72
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE STUDIJNÍ OBOR GEODÉZIE, KARTOGRAFIE A GEOINFORMATIKA BAKALÁŘSKÁ PRÁCE VYTYČOVÁNÍ ATLETICKÝCH DRAH Vedoucí práce: Dr. Ing. Zdeněk Skořepa Katedra speciální geodézie Červen 2014 Matouš VONDRÁČEK

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

FAKULTA STAVEBNÍ

STUDIJNÍ PROGRAM

GEODÉZIE A KARTOGRAFIE

STUDIJNÍ OBOR

GEODÉZIE, KARTOGRAFIE A GEOINFORMATIKA

BAKALÁŘSKÁ PRÁCE

VYTYČOVÁNÍ ATLETICKÝCH DRAH

Vedoucí práce: Dr. Ing. Zdeněk Skořepa

Katedra speciální geodézie

Červen 2014 Matouš VONDRÁČEK

Page 2: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,
Page 3: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

Abstrakt Bakalářská práce: Vytyčování atletických drah

Tato práce popisuje postup při ověřování rozměrů atletických oválů, tvorbu digitálního

výkresu značení standardního oválu a zpracování měření konkrétního oválu. Velká část

je věnována výpočtům zakřivených linií – evolvent.

Klíčová slova ideální stopa, standardní ovál, evolventa, tečna, steeplechase

Abstract Bachelor thesis: Setting-out of Running Tracks

This work describes a procedure for dimensional verification athletic ovals, creating

digital drawing of marking of standard track and processing measurement specific oval.

A large part is devoted to the calculation of curved lines - involute.

Keywords ideal track, standard track, involute, tangent, steeplechase

Page 4: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

Čestné prohlášení

Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně, pouze za

odborného vedení vedoucího bakalářské práce Dr. Ing. Zdeňka Skořepy.

Dále prohlašuji, že veškeré podklady, ze kterých jsem čerpal, jsou uvedeny

v seznamu použité literatury.

V Praze dne ....................... ..............................

Matouš Vondráček

Page 5: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

Poděkování

Mé velké díky patří vedoucímu bakalářské práce Dr. Ing. Zdeňkovi Skořepovi za

odborné vedení a pomoc při zpracování této práce. Dále bych chtěl poděkovat panu

Ing. Lubomíru Smržovi za poskytnutá data a za vysvětlení problematiky atletických

stadionů. Děkuji také mé rodině a přítelkyni za podporu při tvorbě bakalářské práce

i během celého studia.

Page 6: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Obsah Úvod ............................................................................................................................................................ 1

1. Sportoviště .............................................................................................................................................. 2

1.1 Rozměry ............................................................................................................................................. 3

2. Standardní ovál ...................................................................................................................................... 4

2.1 Ověření rozměrů standardního oválu ................................................................................................ 6

2.2 Vyhodnocení kontrolních měření ....................................................................................................... 8

3. Značení standardního oválu ................................................................................................................ 10

4. Běžecké disciplíny ................................................................................................................................ 11

5. Evolventa kružnice .............................................................................................................................. 19

6. Projekt značení standardního oválu ................................................................................................... 21

6.1 Tvorba výkresu ................................................................................................................................ 21

6.2 Tvorba evolvent ............................................................................................................................... 22 6.2.1 Breakline .................................................................................................................................. 22

6.2.1.1 Breakline – konstrukce z manuálu .................................................................................... 22 6.2.1.2 Breakline – konstrukce pomocí Matlabu .......................................................................... 24 6.2.1.3 Breakpoint......................................................................................................................... 28

6.2.2 Starty závodů ............................................................................................................................ 28

7. Stadion ve městě Haugesund ............................................................................................................... 34

7.1 Zaměření .......................................................................................................................................... 34

7.2 Zpracování zaměření ....................................................................................................................... 34 7.2.1 Výpočet středů kružnicových oblouků ..................................................................................... 34 7.2.2 Ověření rozměrů atletického oválu .......................................................................................... 37

8. Steeplechase .......................................................................................................................................... 39

8.1 Vodní příkop uvnitř druhé zatáčky .................................................................................................. 41

8.2 Ověření polohy a rozměrů vodního příkopu .................................................................................... 43

8.3 Projektování značení dráhy vedoucí přes vodní příkop ................................................................... 44

8.4. Určení linií startů ........................................................................................................................... 46

