(lim

2

=∞→ n

nn

(h) 1ln

!lnlim =⋅∞→ nn

nn

(i) ∞=+++∞→

n nnn

nn...21lim (j) ∑

=∞→

=n

kn kn 1211lim

(k) ∞=+∏=

+

∞→

n

k

kn

nkn

1

lim

(l) ∑=

∞→

−=

+

n

kn knk

nn 1 3)22(21lim

Solutions: (a) Using Cauchy’s criterion we have:

1ln

)11ln(lim1

ln

)11ln(lnlim

ln)1ln(limlnlim =

++=

++=

+=

∞→∞→∞→∞→ nn

nn

n

nnn

nnn

n

n

.

64

Page 2: Numerical Series

(b) Analogously:

∞=+=+

=∞→∞→∞→

)1(lim!

)!1(lim!lim nn

nnnn

n

n.

(c) Applying root’s criterion, then Stolz-Cesaro’s criterion we obtain:

.1)1ln(

12ln

lim1!ln)!1ln(

)1ln()2ln(lim1

!ln)1ln(lim1

!ln)1ln(!lnlim

!ln)!1ln(lim!lnlim

=+++

+=−+

+−++

=+

+=++

=+

=

∞→∞→

∞→∞→∞→∞→

nnn

nnnn

nn

nnn

nnn

nn

nnn

n

n

(d) Again, Cauchy’s criterion implies:

( ) .4

)11(

1lim41

lim4)1()1(

)22)(12(lim

)(...)2)(1()1()22)(12)((...)3)(2(limlim

1

11

en

nn

nnnnn

nnnnnnnnnnnn

nknl

nn

n

nn

n

n

n

n

nn

n

kn

=+

=+

=++⋅++

=

=+++⋅+

⋅+++++=

+=

∞→∞→+∞→

+∞→=

∞→ ∏

Or, because:

∑=

∏= ==

+

∞→

+

∞→

n

k

nn

k nk

n

n

nk

neel 11

)1ln(1)1(ln

limlim

denoting

[ ]nkxIRfxxf kk

k ==→+= ξ,1,0:),1ln()( ,

we have: ∑∑=

−=

−=+n

kkkk

n

k

xxfnk

n 11

1

))(()1ln(1 ξ ,

This is a Riemann sum for the continuous, hence integrable function f, therefore:

65

Page 3: Numerical Series

.4,4ln12ln2

)1ln()1()1ln()'1(

)1ln()()1ln(1lim

4ln1

0

1

0

1

0

1

0

1

01

eeland

ex

xxdxxx

dxxdxxfnk

n

e

n

kn

===−=−

−++=++=

=+==+

∫∫∑=

∞→

(e) 01

sinlimsin

sinlimsinlim

1

1

1

1

=+

==∞→

=

+

=

∞→=

∞→

∏∏ n

k

kk nn

k

n

k

nn

n

kn

ππ

ππ .

(f) Let: )!2()2(

nna

n

n = ; then:

(1) 1312

)11(12

1)2(

1)12)(22()22)(22(

)2()!2(

)!22()22( 1

1

<≤+

<++

=

=⋅++++

=⋅++

=+

+

ene

nn

nnnnn

nn

nn

aa

n

n

n

n

n

n

n

for all ; it follows that is a decreasing sequence of positive numbers, hence it converges, i.e. there exists such that . But, from (1):

*IN∈n )( na0≥a

nnaa

∞→= lim

00)3(33 1 ≤⇔≤−⇔≤⇒≤∞→+ aaeeaaeaa

nnn , hence . 0=a

(g) Let )!2(

)!( 2

nnan = . Then:

)12(2

1)12)(22(

)1()!()!2(

)!22(])!1[( 2

2

21

++

=++

+=⋅

++

=+

nn

nnn

nn

nn

aa

n

n ;

but: *1243331

)12(21 IN∈⇔≤⇔+≤+⇔≤++ nnnnn

n ,

hence: )(..,,131 *1

nn

n aeina

a IN∈∀<≤+ is a decreasing sequence of

positive numbers; therefore it is convergent. Let: 0lim ≥=∞→ nn

aa . But

, and, for , we obtain 03 1 ≤−+ nn aa ∞→n 03 ≤− aa or . Consequently

0≤a0=a .

