43
Silicon V2.1 Cz OD KŘEMENE KE KŘEMÍKOVÉ DESCE Výroba monokrystalů křemíku a křemíkových desek Verze 2.1 Cz

OD KŘEMENE KE KŘEMÍKOVÉ DESCE

  • Upload
    minty

  • View
    50

  • Download
    0

Embed Size (px)

DESCRIPTION

OD KŘEMENE KE KŘEMÍKOVÉ DESCE. Výroba monokrystalů křemíku a křemíkových desek Verze 2.1 Cz. Tato prezentace byla vytvořena pro potřeby společnosti ON Semiconductor, s cílem přiblížit principy výroby monokrystalů křemíku a křemíkových desek. - PowerPoint PPT Presentation

Citation preview

Page 1: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

Silicon V2.1 Cz

OD KŘEMENE KE KŘEMÍKOVÉ DESCEOD KŘEMENE KE

KŘEMÍKOVÉ DESCE

Výroba monokrystalů křemíku a křemíkových desek

Verze 2.1 Cz

Page 2: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

2Silicon V2.1 Cz

VPS

VPS s.r.o., P.O. Box B-11, Partizanska 31, 921 01 Piestany 1, Slovensko

tel., fax.: +421 33 7730151, email: [email protected]

Tato prezentace byla vytvořena pro potřeby společnosti ON Semiconductor, s cílem přiblížit principy výroby monokrystalů křemíku a křemíkových desek.

Podrobnosti z výrobního procesu, obrázky a videoklipy pochází ze společnosti TEROSIL, a.s., se sídlem v Rožnově pod Radhoštěm, Česká republika. Děkujeme za jejich přátelskou výpomoc při tvorbě této prezentace.

V rámci úsilí o neustálé zlepšování našich výrobků Vám budeme vděčni za jakékoliv připomínky a návrhy, jež by nám pomohly při výrobě dalších verzí podobných prezentací.

Piešťany, březen 2002

Page 3: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

3Silicon V2.1 Cz

Pokud je na snímku video, je v hnědém rámečku, jako vpravo dole na tomto snímku. Umístěním kurzoru myši na plochu videa se tvar kurzoru změní na . Stlačení levého tlačítka myši pak spustí video.Kliknutím levého tlačítka na běžící video se video zastaví.

Umístěním kurzoru myši na tlačítko se tvar kurzoru změní na . Stlačení levého tlačítka myši pak aktivuje jeho funkci .

Ovládání prezentace

přechod na snímek Obsah

návrat na poslední zobrazený snímek

konec prezentace

Ovládací tlačítka na snímku

Ovládání pomocí myšiKliknutí levého tlačítka myši, pokud kurzor myši není na některém ovládacím tlačítku anebo na videu, posune prezentaci o jeden krok vpřed.

Ovládání z klávesniceStejnou funkci jako levé tlačítko myši má klávesa N (nezávisle na poloze kurzoru). Opačnou funkci, tedy návrat o jeden krok zpět, má klávesa P. Prezentace se ukončí klávesou Esc.

Video

následující snímek

Pokud si nevšimnete průběh některé animace, stiskněte klávesu P (zpět) a

znovu spusťte animaci klávesou N (vpřed).

Page 4: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

Silicon V2.1 Cz 4

Příloha

Čisté prostory

Některé fyzikální jednotky

Obsah

Úvod

Co je uvnitř integrovaného obvodu?

Křemík

Křemík - struktura

Křemík - uvnitř monokrystalu

Krystalografické poruchy

Dopování

Křemíková deska

Výroba křemíku

Polykrystalický křemík

Kliknutím na tento rámeček přejdete na snímek s pokyny k

ovládání prezentace

Výroba křemíkových desek

Broušení hran desky

Oboustranné lapování

Leptání

Zařízení pro leptání

Úprava zadní strany

Zařízení CVD

Leštění

Zařízení pro leštění

Chemické čištění

Kontrola

Finální mechanické čištění

Finální kontrola

Epitaxe

Epitaxní reaktor

Charakteristika epitaxní vrstvy

Czochralského metoda růstu monokrystalu

Tažička Czochralského

Rozhraní krystal - tavenina

Kyslík a uhlík v monokrystalu křemíku

Rozdělovací koeficient

Ingot monokrystalu křemíku

Broušení a měření monokrystalu

Obroušený krystal s fasetou

Page 5: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

5Silicon V2.1 Cz

Úvod

Společnost TEROSIL, a.s., se sídlem v Rožnově pod Radhoštěm, Česká republika, je výrobcem monokrystalů křemíku, křemíkových desek a

epitaxních vrstev pro široké použití v elektronice a mikroelektronice.

Majoritním vlastníkem firmy TEROSIL, a.s. je společnost ON Semiconductor, světový

výrobce vysoce výkonných integrovaných obvodů pro komunikační účely, řízení napájení a jiných standardních polovodičových prvků.

Page 6: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

6Silicon V2.1 Cz

Co je uvnitř integrovaného obvodu?

Když odstraníme černou hmotu z pouzdra, vidíme, že přívody směřují k malému kousku křemíku, ve kterém probíhá celá činnost integrovaného obvodu.

Tento malý kousek hmoty nazýváme čip (z anglického slova chip - úlomek). Po zvětšení vidíme jeho strukturu.

Základním materiálem čipu je polovodič - křemík.

Page 7: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

7Silicon V2.1 Cz

Křemík

Křemík se nachází na Zemi ve velkém množství. Země je tvořena přibližně 40% železa, 28% kyslíku a 14,5% křemíku. V zemské kůře je křemík zastoupen dokonce jako druhý nejčastější prvek - 28%.