9. Příprava před vytyčováním ................................................................................................................ 49

Závěr ......................................................................................................................................................... 50

Použitá literatura ..................................................................................................................................... 51

Seznam obrázků ....................................................................................................................................... 52

Page 7: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Seznam tabulek ........................................................................................................................................ 53

Seznam příloh ........................................................................................................................................... 54

Příloha č. 2 ............................................................................................................................................ 55

Příloha č. 4 ............................................................................................................................................ 56

Page 8: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Úvod

Tato bakalářská práce (BP) se zabývá problematikou atletických oválů, konkrétně

ověřením rozměrů oválu a vyznačením čar na jeho povrchu.

S atletickými ovály v souvislosti s geodézií jsem se poprvé setkal při vytyčování

polohy obrubníků oválu, jenž je součástí sportovního zařízení Vodranty, které se

nachází v Čáslavi. Vytyčování jsem prováděl s bývalým kolegou z geodetické kanceláře

AZIMUT CZ s.r.o. ing. Lubomírem Smržem. Pan Smrž, který se problematice

atletických oválů věnuje již několik let, v současné době pracuje v německé firmě

Polytan Sportstättenbau GmbH. Ta je jedním z největších výrobců a dodavatelů

umělých povrchů pro sportovní zařízení po celém světě.

Vzhledem k jeho zkušenostem z tohoto nevšedního odvětví geodézie jsem jej požádal,

zda by mi objasnil zmíněnou problematiku a poskytl data, která jsou v této práci

zpracována.

Bakalářská práce je rozdělena do tří částí.

V první části práce jsou popsána kritéria rozměrů oválu, vysvětlen pojem standardní

ovál a popsán postup při ověřování jeho rozměrů.

Druhá část je věnována značení standardního oválu. Jsou zde popsány polohy

a vlastnosti jednotlivých čar pro konkrétní závody. Největší pozornost je věnována

zakřiveným liniím, které jsou svými vlastnostmi specifické.

V závěrečné části práce je popsáno ověřování rozměrů konkrétního atletického oválu

a postup přípravy před samotným vytyčováním linií.

1

Page 9: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

1. Sportoviště

Mezinárodní asociace atletických federací (IAAF) vydala v roce 2008 příručku pro

sportovní zařízení IAAF Track and Field Facilities Manual (manuál) [1]. V této

příručce, která je oficiálně pouze v anglickém jazyce, jsou popsána kritéria a předpisy,

které musí sportoviště splňovat.

Všechny disciplíny lehké atletiky, kromě maratonského běhu a závodů v chůzi na

dlouhé vzdálenosti, se odehrávají uvnitř sportovních arén. Základním prvkem každé

arény je atletický ovál. Ovál je sportoviště navržené pro běžecké disciplíny, které se

skládá ze dvou přímých úseků (rovinek) a dvou obloukových úseků (zatáček). Rozměry

každého oválu jsou dány vnitřním obrubníkem, resp. jeho vnější hranou. Od obrubníku

se odvíjí délka podél teoretické dráhy běhu (ideální stopy) v první dráze. Ideální stopa

(IS) v první (nejbližší) dráze k obrubníku je teoretická dráha běžce ve vzdálenosti

0,30 m od obrubníku.

Ovály se mezi sebou mohou lišit např. v délce rovinek nebo v poloměrech zatáček.

Zatáčky některých oválů jsou dokonce složeny z částí oblouků o různých poloměrech.

Všechny ovály by ovšem měly splňovat kritérium, že délka podél ideální stopy v první

dráze je 400,00 m + 0,04 m.

Sportoviště pro pořádání oficiálních závodů, jako jsou Letní olympijské hry (LOH),

Mistrovství světa v lehké atletice (MS) a národní soutěže, jsou rozděleny do pěti

konstrukčních kategorií (I – V). Tyto kategorie nejsou vztaženy pouze k vybavení

sportovišť pro běžecké disciplíny, ale i k vybavení pro další disciplíny (skokanské a

vrhačské) a zázemí stadionu.

Manuál také uvádí, jakou konstrukční kategorii musí sportoviště splňovat pro pořádání

konkrétních závodů.

2

Page 10: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

1.1 Rozměry

Přestože existuje řada různých uspořádání 400 m oválu, cílem IAAF je vytvoření

jednotných kritérií, a to nejen kvůli sportovcům, ale také kvůli zjednodušení konstrukce,

zkoumání a certifikace zařízení.