66

Page 4: Numerical Series

(h) We have , hence we can apply Cesaro-Stolz’ criterion and we obtain:

∞→nn ln

.11)11ln(

)1ln(

1lim)1ln()11ln(

)1ln(lim

)1ln(]ln)1[ln()1ln(lim

ln)1ln()1(!ln)!1ln(lim

ln!lnlim

=++⋅

+

=+++

+=

=++−+

+=

−++−+

=

∞→∞→

∞→∞→∞→

nnn

nnn

nnnn

nn

nnnnn

nnnnn

nnnn

n

(i) Applying Cauchy’s criterion then Cesaro-Stolz’ criterion we obtain:

.)2(lim)2()1

11(lim)2()12(lim

)1()2(lim

...21)1(...21lim...21lim

11

1

21

∞=+=++

+=+++

=

=++

=+++++++

=+++

∞→

+

∞→

+

∞→

+

+

∞→

+

∞→∞→

nenn

nnn

nn

nnn

n

n

n

n

n

n

n

nnnn

nnn

nn nnn

n

(j) Cesaro-Stolz’ criterion implies (since ∞→n ):

.2)1

1(lim)1(1

1lim1

11

lim

1

lim 1 =+

+=−+⋅+

++=

−++=

∞→∞→∞→

=

∞→

∑n

nnnn

nnnn

nn

knnn

n

k

n

(k) We observe that:

,))...(2)(1[(

2...212...21

2

222221

1

n

nnnnnnn

k

knn

nnnn

nnnnnnkna

+++>

>⋅⋅+⋅+>⋅⋅+⋅+=+= ++

=

+∏

hence, from Cauchy’s criterion:

;)]12(2[lim]))...(2)(1(

)22)(12)()...(2([limlim 21

21

∞=+=+++

++++≥

∞→∞→∞→n

nnnnnnnnna

nnnn

consequently: ∞=∞→ nn

alim .

(l) We remark that:

67

Page 5: Numerical Series

∑ ∑ ∑= = =

−−=+

=+

=n

k

n

k

n

kkkkn xxf

nk

nk

nknk

nns

1 1 11 ))((

1

11 ξ ,

where x

xxfRfnknkx kk

+=→===

1)(,]1,0[:,,...,1,0,ξ ; hence

is a Riemann sum for the function ; but is a continuous function and:

ns

f f

.)224(3123

222322)1(2

3)1(2

)1

11(111

1)(lim

212

31

02

123

1

0

1

0

1

0

1

0

−=+−⋅−⋅

=+−+

=

=+

−+=+−+

=+

== ∫∫∫∫∞→

xx

dxx

xdxx

xdxxxdxxfsnn

Exercise 39. Test the series for convergence using the

definition:

(a) ZIRaanann

\,)1)((

10

∈+++∑

=

(b) ∑∞

=

+

0 21

nn

n

(c) ∑∞

= ++02 1

1arctann nn

(d) ∑∞

=++ +⋅−1

1212 4209520

nnnn

n

(e) ∑∞

= −++−−

122

234

)14)(1(116816

n nnnnnn

(f) ∑∞

=⎥⎦

⎤⎢⎣

⎡+−

−+

12 1)1(2

)12(21lnn n

n .

Solutions. (a) The general term can be decomposed as:

111

)1)((1

++−

+=

+++=

ananananan ,

and the partial sum of n-th order:

aanaakakakaks

n

k

n

kn

11

111

11)1)((

100

→++

−=++

−+

=+++

= ∑∑==

,

therefore the series is convergent and it’s sum:

aanann

1)1)((

10

=+++∑

=

.