Křemík se v přírodě nevyskytuje v elementárním stavu, ale ve sloučeninách. Hlavními z nich jsou křemičitany a křemen. Křemenný písek (SiO2) je základní zdroj křemíku pro polovodičový průmysl.

Bod tání 1 413°C

Bod varu 2 355°C

Hustota 2 332 kg/m3

Tvrdost 7 dle Mohsovy stupnice

Šířka zakázaného Eg = 1,12 eVpásu

Atomová hustota 5 . 1022 atomů/cm3

Složení Zeměkoule

Si

Fe O2

Ostatní

Page 8: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

8Silicon V2.1 Cz

Křemík - struktura

a = 0,543 nm

Křemík je chemický prvek ze čtvrté skupiny periodické soustavy prvků.Krystalografická struktura křemíku je diamantového typu. Jejím základem je plošně centrovaná kubická mřížka - krychle s atomy ve vrcholech a ve středech stěn.

Když se posune kopie takovéto struktury o 1/4 tělesové úhlopříčky, původní i posunuté atomy tvoří již zmíněnou mřížku diamantového typu.

Každý atom křemíku má čtyři sousedy se kterými tvoří vazbu. Nutno dodat, že vhodné vlastnosti pro polovodičové součástky má křemík pouze tehdy, když jsou atomy v celém objemu čipu uspořádány přesně podle této krystalové mřížky. Takovému uspořádání říkáme monokrystal. Na následujícím obrázku je znázorněn výhled fiktivního pozorovatele uvnitř monokrystalu křemíku.

28,0885

14Si 2,33 g/cm3

Křemík

Page 9: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

9Silicon V2.1 Cz

Křemík - uvnitř krystalu

Page 10: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

10Silicon V2.1 Cz

Krystalografické poruchy

Jakákoliv nedokonalost ve struktuře krystalu je považována za poruchu - defekt. Porucha může ovlivnit elektrické a mechanické vlastnosti krystalu. Ke znázornění různých typů těchto poruch použijeme zjednodušenou strukturu krystalu (ne křemíku).

Atom chybějící v pravidelné struktuře způsobuje prázdné místo - vakanci.

Vakance

Intersticiál

Hranová dislokace

Šroubová dislokace

Atom, který přebývá v pravidelné struktuře krystalu, se nazývá intersticiál.Hranová dislokace vznikne, pokud je do pravidelné struktury krystalu vložena celá polorovina atomů navíc.Šroubovou dislokaci lze zjednodušeně popsat tak, jako kdybychom vrstvu atomů částečně rozstřihli a posunuli vzájemně na opačnou stranu.

Krystalografických poruch je celá řada. Defekty lze zviditelnit pomocí selektivního leptání povrchu křemíku. Krystalografické poruchy se pak objeví podobně jako na tomto mikrosnímku.

Page 11: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

11Silicon V2.1 Cz

III.A V.AIV.A

Dopování Příměsí některých chemických prvků - dopantů - lze výrazně ovlivnit elektrickou vodivost křemíku. Používá se zejména bór, fosfor, arzén a antimon.

Z fyzikálního hlediska, příměs bóru vyvolá v křemíku jiný mechanismus přenosu elektrického proudu, než příměs fosforu a arzénu. Křemík dopovaný bórem označujeme jako křemík s typem vodivosti P. Křemík dopovaný fosforem, arzénem nebo antimonem je křemík s typem vodivosti N.

Pro dopování křemíku stačí nepatrné množství dopantu. Jeho koncentrace se vyjadřuje v počtu atomů dopantu na jednotkové množství křemíku (obvykle cm3).

Rozsah koncentrací dopantů používaných v polovodičovém průmyslu je od 1014 do 1020 atomů dopantu/cm3. Samotná krystalová mřížka křemíku obsahuje 5.1022 atomů/cm3.

121.75

51Sb Antimon

74,9216

33As Arzén

30.97376

15P

Fosfor

10,81

5B

Bor

28.0855

14Si Křemík

Typ

vod

ivos

ti P

(Poz

itivn

í)

Typ

vod

ivos

ti N

(Neg

ativ

ní)

Page 12: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

12Silicon V2.1 Cz

Křemíková deska

Čip integrovaného obvodu je velmi malý, má plochu jen několik čtverečních milimetrů. Vyrábět každý čip samostatně by bylo komplikované, ne-li nemožné.

Hlavní faseta

Pomocná faseta

<100><111>

Proto se vyrábí mnoho čipů najednou na jedné křemíkové desce, a nakonec se deska rozřeže na jednotlivé čipy.

Křemíková deska je kruhového tvaru. Používají se průměry 100, 125, 150 mm i více. Deska průměru 100 mm má tloušťku asi půl milimetru. Materiál desky bývá dopován, a je tedy typu P nebo N.

Z hlediska vlastností křemíkové desky je důležitá orientace krystalografické struktury vzhledem k jejímu povrchu. V praxi jsou významné dvě orientace, které se označují <111> a <100>.

Typ vodivosti (P nebo N) a krystalografická orientace křemíkové desky jsou zakódovány ve vzájemné poloze hlavní a pomocné fasety. Funkční strana křemíkové desky je leštěná.

Desky se nařežou z ingotu monokrystalu křemíku. Monokrystalický ingot se vyrábí z roztaveného křemíku ve speciálních zařízeních.

P <100>

Na následujících stránkách Vám poskytneme detailní popis celého procesu výroby křemíkových desek.