Zkušenosti ukázaly, že nejvhodnější 400 m oválné dráhy jsou konstruovány s poloměry

zatáček mezi 35 m a 38 m, optimálně 36,50 m. IAAF doporučuje, aby všechny budoucí

dráhy byly konstruovány tak, jak bylo uvedeno. Tento ovál se označuje jako "400 m

Standard Track" (standardní ovál).

3

Page 11: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

2. Standardní ovál

Standardní ovál má výhodu jednoduché konstrukce, přímé úseky a zatáčky mají

přibližně stejnou délku, a je tak nejvhodnější pro běžecký rytmus sportovců. Kromě

toho, oblast uvnitř oválu je dostatečně velká, aby pojala všechny skokanské a vrhačské

disciplíny nebo standardní fotbalové hřiště o rozměrech 68 m x 105 m.

Plán standardního oválu je dán obdélníkem A, B, C, D a středy oblouků CP1, CP2 resp.

M1, M2 (obr. 1).

Obr. 1: Rozměry standardního oválu

4

Page 12: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Pro zjednodušení byly v dalším textu zatáčky a rovinky očíslovány ve směru běhu (proti

směru hodinových ručiček). Zatáčka č. 1 má střed v bodě CP2 resp. M2 a je mezi body

A a D. Zatáčka č. 2 má střed v bodě CP1 resp. M1 a je mezi body C a B. Rovinka č. 1 je

mezi body D a C. Rovinka č. 2 je mezi body B a A.

Standardní ovál se tedy skládá ze dvou půlkruhů, každý s poloměrem 36,5 m, které

spojují dvě rovinky, každá o délce 84,39 m. Tyto rozměry určují vnější hranu

obrubníku, resp. vnitřní okraj první dráhy. Obrubník by měl být bílý, vysoký 0,05 m –

0,065 m a široký 0,05 m – 0,25 m. Vnitřní okraj první dráhy je tedy dlouhý 398,116 m

(= 2π · 36,50 m + 2 · 84,39 m), kde číslo π je podle manuálu zaokrouhleno na

hodnotu π = 3,1416.

Ideální stopa běžce v první dráze, je linie měřená 0,30 m od obrubníku, má tedy délku

400,001 m (= 2π · 36,80 m + 2 · 84,39 m). V každé další dráze je IS běžce měřena

0,20 m od vnitřní hrany dané dráhy (obr. 2).

1. lajna mezi 1. a 2. dráhou

2. obrubník

3. vzdálenost středu (7) a

vnější hrany obrubníku

(36,50 m)

4. vzdálenost středu a IS

v první dráze (36,80m)

5. vzdálenost středu a vnější

hrany lajny mezi 1. a 2.

dráhou (37,72 m)

6. vzdálenost středu a IS

v druhé dráze (37,92 m)

7. střed půlkruhu

Obr. 2: Ideální stopy

5

Page 13: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Standardní ovál obsahuje 8 oválných a 8 rovných drah. Dráhy jsou číslovány vzestupně

směrem od vnitřního obrubníku. Rovné dráhy pro závody na 100 m a 110 m překážek

jsou prodloužením druhé rovinky směrem od cíle. Cílová čára se nachází na konci druhé

rovinky, začíná v bodě A (obr. 1) a je vyznačena kolmo přes všechny dráhy. Každá

běžecká dráha je široká 1,22 m ± 0,01 m, měřeno od vnější hrany sousední levé dráhy

(v první dráze od obrubníku). V šířce dráhy je zahrnuta i vnější bílá čára (lajna1), široká

0,05 m.

Standardní ovál musí mít také bezpečnostní zóny široké 1,00 m na vnitřní i vnější straně

oválu. Dále je požadovaný 3,00 m dlouhý prostor před startovní čarou závodu na 110 m

překážek (obr. 1 vlevo od bodu B) a minimálně 17,00 m dlouhý doběhový prostor za

cílem (obr. 1 vpravo od bodu A).

Standardní ovál musí obsahovat zabudovaný vodní příkop o rozměrech 3,66 m x 3,66 m

a hloubce 0,50 m – 0,70 m. Příkop musí být umístěný uvnitř nebo vně druhé zatáčky

(kap. 9).