68

Page 6: Numerical Series

(b) For the partial sum of n-th order: ∑=

+=

n

kkn

ks0 2

1 , we

consider the derivative of sum of a geometric progression: [ ]

2

212

0 0

1

)1()1()2(1)'

1()'()1(

xxxxxn

xxxxxk

nnnn

k

n

k

kk

−−+−+−

=−−

==++++

= =

+∑ ∑ ,

and, for 21

=x we obtain:

4)21

21(4

21

21

21)

221(4 21 =+→⎥⎦

⎤⎢⎣⎡ −+

+−= ++ nnn

ns ,

therefore is convergent, i.e. our series converges and its sum is

4; we write:

ns

42

10

=+∑

=nn

n .

(c) Since:

IN∈−+=++−+

=++

kkkkkkk

kk,arctan)1arctan(

)1(1)1(arctan

11arctan 2 ,

the partial sum

421arctan)1arctan(

11arctan

12

ππ−→−+=

++= ∑

=

nkk

sn

kn ,

and we conclude that our series is convergent and its sum is 4π .

(d) If we mark and then the general term is: na 5= nb 4=

baa

baa

babaab

baba

abbaba

aban 455

)45)(()54)((5495 22 −

−−

=−−

=−−

=+−

=

hence the partial sum of n-th order is:

415)

54(1

15

4555

455

455

1

111

1

111

=−→−

−=

=−

−=−

−−

==

+

=++

+

=++∑ ∑

n

n

knn

nn

kkk

k

kk

k

kn as

;

therefore the series is convergent and: 4)45)(45(

201

11 =−−∑

=++

nnnnn

n

.

69

Page 7: Numerical Series

(e) The general term can be decomposed in simple

fraction: na

222

234

)12(12121)12()12)(1(116816

++

++

−+

++=

+−++−−

=n

EnD

nC

nB

nA

nnnnnnnan ,

and, after calculations, we obtain:

;0,1

11411

,13

1411,19

116816,1

===−

+−+=

−=+−−

=−=−

+−+==

DCF

EBA

therefore:

0)12(

111

11)12(

1)12(

11

11222

11

→+

+−+

−=+

+−

−+

−== ∑∑== nnkkkk

asn

k

n

kkn

consequently the series is convergent and its sum is 0.

(f) The partial sum of n-th order:

∞→+=+−

+=

+−−++−

= ∏∑==

)12ln(1)1(2

12ln1)1(2

241)1(2ln 2

12

2

12

2

nk

kk

kksn

k

n

kn

when ∞→n and the series is divergent.

Exercise 40. Check whether the necessary condition for convergence is fulfilled:

(a) ...161

111

51

+++ (b) ...167

115

53

+++

Solutions. (a) The general term of our series:

015

1→

+=

nan when , hence the necessary condition for

convergence is verified; however:

∞→n

),0(51

151∞∈→

+=

nn

n

an , hence,

the series has the same nature with harmonic series and, therefore is divergent.

(b) Here 052

1512

≠→++

=nnan , hence the series diverges.

70

Page 8: Numerical Series

Exercise 41. Test the series for convergence by means of

the integral test:

(a) ...43

32

21

333 +++ (b) ...31

321

211

1222 +

++

++

+

(c) ...4ln4

13ln3

12ln2

1222 +++

Solutions. (a) The general term is:

)()1( 3 nf

nnan =+

= , where [ ] +→∞+

= IR,1:,)1(

)( 3 fx

xxf ,

and the generalized integral:

[ ]

;41

41

21

)1(21

11

)1()1()1(11

)1()(

12

1 1

323

1 31

∞<=−=+

++

−=

=+−+=+−+

=

=+

=

∞ ∞ −−

∞∞

∫ ∫

∫∫

xx

dxxxdxx

x

dxx

xdxxf

therefore series converges. The same conclusion can be obtained

observing that ∑ n1 and ∑ na has the same nature ),0(1

1∞∈→

n

an .