Page 13: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

13Silicon V2.1 Cz

Prvním krokem je přeměna křemenného písku na křemík, a to chemickou reakcí křemene s uhlíkem. Takto vzniká hutní křemík.

Výroba křemíku

SiO2 + 2C Si + 2CO

Si + 3HCl SiHCl3 + H2

SiHCl3 + H2 Si + 3HCl

Hutní křemík

Křemík pro elektroniku

Trichlorsilan

Čištění trichlorsilanu

Křemenný písekKřemenný písek

Hutní křemík není dostatečně čistý pro polovodičovou technologii. Proto je převeden na trichlorsilan (SiHCl3), který po čištění destilací a následné reakci s vodíkem (H2) vytvoří vysoce čistý křemík pro elektroniku.

Tento křemík je sice velmi čistý, není ale monokrystalický. Označujeme jej jako polykrystalický křemík nebo polykrystal.Polykrystalický křemík pro elektroniku (viz následující obrázek) je základním materiálem pro výrobu monokrystalů křemíků.

Page 14: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

Silicon V2.1 Cz 14

Polykrystalický křemík

Page 15: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

Silicon V2.1 Cz 15

Příloha

Čisté prostory

Některé fyzikální jednotky

Souhrn kapitoly č.1

Úvod

Co je uvnitř integrovaného obvodu?

Křemík

Křemík - struktura

Křemík - uvnitř monokrystalu

Krystalografické poruchy

Dopování

Křemíková deska

Výroba křemíku

Polykrystalický křemík

Výroba křemíkových desek

Broušení hran desky

Oboustranné lapování

Leptání

Zařízení pro leptání

Úprava zadní strany

Zařízení CVD

Leštění

Zařízení pro leštění

Chemické čištění

Kontrola

Finální mechanické čištění

Finální kontrola

Epitaxe

Epitaxní reaktor

Charakteristika epitaxní vrstvy

Czochralského metoda růstu monokrystalu

Tažička Czochralského

Rozhraní krystal - tavenina

Kyslík a uhlík v monokrystalu křemíku

Rozdělovací koeficient

Ingot monokrystalu křemíku

Broušení a měření monokrystalu

Obroušený krystal s fasetou

Page 16: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

16Silicon V2.1 Cz

Držák zárodku

Zárodek

Czochralského metoda růstu monokrystalu

Směr otáčeníkelímku

Směr otáčení zárodku

Kelímek z křemenného skla

Grafitový kelímek(susceptor)

Grafitovévyhřívací těleso

Hřídel

Tavenina

Krček

Hlava

TěloŠpička

Zarovnání

Proces, ve kterém je monokrystal vyráběn z taveniny, popsal jako první Czochralski v roce 1918. Od té doby byla tato metoda značně vylepšena a je stále nejpoužívanějším způsobem výroby vysoce kvalitních monokrystalů křemíku.

Cílem metody je přeměnit výchozí materiál v monokrystal křemíku. Do kelímku z křemenného skla je vložen polykrystal (viz foto) a dopant. Zárodek monokrystalu umístíme do zařízení na výrobu monokrystalu - do tažičky.

Rostoucí krystal bude kopírovat krystalografickou orientaci zárodku. Proto musí být zárodek vybrán podle požadované orientace finální křemíkové desky.

Vsádka s polykrystalem se roztaví v kelímku z křemenného skla. Do vzniklé taveniny se ponoří monokrystalický zárodek, který se otáčí a současně vytahuje z taveniny. Na jeho konci roste monokrystal.

V této počáteční fázi je rychlost tažení větší, aby se udržel malý průměr rostoucího krystalu, tzv. krček. Smyslem tvorby krčku je odstranění dislokací z krystalu.

Poté je rychlost tažení snížena, což vede ke zvětšování průměru monokrystalu. V této druhé fázi růstu se vytvoří tzv. hlava.

Po dosažení požadovaného průměru krystalu provedeme tzv. zarovnání. Monokrystal postupně roste a je vytahován z taveniny. Rozhodující parametry tohoto procesu, jež musí být kontrolovány, jsou: teplota, rychlost tažení, rychlosti otáčení, tlak argonu a jeho průtok.

Šipky na obrázku naznačují, jak se monokrystal i kelímek otáčejí. Kelímek se navíc zvedá, aby byla klesající hladina taveniny stále ve stejné výšce.

V závěrečné fázi je rychlost tažení zvýšena, aby došlo ke zmenšení průměru krystalu. Úzký konec snižuje vliv teplotního šoku na zbytek těla krystalu, ke kterému dojde při vytažení krystalu z taveniny.

Na přiloženém videozáznamu můžete vidět jednotlivé fáze procesu růstu monokrystalu křemíku.

Page 17: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

17Silicon V2.1 Cz

Tažička Czochralského

Kelímek z křemenného skla

Grafitový kelímek

Grafitové vyhřívací těleso

Tepelný štít

Přívody elektrického proudu

Hřídel

Otáčení kelímku

Směr otáčení zárodku

Lanko

Držák zárodku

Kelímek z křemenného skla je ta část, která obsahuje taveninu křemíku. Materiál kelímku musí být vybrán tak, aby reagoval s taveninou jen velmi pomalu. Proto je jediným vhodným materiálem, jenž může být použit, křemenné sklo.

Přívod argonu

Optickýpyrometr

Kamera(kontrola průměru)

Oddělovací ventil

Průzor

Vakuové odsávání

Vodou chlazený plášť

Kelímek z křemenného skla je držen grafitovým kelímkem. Oba kelímky jsou umístěny na grafitovém podstavci, který umožňuje jejich otáčení a zdvih.