2.1 Ověření rozměrů standardního oválu

Rozměry standardního oválu se ověřují dle manuálu provedením 28 měření (obr. 3). Pro

tato měření je nutné znát středy oblouků.

Obr. 3: Kontrolní měření na standardním oválu

1 Lajna je ve sportovním slangu pojmenování pro čáru na hřišti (sportovišti).

6

Page 14: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Středy oblouků (CP1, CP2 resp. M1, M2) by měly být podle manuálu stabilizovány

(obr. 4) kovovými trubkami o průměru cca 12 mm, odolnými proti korozi. Trubky by

měly být stabilizovány v základech začínajících v hloubce minimálně 1,0 m, aby se

zabránilo pohybu vlivem teplotních změn. Horní hrana základů by se měla nacházet

0,20 m pod konečným povrchem. Vrchol trubky by měl být 0,15 m nad konečným

povrchem a zakryt ochranným prvkem.

1. vrchol z nerezavějící oceli 2. prstenec ocelového lůžka 3. ocelové lůžko v maltě ve vertikální poloze 4. ocelový tubus v betonových základech 5. štěrkopísek

Na starších stadionech často nejsou středy stabilizovány. Středy oblouků se tedy určují početně z měření a případně se dočasně signalizují (kap. 7.2.1).

Obr. 4: Stabilizace středů

7

Page 15: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

2.2 Vyhodnocení kontrolních měření

Rozměrová přesnost standardního oválu vyžadována pro všechny konstrukční kategorie

IAAF se považuje za splněnou, pokud je dosaženo následujících hodnot v rámci

kontrolního měření (obr. 3):

1. Vzdálenost středů oblouků (CP1, CP2 resp. M1, M2) je 84,390 m ± 0,005 m.

2. Vzdálenosti mezi body na začátku a konci obou rovinek (13 resp. 26) je 84,390 m

± 0,005 m.

3. Vzdálenost od středu k bodu na vnější hraně obrubníku příslušného oblouku je

36,500 m ± 0,005 m. Kontrolní body na jednotlivých půlkruzích (1-12 resp. 14-25)

by měly být mezi sebou vzdáleny přibližně 10,42 m (měřeno po obrubníku).

4. Vyrovnání obrubníku v prostoru obou rovinek (27 resp. 28) by nemělo překročit

hodnotu 0,01 m dvou naměřených hodnot.

Naměřené hodnoty musí být zaznamenány a vyhodnoceny dle manuálu způsobem

patrným z obr. 5.

8

Page 16: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Obr. 5: Vyhodnocení kontrolního měření

Pokud jsou jednotlivé odchylky v intervalu < -0,005 m, +0,005 m > a celková odchylka

délky oválu je v intervalu < 0, 0,04 m >, lze označit ovál za standardní.

9

Page 17: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

3. Značení standardního oválu

Součástí manuálu je IAAF 400 Metre standard track, Marking Plan (plán značení

standardního oválu), který je k nahlédnutí v příloze č. 1.

V plánu značení jsou vyznačeny a popsány barevná provedení všech čar, které musí na

standardním oválu být.

Běžecké dráhy jsou vyznačeny bílými vodícími čarami. Lajna na pravé straně (ve směru

běhu) každé dráhy je zahrnuta v měření šířky dané dráhy.

Všechny startovní čáry, s výjimkou zakřivených startů, a cílová čára musí být

vyznačeny v pravém úhlu k vodícím čárám.

Všechny čáry jsou 0,05 m široké.

Vzdálenosti závodů jsou měřeny vždy ve směru hodinových ručiček od hrany cílové

čáry blíže ke startu až po hranu startovní čáry vzdálenější od cíle.

Povolená odchylka délky každého závodu je v intervalu < 0,00 , 0,0001L > , kde L je

délka závodu v metrech. (Z této podmínky vyplývá i maximální povolená odchylka

oválu 400 m + 0,04 m.)

10

Page 18: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

4. Běžecké disciplíny

Pro pochopení značení je třeba znát průběh všech běžeckých disciplín, které se na oválu

konají.

Současné běžecké disciplíny lehké atletiky se rozdělují do pěti kategorií – sprinty,

středně dlouhé tratě, dlouhé tratě, překážkové závody a závody štafet.