(b) The general term can be written:

)(1 2 nf

nnan =+

= , where [ ] IR→∞+

= ,1:,1

)( 2 fx

xxf ,

and ∞=+=+

= ∞∞

∫∫ 12

21

1|)1ln(

21

12

21)( xdx

xxdxxf ,

hence ∑∞

= +121n n

n diverges. Besides: ),,0(111 2

2

∞∈→+

=n

n

n

an and after

comparison test, the series diverges.

(c) We have: )(ln1

2 nfnn

an == , where

[ ]xx

xff 2ln1)(,),0(,2: =∞→∞ , and:

71

Page 9: Numerical Series

;2ln

1|ln1

ln)(ln

ln 22 22 2 ∞<=−== ∞∞∞

∫∫ xxxd

xxdx

consequently converges. The same conclusion can be

obtained applying Cauchy’s condensation criterion: since

∑∞

=2nna

)(0 ∞→→ nan the series: and ∑∞

=2nna

∑ ∑∞

=

=

=

∞<==2 1

22

22

12ln

1)2(ln2

122n nn

nnnn

na ∑ (generalized harmonic

series, 12 >=α ) have the same nature.

Exercise 42. Test the series for convergence using D’Alembert’s test:

(a) ...276

94

32

+++ (b) ...531321

31211 +

⋅⋅⋅⋅

+⋅⋅

+

(c) ...642

!542!3

21

+⋅⋅

+⋅

+

Solutions. (a) We have the general term *,32 IN∈= nna nn ,

and

131

31

23

3)1(2

11 <→

+=⋅

+= +

+

nn

nn

aa n

nn

n ,

hence the series ∑∞

=1 32

nn

n is convergent.

(b) !)!12(

!−

=n

nan , and 122121 →

++

=+

nn

aa

n

n , hence

D’Alambert’s test is inconclusive.

But 121

12)1

1222()1(

1

<→+

=−++

=−+ n

nnnn

aa

nn

n and, according to

Raabe-Duhamel’s test, the series diverges.

Exercise 43. By comparing with a harmonic series or a decreasing progression, test the series for convergence:

72

Page 10: Numerical Series

(a) ...54

43

32

21 333

++++ (b) ...4ln

13ln

12ln

1+++

(c) ...531

5211 2 +⋅

+⋅

+

Solutions. (a) The general term is

11 have 1bfor , and ,1 6

16n

3

→==+

=n

bawe

nnna

n

nn ;

But is the general term of harmonic series with n b

161<=α and the series diverges; therefore the given series

diverges too.

∑∞

=1nnb

(b) Using the well known inequality ,ln xx < for all 1>x

we obtain:

2,,1ln1

≥∈∀>= nnnn

an IN ,

hence, by comparison test, the series ∑∞

=2 ln1

n n diverges.

(c) Here the general term is *1 ,

51 IN∈⋅

= − nn

a nn ; but:

151−≤ nna and the geometric series ∑ −15

1n converges

( )1,1(51

−∈=q ), hence ∑∞

=−

115

1n

nn is a convergent series.

Exercise 44. Test the series and ∑ for ∑∞

=1nna

=1

2

nna

convergence where:

(a) 0,,,))...(2)(1(

!≥∈

+++= xxaa

nxxxna n

n IR .

(b) nna n

nln)1(−= .

73

Page 11: Numerical Series

(c) IR∈⋅−⋅⋅⋅−⋅⋅⋅

= aanna n

n ,)14(...73)34(...51 .

Solutions. (a) For the both series converge. Let .

Then: 0=a 0≠a

222

2

2

211

)1()1(,

11 aa

nxn

aa

aanx

na

a

n

n

n

n →++

+=→

+++

= ++

hence, by D’Alambert' test, the both series converge when and diverge for )1,1(−∈a ),1()1,( ∞∪−−∞∈a .