Kolem grafitového kelímku se nachází grafitové vyhřívací těleso (topidlo).Další část zařízení je tepelný štít, který snižuje tepelné ztráty.Zvedací mechanismus, jenž drží zárodek a rostoucí monokrystal, umožňuje kontrolovat rychlost tažení a otáčení.

Celý systém je umístěn ve vakuové komoře s pláštěm, který je chlazen vodou. Proces růstu krystalu je kontrolován počítačem, a také sledován pyrometrem a kamerou.

Oddělovací ventil umožňuje přístup do horní komory bez zavzdušnění komory dolní.Schematickou kresbu tažičky Czochralského nyní můžete srovnat s obrázkem skutečného zařízení.

Page 18: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

18Silicon V2.1 Cz

Rozhraní krystal - taveninaZákladem celého procesu je přeměna taveniny v pevnou látku. Aby krystal rostl, atomy taveniny se musí uspořádat do krystalové mřížky pevného skupenství. Proto je velmi důležitá kontrola průběhu procesu na rozhraní mezi taveninou a krystalem.

Pro

uděn

í tep

la

Přísun tepla Úbytek tepla

Proudění Proudění

Konvexní rozhraní Konkávní rozhraní

Rozhodující je kontrola teploty na rozhraní mezi krystalem a taveninou, zejména kontrola toku tepla.

Teplota oblasti mezi taveninou a krystalem musí být udržována na bodu tuhnutí. Toto je nejstudenější část taveniny (v opačném případě by k tuhnutí docházelo i v jiných oblastech). Přísuny a úbytky tepla musí být sledovány a regulovány tak, aby byl zajištěn správný růst krystalu.

Ke krystalizaci dochází na rozhraní mezi krystalem a taveninou. Tvar rozhraní přímo ovlivňuje dokonalost krystalizace a radiální rozložení příměsí v krystalu. Konkávní tvar pomáhá odstranit dislokace a je udržován během celého růstu těla krystalu.

Proudění taveniny v kelímku má velký vliv na tvar rozhraní a na kolísání množství příměsí během růstu krystalu. Samovolné proudění vzniká díky teplotním rozdílům v tavenině - obrázek vlevo dole.

Proudění taveniny je také ovlivněno otáčením krystalu, otáčením kelímku, i vytahováním krystalu. Správná kombinace otáčení krystalu a kelímku je používána pro dosažení požadovaného proudění - obrázek vpravo dole.

Směr otáčení krystalu

Směr otáčení kelímkuBez otáčení

Rozhraní krystal - tavenina Tavenina

Krystal

průřez(černě)

Page 19: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

19Silicon V2.1 Cz

Kyslík a uhlík v monokrystalu křemíkuKyslík je nejběžnější příměsí v monokrystalu. Jeho hlavním zdrojem je materiál kelímku - křemenné sklo (SiO2). Povrch kelímku reaguje s taveninou a vytváří monooxid křemíku (SiO). Většina monooxidu se odpaří povrchem taveniny, ale malé množství v tavenině zůstane.

Kelímek z křemenného skla

Grafitové vyhřívací těleso Grafitový kelímek

Uhlík se do taveniny dostane jako nečistota z polykrystalu, a také reakcí mezi grafitovým vyhřívacím tělesem a monooxidem křemíku odpařujícím se z taveniny. Koncentrace uhlíku v krystalu je mnohem menší než koncentrace kyslíku.

V krystalu se nalézají i stopy dalších nečistot. Jejich koncentrace je ale nižší než koncentrace uhlíku a hromadí se hlavně ve zbytku taveniny, který zůstane v kelímku.

CO, CO2 CO, CO2

SiO SiO

SiO SiOSiO

SiO + 2C SiC + CO

Page 20: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

20Silicon V2.1 Cz

Koncentrace dopantu/Odporvs. délka ingotu (příklad)

6

8

10

0 200 400 600 800

L [mm]

6

7

8koncentrace

Ko

nce

ntr

ace

[1

019cm

-3]

C(p) = C0(1-p)k-1

p - normalizovaná délka (p = 1 for Lmax)k - segregační koeficient

Od

po

r [m

cm

]odpor

CLIQUID = 1,0 x 1019 cm-3

CSOLID = 3,5 x 1018 cm-3

Rozdělovací koeficient: k =CSOLID

CLIQUID

Důležitou operací v procesu výroby monokrystalu je přidání přesného množství dopantu do kelímku se vsádkou polykrystalu.

Rozdělovací koeficient

Při růstu krystalu jsou ve vzájemném kontaktu pevný monokrystal a tekutá tavenina. Na rozhraní mezi nimi dochází k přerozdělení dopantu. Míru přerozdělení dopantu udává rozdělovací koeficient. Je to poměr koncentrací dopantu v monokrystalu a tavenině.

Například fosfor má rozdělovací koeficient 0,35. To znamená, že v blízkosti rozhraní je v krystalu koncentrace dopantu (fosforu) 0,35 krát koncentrace fosforu v tavenině. Abychom docílili požadovanou úroveň dopantu v krystalu, musí být koncentrace dopantu v tavenině přiměřeně větší.

Většina prvků má rozdělovací koeficient menší než 1. Díky tomu se zabuduje do krystalu jen část dopantu. Zbytek zůstává v tavenině, kde se během celého procesu hromadí. Jelikož koncentrace dopantu v tavenině narůstá, zvětšuje se i koncentrace dopantu v krystalu.