1. Sprinty

Jako sprinty se označují závody na 100 m, 200 m a 400 m. Všechny tyto závody se

startují ze startovních bloků. Každý závodník běží celý závod ve své dráze. Jelikož se

vzrůstajícím číslem dráhy se zvětšuje i poloměr oblouků v dané dráze, jsou starty

v 2. - 8. dráze posunuty. Posun startů se provádí vždy tak, aby délka do cíle podél IS

dané dráhy byla stejná jako podél IS v dráze první.

1a) Závod na 100 m

Závod na 100 m se běhá celý na přímém úseku k tomu určeném. Tím je prodloužení

2. rovinky.

1b) Závod na 200 m

Závod na 200 m se běhá již v drahách oválu, konkrétně druhé zatáčky a druhé rovinky.

Start v první dráze je umístěn na konci 1. rovinky (obr. 1 - bod C). Vzdálenost 200 m od

cíle ke startu podél IS je tedy 84,39 m + 36,80 m · π = 200,001 m. Starty v 2. – 8. dráze

jsou posunuty ve směru běhu podél IS dané dráhy (tab. 1).

1c) Závod na 400 m

Start závodu na 400 m je v první dráze totožný s cílovou čarou. Vzdálenost 400 m od

cíle ke startu podél IS v první dráze je tedy 2· (84,39 m + 36,80 m · π) = 400,001 m.

Starty v 2. – 8. dráze jsou posunuty ve směru běhu podél IS dané dráhy (tab. 1).

11

Page 19: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Tab. 1: Posunuté starty závodů (hodnoty v m)

2. Středně dlouhé tratě

Jako středně dlouhé tratě jsou označeny závody na 800 m, 1000 m, 1 500 m, 1 míly,

2 000 m a 3 000 m. Závody na 800 m a 1 500 m se konají například na MS a LOH.

Zbylé disciplíny nejsou tolik obvyklé.

2a) Závod na 800 m

Při závodě na 800 m běžci obkrouží ovál celkem dvakrát. Závod na 800 m je specifický

v tom, že závodníci startují každý ve své dráze (bez startovních bloků) a na začátku

první rovinky se sbíhají do první dráhy. Místo, kde se mohou začít sbíhat, je vyznačeno

zelenou čarou souběhu (angl. Breakline). Breakline je navržena tak, aby od ní do cíle

byla vzdálenost pro všechny běžce stejná. Toto kritérium zaručuje křivka – evolventa.

Délka podél IS v první dráze je tedy 2 x 400 m. Starty v 2. – 8. dráze jsou posunuty ve

směru běhu podél IS (tab. 1).

2b) Závody na 1 500 m a 1 míly

Startovní čáry závodů na 1 500 m a 1 míly jsou křivky. Z těchto křivek se závodníci

ihned po startu sbíhají do první dráhy. Startovní čáry mají vlastnosti evolventy. Poloha

startů těchto závodů bude vysvětlena v kapitole 6.2.2.

12

Page 20: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

2c) Závody na 1 000 m a 3 000 m

Starty závodů na 1 000 m resp. 3 000 m jsou totožné se startem závodu na 5 000 m (viz.

kap. 4, odst. 3a).

2d) Závod na 2 000 m

Start závodu na 2 000 m je totožný se startem závodu 10 000 m (viz. kap. 4, odst. 3b).

3. Dlouhé tratě

Jako dlouhé tratě se označují závody na 5 000 m a 10 000 m. Tyto závody jsou

olympijskými disciplínami.

3a) Závod na 5 000 m

Start závodu na 5 000 m (1 000 m, resp. 3 000 m) je vyznačen křivkou u bodu C

(obr. 6). Z této křivky se závodníci ihned po startu sbíhají do první dráhy. Křivka má

vlastnosti evolventy. Ze startovní čáry může startovat maximálně 12 závodníků.

Pro případ vyššího počtu závodníků je vytvořena další, posunutá, startovní čára. Ta je

vyznačena přes čtyři vnější dráhy (obr. 6). Z této startovní čáry se sbíhá druhá skupina

závodníků do páté dráhy, ve které běží až na začátek druhé rovinky. Zde je signalizován

bod souběhu (angl. Breakpoint). Breakpoint splňuje stejné vlastnosti jako Breakline. Je

to vlastně bod evolventy, stejně vzdálený od začátku druhé rovinky, jako Breakline

v témže bodě od začátku rovinky první. Od tohoto bodu se závodníci běžící v páté dráze

(druhá skupina) mohou sbíhat do dráhy první. Zbytek závodu již všichni závodníci běží

v první dráze.