Let 1+=a . Then: xnnx

nnxn

aann

n →+

=⎟⎠⎞

⎜⎝⎛ −

+++

=⎟⎟⎠

⎞⎜⎜⎝

+ 11

11

1

,

hence by Raabe-Duhamel’s test, ∑ na converges for , and

diverges for

1>x

)1,0[∈x ; if nn a

nax ⋅

+==

11,1 , hence if 1=a the series

diverges (harmonic series) and for 1−=a converges (Leibniz’ criterion). Analogously for ∑> 2,1 nax converges, and if

diverges. If

)1,0[∈x

22

)1(1,1+

==n

ax n and ∑ 2na converges (generalized

harmonic series).

(b) Let IR→∞= ),1[:,ln)( fxxxf . The function is a

decreasing one on [ ]∞,e , since ),(,0ln1)(' 2 ∞∈<−

= exifx

xxf ;

therefore ⎟⎠⎞

⎜⎝⎛

nnln is a decreasing sequence and, by Leibniz’ criterion,

∑∞

=

−1

ln)1(n

n

nn converges. We remark that: 2,,1ln

>∈> nnnn

n IN and

∑∞

=1

1n n

diverges, hence by comparison test it follows that ∑∞

=

−1

ln)1(n

n

nn

is semiconvergent (the series is not absolutely convergent). Since:

74

Page 12: Numerical Series

0ln1

2

23

2

→=nn

n

an , when ∞→n , and ∑∞

=1

2

23

1n

nan

, converges,

we conclude, by comparison test, that the series converges. ∑∞

=1

2

nna

(c) Of course the both series are convergent for . Let

. Then: 0=a

0≠a

aann

aa

n

n →++

=+

34141 , and aa

nn

aa

n

n →++

=+ 22

2

2

21

)34()14( ;

D’ Alambert’s criterion implies that the series converge for and diverges for

)1,1(−∈a),1()1,( ∞∪−−∞∈a .

If }1,1{−∈a since

11816

8161)14()34(1 2

2

2

2

21

2

<++

+=⎟⎟

⎞⎜⎜⎝

⎛−

++

=⎟⎟⎠

⎞⎜⎜⎝

⎛−

+ nnnn

nnn

aa

nn

n , Raabe-Duhamel’s

test implies that diverges. For ∑∞

=1

2

nna

121

1421

14341,1

1

<→+

=⎟⎠⎞

⎜⎝⎛ −

++

=⎟⎟⎠

⎞⎜⎜⎝

⎛−=

+ nn

nnn

aa

nan

n , hence

diverges, and for

∑∞

=1nna

1−=a , since 11 <+

n

n

aa , for all , Leibniz’

criterion implies the convergence of the series

*IN∈n

∑∞

=1nna

Exercise 45. Test the series with the general term

IR∈−

= ∑=

ain

naun

in ,

ln1

1sin

2, (n>1) for convergence.

Solution. If 00,}|{ ==∈∈ ∑ nn uuZkba and π .

75

Page 13: Numerical Series

Let ∑=−

=∈∉n

in in

Zkka2 ln

11

1,}|{ απ and naan sin= . We verify

the conditions of Abel’s test. First, by Stolz-Cesaro’s criterion we have:

0)1(

)1ln(1

limlim =−−+

=∞→∞→ nn

nnnn

α ; moreover:

,)1ln(

1...3ln

12ln

1)1ln(

ln1...

2ln1

)1ln(1...

2ln1)1(

ln1...

2ln1

11

)1ln(1...