Koncentrace dopantu v krystalu bude nejnižší na počátečním horním konci a nejvyšší na spodním konci krystalu. Na grafu vlevo dole vidíte příklad rozložení koncentrací dopantu v celém krystalu. Těžké kovy mají velmi nízké rozdělovací koeficienty, což vede k pozdějšímu dalšímu čištění materiálu.

kovy

do

pa

nty

Prvek Rozdělovací koeficient

Fe 0,000008Au 0,000025Ni 0,00003Cu 0,0004N 0,0007Sb 0,023C 0,07As 0,3P 0,35B 0,8O 1,25

Page 21: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

Silicon V2.1 Cz 21

Ingot

Page 22: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

Silicon V2.1 Cz 22

Příloha

Čisté prostory

Některé fyzikální jednotky

Souhrn kapitoly č.2

Úvod

Co je uvnitř integrovaného obvodu?

Křemík

Křemík - struktura

Křemík - uvnitř monokrystalu

Krystalografické poruchy

Dopování

Křemíková deska

Výroba křemíku

Polykrystalický křemík

Výroba křemíkových desek

Broušení hran desky

Oboustranné lapování

Leptání

Zařízení pro leptání

Úprava zadní strany

Zařízení CVD

Leštění

Zařízení pro leštění

Chemické čištění

Kontrola

Finální mechanické čištění

Finální kontrola

Epitaxe

Epitaxní reaktor

Charakteristika epitaxní vrstvy

Czochralského metoda růstu monokrystalu

Tažička Czochralského

Rozhraní krystal - tavenina

Kyslík a uhlík v monokrystalu křemíku

Rozdělovací koeficient

Ingot monokrystalu křemíku

Broušení a měření monokrystalu

Obroušený krystal s fasetou

Page 23: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

23Silicon V2.1 Cz

Broušení a měření monokrystaluMonokrystal se rozřeže na několik částí. U koncové části se ověří, zda neobsahuje dislokace. Konce krystalu se odstraní.

Rentgenovézáření

Čidlo

Při členění krystalu se odřeže několik tenkých desek na měření. Obvykle se měří měrný odpor, koncentrace kyslíku a uhlíku. Výběr několika desek umožňuje zjistit průběhy měřených parametrů.

Část krystalu se vloží do zařízení na broušení, kde se odbrousí povrch krystalu až do požadovaného průměru válce.Krystalografická orientace osy válce je dána orientací zárodku. Na povrchu krystalu se vybrousí rovina - faseta, a tím se označí radiální krystalografická orientace krystalu. Správná pozice fasety se přesně určí pomocí rentgenové difrakce.

Na další stránce naleznete fotografii válce monokrystalu křemíku s fasetou.

Page 24: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

Silicon V2.1 Cz 24

Ořezaný Ingot

Page 25: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

Silicon V2.1 Cz 25

Příloha

Čisté prostory

Některé fyzikální jednotky

Souhrn kapitoly č.3

Úvod

Co je uvnitř integrovaného obvodu?

Křemík

Křemík - struktura

Křemík - uvnitř monokrystalu

Krystalografické poruchy

Dopování

Křemíková deska

Výroba křemíku

Polykrystalický křemík

Výroba křemíkových desek

Broušení hran desky

Oboustranné lapování

Leptání

Zařízení pro leptání

Úprava zadní strany

Zařízení CVD

Leštění

Zařízení pro leštění

Chemické čištění

Kontrola

Finální mechanické čištění

Finální kontrola

Epitaxe

Epitaxní reaktor

Charakteristika epitaxní vrstvy

Czochralského metoda růstu monokrystalu

Tažička Czochralského

Rozhraní krystal - tavenina

Kyslík a uhlík v monokrystalu křemíku

Rozdělovací koeficient

Ingot monokrystalu křemíku

Broušení a měření monokrystalu

Obroušený krystal s fasetou

Page 26: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

26Silicon V2.1 Cz

Výroba křemíkových desekVýroba desek z monokrystalu křemíku začíná operací řezání. Ke krystalu se přilepí grafitová podložka. Lepidlo drží desku i poté, co ji pila odřeže z monokrystalu.

VIDEO 352 x 288

Nerezový kotouč

Diamantový bort s niklovou matricí

Křemík

Narušení materiálu

Voda

Pila je vyrobena z tenkého nerezového kotouče s otvorem uprostřed. Vnitřní ostří pily pokrývá diamantový bort s niklovou matricí. Toto ostří se používá k řezání monokrystalu křemíku.

Při řezání desek je důležité docílit rovný řez v určitém úhlu ke krystalografické orientaci. Abychom dosáhli co největší výtěžnosti, je nutné nemrhat příliš materiálem a minimálně narušovat povrch desek. Kvůli tomu je ostří pily chlazeno a omýváno vodou s detergentem.

Narušení povrchu desek je zapříčiněno tím, že řezání je určitou formou broušení. K poškození dochází kdekoliv, kde je pila v kontaktu s krystalem. Narušený materiál musí být odstraněn několika následujícími operacemi. Na přiloženém videu uvidíte krátké záběry z procesu řezání.

Page 27: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

27Silicon V2.1 Cz

Broušení hran deskyPo řezání mají desky ostré hrany. Tyto hrany nyní zaoblíme do tvaru projektilu, což zvětší jejich pevnost a odolnost vůči možné lámavosti v dalším procesu výroby.

Malá rychlost

Velká rychlost

Deska se umístí na vakuový držák, kde se pomalu otáčí, zatímco brusný kotouč rotující větší rychlostí je tlačen proti její hraně.