Rozdíl v závodech na 5 000 m (1 000 m, resp. 3 000 m) je pouze v počtu uběhnutých

kol.

13

Page 21: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Obr. 6: Starty závodu na 5 000 m (1 000 m, 3 000 m)

3b) Závod na 10 000 m

Start závodu na 10 000 m resp. 2 000 m je vyznačen křivkou u bodu A (obr. 7). Z této

křivky se závodníci ihned po startu sbíhají do první dráhy. Křivka má vlastnosti

evolventy. Ze startovní čáry může startovat maximálně 12 závodníků.

Pro případ vyššího počtu závodníků je vytvořena další, posunutá, startovní čára. Ta je

vyznačena přes 4 vnější dráhy. Začátek této křivky navazuje na začátek startovní čáry

14

Page 22: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

závodu na 800 m v páté dráze. Ze startovní čáry se sbíhá druhá skupina závodníků do

páté dráhy, ve které běží až na začátek první rovinky. Zde se od Breakline závodníci

běžící v páté dráze mohou začít sbíhat do dráhy první. Zbytek závodu již všichni

závodníci běží v první dráze.

Rozdíl v závodech na 10 000 m (2 000 m) je pouze v počtu uběhnutých kol.

Obr. 7: Starty závodu na 10 000 m (2 000 m)

15

Page 23: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

4. Překážkové závody

Jako překážkové závody jsou označeny závody, ve kterých závodníci musejí při běhu

skákat přes překážky. Konkrétně to jsou závody na 100 m překážek, na 110 m překážek,

na 400 m překážek a Steeplechase.

4a) Závod na 100 m překážek

Tento závod je určen pouze pro ženy. Odehrává se na prodloužené 2. rovince, kdy

každá závodnice startuje z bloků a běží ve své dráze, ve které je rozmístěno 10

překážek. Vzdálenosti mezi překážkami a jejich rozměry jsou uvedeny v manuálu

(tab. 2).

4b) Závod na 110 m překážek

Tento závod je určen pouze pro muže. Odehrává se na prodloužené 2. rovince, kdy

každý závodník startuje z bloků a běží ve své dráze, ve které je rozmístěno 10 překážek.

Vzdálenosti mezi překážkami a jejich rozměry jsou uvedeny v manuálu (tab. 2).

4c) Závod na 400 m překážek

Při závodě každý závodník startuje z bloků a běží ve své dráze. Starty jsou totožné se

starty při závodu na 400 m. V každé dráze je rozmístěno 10 překážek. Vzdálenosti mezi

překážkami a jejich rozměry jsou uvedeny v manuálu (tab. 2).

Tab. 2: Překážkové závody (hodnoty v m)

16

Page 24: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

4d) Závod Steeplechase (běh na 3 000 m resp. 2 000 m překážek)

Závod Steeplechase existuje ve dvou variantách, 3000 m (LOH, MS) a 2000 m. Při

tomto závodě závodníci překonávají v rámci jednoho okruhu 4 překážky a zabudovaný

vodní příkop. Starty závodů Steeplechase jsou vyznačeny křivkou. Její poloha ovšem

není pevně daná. Upravuje se podle zkrácení resp. prodloužení standardní dráhy o dráhu

uběhnutou přes vodní příkop.

Tento závod je popsán v samostatné kapitole 8. Pozice (obr. 20, resp. obr. 22) a rozměr

(obr. 21) překážek jsou dány manuálem.

5. Závody štafet

Jako závody štafet se označují závody na 4x 100 m a 4x 400 m. Těchto závodů se

účastní čtyřčlenná družstva, jejichž členové si v průběhu závodu předávají mezi sebou

štafetový kolík. Kolík musí být předán v tzv. předávkovém území. U štafety na

4x 100 m je před předávkovým územím vyznačeno ještě území pro akceleraci.

5a) Štafeta 4x 100 m

Při tomto závodu si všichni běžci mezi sebou předají štafetový kolík v rámci jednoho

okruhu. Celý závod běží každé družstvo v jedné dráze. Starty závodu jsou totožné se

starty závodu na 400 m. První běžci startují ze startovních bloků.