3ln1

2ln11

1

+++<

+⇔

⇔⎟⎠⎞

⎜⎝⎛ ++<⎟⎟

⎞⎜⎜⎝

⎛+

++−⇔

⇔⎟⎠⎞

⎜⎝⎛ ++

−=<⎟⎟

⎞⎜⎜⎝

⎛+

+++=+

nnn

nn

nn

nnnn nn αα

and the last inequality is true, since, },...,3,2{)1ln(ln nkfornk ∈+< ; therefore: )( nα is a decreasing sequence, and 0→nα . (1)

Moreover:

2sin

1

2sin

2)1(sin

2sin

sin...2sinsin1 aa

anna

naaaan

kk ≤

+

=+++=∑=

(2)

hence, from (1), (2) and Abel’s test we conclude that the series converges for all ∑∑ = nnn au α IR∈a .

Exercise 46. Study the nature of series:

(a) ∑∞

=13 4cos

n

nπ (b) ( )( ) IR∈⎥

⎤⎢⎣

⎡ −∑∞

=

xn

nn

,!!2

!!121

α

(c)∑∞

=

∞∈+1

),0[,1n

n xxn

Solutions. (a) Let 4

cos πnan = . Since:

76

Page 14: Numerical Series

18 →na and , when 024 →+na ∞→n it follows that , and, from divergence criterion, the series diverges.

0→/na

(b) The general term of Wallis sequence (see exercise

1.) verifies: nw

212

1!)!12(

!)!2(22

122

ππ≤

+⋅⎥

⎤⎢⎣

⎡−

=≤⋅+

nnnw

nn

n ,

whence:

nnn bnn

nna

nc :

)12(222

!)!2(!)!12(

)12(2:

2

2

2=⎥

⎤⎢⎣

⎡++

⋅≤⎥⎦

⎤⎢⎣

⎡ −=≤⎥

⎤⎢⎣

⎡+

=

ααα

ππ (1)

But:

22

2

2

2)12()1(4lim1lim

αα

αππ⎟⎠⎞

⎜⎝⎛=⎥

⎤⎢⎣

⎡++

=∞→∞→ n

nn

n

bn

n

n (2)

and: 22

2

1)12(

2lim1

limαα

αππ⎟⎠⎞

⎜⎝⎛=

+=

∞→∞→ nn

n

cn

n

n. (3)

From (1), (2), (3) and comparison test it follows that series , and ∑ nb ∑ nc ∑ na have the same nature. Consequently our

series is convergent if and only if 2>α .

8. EXERCISES

Exercise 1. Prove that:

(a) converges and has the sum ∑∞

=

−⋅1

1

n

nan 2)1(1a−

for

and diverges if . 1|| <a 1|| >a

(b) 1!)!1(

11

=+−∑

=n nn

77

Page 15: Numerical Series

(c) 21

!)!12(1

=+∑

=n nn

(d) 1)!1(1

=−∑

=n nn

(e) ∑∞

=

=+−

1 21

!)!22(!)!12(

n nn

(f) ∑∞

=

>−−−

+=

++++++

11

11

))...(2)(1())...(2)(1(

nabfor

aba

nbbbnaaa

(g) enne

nn

nn5

!,22

! 1

3

1

2

=+= ∑∑∞

=

=

(it is known that enn=∑

=0 !1 ).

Exercise 2. Check whether the necessary condition for

convergence is fulfilled:

(a) ...43

32

21

+++

(b) ...65

43

21

+++

(c) ...76

54

32

+++

(d) ...71

51

31

+++

(e) ...276

94

32

+++

Exercise 3. Test the series for convergence by means of the

integral test:

(a) ...91

511 +++

(b) ...7

14

11 +++

(c) ...43

32

21

333 +++

(d) ...31

121

111

1222 +

++

++

+

78

Page 16: Numerical Series

(e) ...31

321

211

1222 +

++

++

+

(f) ...16

114

112

1222 +−

+−

+−

(g) ...4ln4

13ln3

12ln2

1222 +++

Exercise 4. Test the series for convergence using

d’Alambert’s test:

(a) ...276

94

32

+++

(b) ...!4

8!3

4!2

21 ++++

(c) ...72

352

332

31 3

3

2

2

+⋅

+⋅

+⋅

+

(d) ...8642

!7642

!542!3

21

+⋅⋅⋅

+⋅⋅

+⋅

+

(e) ...34

1333

932

53

1432+

⋅+

⋅+

⋅+

Exercise 5. Using criteria of comparison test the series for

convergence:

(a) ...3

12

11 +++

(b) ...531

5211 2 +⋅

+⋅

+

(c) ...4ln

13ln

12ln

1++

(d) ...1

11

11

1642 +

++

++

+ aaa

(e) ...321

121

113

+++

++

+

(f) ...33

322

25 33 2

7

5 33 2

7

++

++

79

Page 17: Numerical Series

Exercise 6. Find the sum of the series (if it converges):

(a) ...43

132

121

1+

⋅+

⋅+

(b) ...1071

741

411

+⋅

+⋅

+⋅

(c) ...73

152

131

1+

⋅+

⋅+

(d) ...!!10!!7

!!8!!5

!!6!!3

!!4!!1

++++

(e) ...)45)(45(

20)45)(45(

20)45)(45(

203344

3

2233

2

22 +−−

+−−

+−−

(f) ...9342

69342

69342

633

3

22

2

+⋅+⋅

+⋅+⋅

+⋅+⋅

arctgarctgarctg

Exercise 7. Test the series with the general term for na

convergence:

(a) 2

2)!( 2

nnna = ; (b) 0, ≥= a

naa

n

n ; (c) 2

)1

( nn

nna+

= ;

(d) nn nna

2)!()!12(

⋅−

= ; (e) ∏= −

−=

n

kn k

ka1 14

34 ; (f) nn

anln

113 15 ⋅

= ;

(g) IR,,ln1

∈= ann

a an αα ; (h) n

na nn

)1ln()1(2 +

−= ;

(i) !!2

!)!12()1(n

na nn

−−= ; (j) IR,sin

ln1

∈= xnxn

an ;

(k) 1

cos2 +

=n

nxan ; (l) ; 0,ln >= aaa nn

(m) , nbn aa = 0,1...

211 >+++= a

nbn ;

(n) ; (o) 0,! >⋅= anaa nn 0,)

1( 2

2

>+

= an

naa nnn ;

(p) ;0,)1

(2

>+

= an

naa nnn (r) ;0,,

!))...(1(

>⋅

++= ba

nnnaaaa bn

80

Page 18: Numerical Series

(s) IR,ln

sincos∈

⋅= x

xnxnx

an ; (t) nnna

310

= ;

(u) nn

n naa 2

1)1(−= ; (v) IR;,,)!)!2(

!)!12(( ∈⋅−

= bann

na ban

(x) IR,,1

∈++

= bann

na b

a

n

Exercise 8. Evaluate the error if we replace the sum of series

with , where , .432 ,, sss ∑=

=n

kcn as

1

*IΝ∈n

(a) ∑∞

=1 !1

n n ; (b) ∑

=

−−1

1 1)1(n

nn

n; (c) ∑

=

−1 !

1)1(n

n

n;

(d) ∑∞

=−

1222n

n

n ; (e) ∑∞

= −1 !)!12(1

n n; ∑

=1 !)!2(1

n n.

Exercise 9. Find a minimal IΝ∈n such the error in the approximation nss ≈ is less than , being the sum, respectively the n

310−nss,

th partial sum of series given at the Exercise 8. Exercise 10. Study the semi convergence of series:

(a) IR,cos)1(13

2 ∈−∑∞

=

xn

xn

n ; (b) ∈−∑∞

=

xn

xn

n ,cos)1(131

IR

(c) nn

nn n2

)1(1

2

2

⋅−∑∞

=

+

; (d) ∑∞

= ++

−11

)1413()1(

n

nn

nn ; (e) ∑

=

−−

15

1)1(n

n

n

(f) ∑∞

=

∈−13

IR,sin)1(n

n xnx ; (g) ∑

=

+−

0 313)1(

nn

n n

(h) ∑∞

=

−⋅⋅⋅⋅+

−1

1

)13(...852!)!12()1(

n

n

nn ; (i) ]

2,0[,

)1ln(cos)1(

1

1 π∈

+−∑

=

xn

nxn

n

.