Brusný kotouč má drážku ve tvaru špičky projektilu, který požadujeme i pro tvar hrany desky. V drážce se nachází diamantové částečky.

Page 28: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

28Silicon V2.1 Cz

Oboustranné lapování

Dalším krokem ve výrobě křemíkových desek je operace lapování. Jejím cílem je udělat povrch desky hladký, rovný a rovnoběžný.

Desky se umístí do unašeče, kde jsou hnány mezi dvěma litinovými lapovacími kotouči. Unašeč je tenčí než desky a umožňuje, aby obě strany desek byly lapovány současně.

Brusná suspenze (roztok Al2O3 s vodou a detergentem) se nanese na povrch desek. Desky se mezi lapovacími kotouči pohybují, a tím se odstraňuje část narušeného křemíku. Povrch je poté více stejnoměrný a desky jsou velmi rovné.

Křemíkové desky v unašečích a níže popisovaný lapovací kotouč uvidíte na videu s ukázkou oboustranného planetárního lapovacího zařízení. Pro lepší demonstraci byl nadzvednut horní lapovací kotouč, abychom mohli vidět pohyb desek. Na konci videa je ukázka celého zařízení během lapovacího procesu.

VIDEO 352 x 288

UnašečLapovací kotouč

Lapovací kotouč

Křemíková deska

Ozubený věnec

Brusná suspenze

Page 29: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

29Silicon V2.1 Cz

Relativní rychlost leptání vs. čas

Čas leptání

Ryc

hlo

st le

ptá

Kyselina

Louh

Leptání

Lapování sice umožní odstranit větší část narušeného povrchu desky, zanechá ale za sebou tenkou, stejnoměrně porušenou vrstvu. Proto musí být použity další metody, které odstraní poškození z lapování bez toho, aby způsobily jakékoliv další. K tomuto účelu se obvykle používá chemické leptání.

Jedna z metod leptání desek je použití alkalického hydroxidu jako je hydroxid draselný (KOH). Desky se ponoří do roztoku KOH s vodou asi na 2 minuty. Teplota roztoku je obvykle zvýšena na cca 100°C. Poté se desky ponoří do lázně s deionizovanou vodou, aby byly zastaveny další reakce.

Další způsob leptání křemíkových desek je kyselinové leptání. Běžně se používá roztok HNO3 a HF. Někdy se do roztoku přidávají další chemické sloučeniny, aby byla reakce lépe kontrolovaletná. V každém případě je tento proces hodně prudký a je nutno jej pevně řídit, jelikož nemá vlastnost samočinné regulace.

Diagram vpravo dole znázorňuje rychlosti leptání u typického kyselinového a louhového leptání. Je vidět, že leptání kyselinou je po celou dobu trvání velmi silné, a proto musí být řízeno pozorně až do okamžiku, kdy má deska požadované vlastnosti.

Oba způsoby leptání, louhové i kyselinové, mají své výhody a nevýhody. Všechny tyto aspekty je třeba zvážit při výběru vhodného typu leptání. Jejich srovnání naleznete v níže uvedené tabulce. Na další stránce je obrázek zařízení na leptání s chemickou lázní.

Si + H2O + 2KOH K2SiO3 + 2H2

Louhové leptání

Kyselinové leptání

3Si + 4HNO3 + 18HF 3H2SiF6 + 4NO + 8H2O

Si + 4HNO3 + 6HF H2SiF6 + 4NO2 + 4H2O

Louhové

Vytváří povrch, který má leptové důlky

Leptací rychlost je konstantní během celé životnosti lázně.

Snadno řiditelné; leptací rychlost klesá při odstranění narušení povrchu

Není rizikové vůči životnímu prostředí.

Kyselinové

Vytváří hladký povrch.

Leptací rychlost se mění.

Obtížně řiditelný; leptací rychlost není omezena narušením povrchu.

Uvolňuje plyny, jež musí být asanovány.

viz kapitola „Výroba

křemíkových desek“

Page 30: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

30Silicon V2.1 Cz

Zařízení na leptání

Page 31: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

31Silicon V2.1 Cz

Úprava zadní stranyZadní strana se upravuje u desek, které jsou vysoce dopované, a které v dalším procesu projdou přes vysoké teploty. Na zadní stranu se nanese vrstva, jež zabrání v rozptylu dopantu do prostoru.

K tomuto účelu může být použita vrstva oxidu křemičitého, která dopant nepropouští. Nanese se na desku chemickou depozicí z plynné fáze (LPCVD).

Také vrstva polykrystalu na zadní straně desky zabraňuje dopantu v rozptylu do prostoru. Navíc na sebe váže těžké kovy. K depozici polykrystalické vrstvy se obvykle používá silan (SiH4).

Na dolním obrázku je sada křemíkových desek, připravená v unašeči na depozici. Na další straně pak uvidíte zařízení na chemickou depozici z plynné fáze.

Depozice oxidu

SiH4 + O2 SiO2 + 2H2

420°C

Depozice polykrystalu

SiH4 Si + 2H2620°C

Page 32: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

32Silicon V2.1 Cz

Zařízení na chemickou depozici

Page 33: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

33Silicon V2.1 Cz

LeštěníÚčelem procesu leštění křemíkových desek je vytvořit velmi hladký, rovný povrch bez jakýchkoliv poruch. Na rozdíl od lapování je to chemicko-mechanický proces. To je důvod, proč je povrch desky po leštění mnohem hladší než po lapování.