Vzdálenost mezi startem a cílem podél IS každé dráhy je rozdělena na 4 stejně dlouhé

úseky (100 m), které jsou na dráze vyznačeny. Ve vzdálenosti 10,00 m před i za čarami

rozdělujícími dráhu na 100 m úseky je vyznačeno předávkové území. 10,00 m před

začátkem každého předávkového území je vyznačeno území pro akceleraci druhých

(třetích, resp. čtvrtých) běžců.

17

Page 25: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

5b) Štafeta 4x 400 m

Při tomto závodě si všichni běžci předají kolík po uběhnutí celého kola. Start závodu

v první dráze je totožný se startem závodu na 400 m. Starty v 2. – 8. dráze jsou

posunuty ve směru běhu podél IS konkrétní dráhy (tab. 1).

První běžci startují ze startovních bloků a běží celé kolo ve své dráze. Pro předání

štafetového kolíku mezi prvním a druhým běžcem je vyznačeno 20 m dlouhé

předávkové území, které je vyznačeno liniemi 10 m před a 10 m za starty závodu

na 800 m.

Druhý běžec běží od předávky ve své dráze až k Breakline, odkud se může začít sbíhat

do dráhy první. V té závod pokračuje až do konce. Pro další předávky je vyznačen

začátek předávkového území 10 m před cílem přes všechny dráhy. Konec předávkého

území je vyznačen rovnoběžně s cílem ve vzdálenosti 10 m od něj, ovšem pouze přes

2. – 5. dráhu. V první dráze zůstává značení předávkového území stejné, tedy kolmo

k vodícím čarám.

18

Page 26: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

5. Evolventa kružnice

Evolventa kružnice:

Při valení tečny (o délce r·φ) po dané kružnici (obr. 8) opisuje každý koncový bod tečny

evolventu kružnice. Rovnice evolventy kružnice je

𝑥 = 𝑟(cos𝜑 + 𝜑 sin𝜑)

𝑦 = 𝑟(sin𝜑 − 𝜑 cos𝜑), (1)

kde r je poloměr dané kružnice, φ je úhel odvalení

Rovnice evolventy kružnice v polárních souřadnicích podle obr. 8 je

𝜑 = 𝛼 + 𝛿

𝑟 ∙ 𝜑 = 𝑟 ∙ (𝛼 + 𝛿) = 𝑟 ∙ tan𝛼

𝛿 = tan𝛼 − 𝛼

tan𝛼 = �𝜌2 − 𝑟2

𝑟= �𝜌

2

𝑟2− 1

𝛿 = tan𝛼 − 𝛼 = �𝜌2

𝑟2− 1 − 𝑎𝑟𝑐𝑡𝑔�

𝜌2

𝑟2− 1

19

Page 27: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Obr. 8: Evolventa kružnice

Z obr. 8 je patrné, že délka tečny evoluty, resp. normály evolventy se rovná 𝑡 = 𝑟 ∙ 𝜑

a délky oblouku kružnice (evoluty) se rovná také 𝑑 = 𝑟 ∙ 𝜑.

20

Page 28: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

6. Projekt značení standardního oválu

Pro potřeby realizace značení standardního oválu byl vytvořen výkres (projekt).

K tvorbě projektu byl zvolen CAD software Microstation V8 XM Edition (MS). V něm

byl projekt konstruován ve skutečné velikosti podle hodnot z plánu značení. Výhodou

digitálního projektu je, že z něj lze kdykoliv získat souřadnice požadovaného bodu nebo

linie a následně je exportovat například do výpočetního systému Groma, se kterým MS

komunikuje. Další výhodou je přehlednost projektu. Všechny linie a body digitálního

výkresu byly umístěny do příslušných vrstev. Ty lze dle potřeby snadno zobrazovat

nebo skrývat.

6.1 Tvorba výkresu

Při vytváření projektu byly nejprve konstruovány prvky, které lze v MS snadno

nakreslit.

Nejdříve byly vytvořeny středy oblouků a linie obrubníku standardního oválu. Poté

následovala konstrukce linií všech vodících čar oválných drah a drah prodloužené druhé

rovinky. Na ní byly zkonstruovány linie startů závodů na 100 m a 110 m překážek a

linie cíle.

Poté byly vytvořeny teoretické dráhy běhu ve všech oválných drahách. Ty byly

vytvořeny pro potřebu konstrukce posunutých startů a pozic překážek v 2. – 8. dráze.