Exercise 11. Test the following series for convergence: (a) nn −∑ 1)(ln

(b) ∑ −1)lnlnln( nnn

81

Page 19: Numerical Series

(c) ∑ n2sin π

(d) ∑ )4

tan(nπ

(e) ∑ +−−++ ]11[1 22 nnnnn

(f) ))((ln 45∑ −nn . Exercise 12*. Suppose ∑ na is a convergent series of

positive terms. Prove that ∑ +⋅ 1nn aa converges.

Exercise 13*. ∑∞

=

−+ +−0

211 )1()1(n

n n is a convergent series; form

the square. Does this latter series converge? Do the same for the

series . You should get: ∑∞

=

−+ +−0

11 )1()1(n

n n

∑∞

=

−+ ++++−⋅1

11 ).1...211()1()1(2

n

n

nn

Why does this series converge or not converge?

Exercise 14*. For what values of ∈x IR does the series

∑∞

=

⋅+++1

sin)1...211(1

nnx

nn

converge?

Exercise 15*. If )1,1(−∈r and ∈p IN*, show that the series:

n

pnrpnnnn ⋅−−−∑

+=

))...(2)(1(1

converges.

Exercise 16*. Show that the series with the general term:

)2(

)2(ln1 2

++

=nn

nn

an

converges.

82

Page 20: Numerical Series

Hint. Show that:

∑+= +

<++++

+<

n

mkk mnm

nmm

a1

2ln1

1)2)(1()1)(2(ln

11

Exercise 17*. ∑∞

=

−− +−0

211 )1()1(n

n n is convergent. Show that:

...4

17

15

12

13

11 +−++−+

diverges to infinity.

Exercise 18. Show that the product is divergent

and equal to

∏∞

=

+1

)1(n

n

∞+ .

Exercise 19. Show that ∏∞

=

=−

+2

.1))1(1(n

n

n

Exercise 20. Show that ∏∞

=

+∞=+1

.)11(n n

Exercise 21. .21

)1()2(

12 =

++∏

=n nnn

Exercise 22. ∫ =+

2

0 41

π

πxtg

dxn .

Exercise 23. Show that ∫1

0

]1[ dxx

and ∫ +

1

0 ][dx

xxdx are divergent

generalized integrals.

Exercise 24. Show that converges, then estimate

its value.

∫1

0

][ln dxx

83

Page 21: Numerical Series

Exercise 25. ∫−

=+−1

1 11 πdx

xx

Exercise 26. Show that ∫∞

+`02 )1(

dxxxxarctn converges.

Exercise 27. ∫∞

=0

22 .

34)1,min( dx

xx

Exercise 28. .41

][][3][2132∫

=++ xxx

dx

Exercise 29. ∫∞

+=

++02222 )(2))(( baabbxax

dx π , for all ,

.

IR∈ba,

ba ≠

Exercise 30. ∫ =+

π

π2

044 .22

cossin xdx

Exercise 31. .4

210

4

2

∫∞

=+

πx

dxx

Exercise 32. Show that:

(a) ΖIxx

xxn

n -IR∈=∏∞

=1

,sin2

cos

(b) )11(1∏∞

=

+n nα and ∏

=

−1

)11(n nα IR)∈α( are convergent iff 1. >α

(c) ∏∞

=

=+++

1

4)4(

)3)(1(n nn

nn

(d) ∏∞

=

=−1

2 21)11(

n n

(e) ∏∞

=

=+0

2 2)211(

nn

84

Page 22: Numerical Series

(f) ∏∞

=

=+−

13

3

32

11

n nn

(g)* ∏∞

=

=+1

.02n n

n (Hint ∏=

∈<+

n

k

nnk

k1

,2

12

IN*).

85