Jedna z metod leštění je technologie s využitím šablon (template). Desky se umístí na kruhovou šablonu přilepenou k unašeči. V šabloně leží na měkké polyuretanové vložce, která má pórovitou strukturu. Křemíkové desky se po přitlačení na tuto vodou nasáklou vložku přisají.

Přisáté desky drží na vložkách i při otočení unašeče šablonou dolů. Leštící podložka je připevněna ke kotouči. Kotouč a unašeče se otáčejí kolem svých vlastních os.

Na přiloženém videu jsou záběry operace, při níž se uvolňují vyleštěné desky ze šablon. Na další stránce uvidíte fotografii zařízení na leštění.

Leštící suspenzeSkládá se z částic oxidu

křemičitého (SiO2) ve vodní suspenzi s organickou zásadou a

detergentem.

Leštící podložka

Kotouč

Křemíková deska VložkaUnašeč

Šablona

Leštící suspenze

Page 34: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

34Silicon V2.1 Cz

Zařízení na leštění

Page 35: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

35Silicon V2.1 Cz

Chemické čištěníPo leštění je na povrchu desek velké množství nečistot. Těmito nečistotami jsou většinou částice, organické zbytky a kovové ionty. Chemickým čištěním se odstraňují z povrchu.

H2SO4 + H2O2 (130°C)

H2O + HF

H2O + NH4OH + H2O2 (70°C)

H2O + HCl + H2O2 (70°C)

Nejrozšířenější metodou čištění desek po leštění je čištění v chemických roztocích, které se skládá z několika kroků. Prvním z nich je horká směs kyseliny sírové a peroxidu vodíku zvaná Piraňa. Rozloží prakticky veškeré organické nečistoty na povrchu desky na oxid uhličitý a vodu.

Nečistoty se nachází hlavně na tenké vrstvě oxidu, která je na povrchu desek. Úlohou dalšího kroku - zředěné kyseliny fluorovodíkové - je odleptat tuto vrstvu oxidu, a také zbytky leštící suspenze.

Pro odstranění částic se nejčastěji používá roztok SC1 (Standard Clean 1). Je to zahřátá směs NH4OH a H2O2 s vodou. Hydroxid amonný podleptá částice zachycené na povrchu a eliminuje přitažlivé síly. Peroxid vodíku je oxidující látka, která na povrchu desky vytváří tenkou, čistou vrstvu oxidu, což činí desku hydrofilní a zamezuje znovuusazování částic.

Po předchozích krocích se na povrchu desky mohou stále vyskytovat kovové nečistoty. Odstraňují se roztokem HCl a H2O2 s vodou, který je známý jako SC2 (Standard Clean 2). Roztok oxiduje a reaguje s kovy na povrchu křemíku.

Během chemického čištění se na desky také působí megasonickými vlnami. Jsou to akustické vlny velmi vysoké frekvence (kolem 1 MHz), které vyvíjejí na částice síly, jež je oddělují od povrchu desky.

Po tomto čištění je povrch zbaven nečistot, avšak stále může být na deskách malý počet částic. Video vpravo ukazuje čistící linku, a také záběr do megasonické čistící lázně.

Organický zbytek

Částice

Vrstva oxiduIont kovu

VIDEO 352 x 288

Page 36: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

36Silicon V2.1 Cz

KontrolaVyleštěné a vyčistěné desky jsou připraveny ke kontrole. Během procesu kontroly se bezkontaktními metodami měří elektrický měrný odpor a geometrické parametry.

VIDEO 352 x 288

Měřítkem deformace desky je veličina zvaná warp. Warp je velikost rozdílu mezi největší a nejmenší vzdáleností střední čáry desky a roviny, jež je určena třemi body na okrajích desky.

Měřítkem proměnnosti tloušťky desky je TTV (total thickness variation). Je to rozdíl mezi maximální a minimální tloušťkou desky.

Další kontrolovanou veličinou je TIR (total indicator reading), která se vztahuje pouze k přední straně desky. Měření se provádí vzhledem k rovině vakuového držáku, k němuž je deska přisáta. TIR je rozdíl mezi výškou nejvyššího a nejnižšího bodu na přední straně desky.

Na videu uvidíte bezkontaktní měřící zařízení.Finální vizuální kontrola, jejíž ukázka je rovněž na konci videa, je ve skutečnosti prováděna na konci celého procesu.

Střední čára desky

RovinaDmax

Křemíková deska

Dmin

Warp = (Dmax - Dmin) / 2

Tmax

Křemíková deska

Tmin

TTV = Tmax - TminTIR = hmax - hmin

hmax

Křemíková deska

hmin

Vakuový držák

Page 37: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

37Silicon V2.1 Cz

VIDEO 352 x 288

Desky se chemicky čistí, aby byly odstraněny částice a kovové nečistoty. Po následné kontrole se ale na povrchu může opět objevit zvýšený počet částic. Proto se provádí finální mechanické čištění kartáči - scrubbing.

Během tohoto procesu proudí zředěný hydroxid amonný (NH4OH) přes povrch desky. Současně se povrchu dotýkají velmi jemné rotující kartáče s PVA vlákny.

Toto čištění PVA kartáči velmi účinně odstraňuje částice. Po opláchnutí deionizovanou vodou a vysušení jsou desky připraveny k poslední vizuální kontrole a balení. Toto čištění i poslední vizuální kontrola se provádí v čistých prostorech třídy 10.Ukázka čištění kartáči je na videu vpravo nahoře.

Finální mechanické čištění

Page 38: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

Silicon V2.1 Cz 38

Průměr Si desky: 100, 125, 150 mm

TTV: < 5 µm

TIR: < 4 µm

WARP: < 30 µm(obvykle pro 100 mm desky)

Částice >0,5 µm < 5

Kontaminace kovu: 3x1010 atomů/cm2

Finální kontrola

Další informace na adrese: www.terosil.com

Page 39: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

Silicon V2.1 Cz 39

Příloha

Čisté prostory

Některé fyzikální jednotky

Souhrn kapitoly č.4

Úvod

Co je uvnitř integrovaného obvodu?

Křemík

Křemík - struktura

Křemík - uvnitř monokrystalu

Krystalografické poruchy

Dopování

Křemíková deska

Výroba křemíku

Polykrystalický křemík

Výroba křemíkových desek

Broušení hran desky

Oboustranné lapování

Leptání

Zařízení pro leptání

Úprava zadní strany

Zařízení CVD

Leštění

Zařízení pro leštění

Chemické čištění

Kontrola

Finální mechanické čištění

Finální kontrola

Epitaxe

Epitaxní reaktor

Charakteristika epitaxní vrstvy

Czochralského metoda růstu monokrystalu

Tažička Czochralského

Rozhraní krystal - tavenina

Kyslík a uhlík v monokrystalu křemíku

Rozdělovací koeficient

Ingot monokrystalu křemíku

Broušení a měření monokrystalu

Obroušený krystal s fasetou

Page 40: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

40Silicon V2.1 Cz

Pro určité použití křemíkových desek je nutné na materiálu s nízkým odporem vytvořit další vrstvu materiálu s vysokým odporem. K tomuto účelu slouží proces epitaxe.

Epitaxe je narůstání vrstvy křemíku na povrchu křemíkové desky. Tato vrstva má stejné krystalografické vlastnosti jako podložka, ale může mít jinou koncentraci dopantu anebo dopant jiný.

Epitaxe

VIDEO 320 x 240

P

HHH

PSi

Si Si

SiSi

Proces probíhá při vysoké teplotě - 1200°C. Kolem rozžhavených desek proudí vodík. Když se přidá chlorovodík HCl, začne reagovat s křemíkem a odleptává povrch desky. To je důležité, aby se odstranily všechny nečistoty anebo povrchové poruchy struktury křemíku.

Po oleptání povrchu se přivádí páry chloridu křemičitého SiCl4. Ten při vysoké teplotě reaguje s přítomným vodíkem. Výsledkem reakcí jsou volné atomy křemíku, které se usazují na povrchu křemíkové desky, sledujíce její krystalovou strukturu.

Pokud jsou přítomny molekuly fosfinu PH3, vznikající atomy fosforu dopují rostoucí epitaxní vrstvu. Podobně mohou být použity pro dopování i sloučeniny bóru.

HH

HH

HH

HH

HH

H Cl

H Cl

H Cl

H Cl

Výsledkem procesu je epitaxní vrstva tlustá několik mikrometrů až desítky mikrometrů. Na přiloženém videu jsou záběry z nakládání desek na susceptor a jejich vykládání. Je vidět také řídící panel epitaxního reaktoru.

Cl HCl

ClSi

Cl HCl

ClSi

Cl HCl

ClSi

Page 41: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

41Silicon V2.1 Cz

Epitaxní reaktor

N2 H2 HCl SiHCl3 PH3 B2H6

Epitaxní reaktor je zařízení pro růst epitaxní vrstvy. Křemíkové desky se uloží na grafitový blok -susceptor. Susceptor s deskami je umístěn do pracovní komory z křemenného skla. Kolem komory je cívka indukčního ohřevu.

Asanace plynů

Při technologickém postupu je pracovní komora s deskami proplachována dusíkem, a pak vodíkem. V prostředí vodíku je susceptor s deskami ohřátý indukčním ohřevem na teplotu kolem 1200°C.

Při vysoké teplotě proběhne proces jak je popsán na snímku Epitaxe. Potom je susceptor s deskami ochlazen, a po proplachu dusíkem vytažen z pracovní komory.

Page 42: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

Silicon V2.1 Cz 42

Charakteristika epitaxnívrstvy

Průměr Si desky: 100, 150 mm

Tloušťka epitaxní vrstvy: 3 - 50 µm

Odpor epitaxní vrstvy: 3 - 50 cm

Další informace na adrese: www.terosil.com

Page 43: OD KŘEMENE KE KŘEMÍKOVÉ DESCE

Silicon V2.1 Cz 43

Příloha

Čisté prostory

Některé fyzikální jednotky

Souhrn kapitoly č.5

Úvod

Co je uvnitř integrovaného obvodu?

Křemík

Křemík - struktura

Křemík - uvnitř monokrystalu

Krystalografické poruchy

Dopování

Křemíková deska

Výroba křemíku

Polykrystalický křemík

Výroba křemíkových desek

Broušení hran desky

Oboustranné lapování

Leptání

Zařízení pro leptání

Úprava zadní strany

Zařízení CVD

Leštění

Zařízení pro leštění

Chemické čištění

Kontrola

Finální mechanické čištění

Finální kontrola

Epitaxe

Epitaxní reaktor

Charakteristika epitaxní vrstvy

Czochralského metoda růstu monokrystalu

Tažička Czochralského

Rozhraní krystal - tavenina

Kyslík a uhlík v monokrystalu křemíku

Rozdělovací koeficient

Ingot monokrystalu křemíku

Broušení a měření monokrystalu

Obroušený krystal s fasetou