Dále byly vytvořeny posunuté starty závodů na 200 m, 400 m, 800 m a závodu štafet na

4x 400 m (tab. 1). Následovalo vytvoření potřebných linií pro štafetové závody –

vyznačení 100 m úseků (závod na 4x 100 m), všech předávkových území a území pro

akceleraci. Nakonec byly vytvořeny linie pozic překážek pro všechny zmíněné

překážkové závody, kromě vodního příkopu. Jeho poloha je dána skutečným stavem na

konkrétním oválu.

21

Page 29: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

6.2 Tvorba evolvent

Při tvorbě evolvent bylo nutné provést výpočty souřadnic bodů určujících tyto křivky.

K výpočtům byl použit software pro vědeckotechnické výpočty MATLAB. V něm byly

naprogramovány veškeré výpočty a pro kontrolu zobrazeny i graficky.

Pro správné umístění křivek do projektu bylo nutné určit souřadnice středů oblouků jak

v MS, tak v Matlabu stejné.

Jako souřadnice středů oblouků byly zvoleny hodnoty:

X Y

S1 200 200

S2 200 284,39

Celý dosud vytvořený projekt v MS byl tedy otočen o 90° (ve směru hodinových

ručiček) a posunut do středů oblouků o zvolených souřadnicích.

6.2.1 Breakline

6.2.1.1 Breakline – konstrukce z manuálu

První křivkou – evolventou, která byla v textu této BP zmíněna je Breakline (křivka

souběhu). Pro konstrukci této křivky je návod uveden v manuálu (obr. 9, tab. 3).

Breakline byla v MS zkonstruována podle tohoto návodu ještě před výše zmíněným

otočením. Nevýhodou konstrukce Breakline tímto způsobem je, že je známo pouze 8

jejích bodů, není tedy možné určit průsečík této křivky s lajnou ohraničující osmou

dráhu, a proto by nebylo možné ji na povrchu oválu vyznačit celou.

22

Page 30: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Obr. 9: Evolventa

Tab. 3: Evolventa (jednotky m/gon)

X vzdálenost od středu R2 k bodu D1-D8 (průsečík IS se začátkem 2. Rovinky) Y vzdálenost od středu R1 k bodu D1-D8 H vzdálenost od bodu T2-T8 k bodu D2-D8 T tečný bod Rd vzdálenost Breakline od začátku 2. Rovinky C a D body na obrubníku oválu

23

Page 31: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

6.2.1.2 Breakline – konstrukce pomocí Matlabu

Z rovnice evolventy (1) je patrné, že do výpočtu souřadnic vstupují dvě neznámé. Těmi

jsou poloměr evoluty r a úhel odvalení φ. Hodnota poloměru evoluty vyplývá z faktu,

že se všichni běžci sbíhají do první dráhy, platí tedy r = 36,80 m.

Pro výpočet souřadnic libovolného bodu Breakline byl vytvořen výpočetní skript

v programu Matlab. Pomocí něj byly zkonstruovány a graficky zobrazeny body

breakline vytvořené podle manuálu.

Pro druhý způsob vytvoření breakline byl v témže skriptu vytvořen výpočet souřadnic

bodů evolventy podle uvedených vzorců (1). Do nich vstupovaly hodnoty r = 36,80 m

a úhel odvalení φ byl zvolen v intervalu < 0 , 50 g > s krokem 1 mgon. K vypočteným

souřadnicím byly připočteny hodnoty souřadnic středu evoluty S1.

Hodnota horní meze intervalu úhlu odvalení byla experimentálně určena tak, aby se

body na konci evolventy nacházely mimo ovál. Tím byla zaručena možnost vytvoření

průsečíku evolventy a vodící čáry osmé dráhy.

Oba tyto výpočty byly pro ověření správnosti zobrazeny graficky v podobě barevných

linií (obr. 10).

Obr. 10: Evolventa - chybný výpočet (detail)

24

Page 32: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Z obrázku č. 10 je patrné, že se obě křivky značně liší. Jelikož konstrukce pomocí

manuálu byla považována za správnou, byl druhý způsob konstrukce evidentně chybný.

Bylo tedy nutné zamyslet se, k jaké evolutě je Breakline vlastně evolventou. Odpověď

na tuto otázku vyplývá z obrázku č. 9. Breakline je evolventou k IS běžce v první dráze

druhé zatáčky se středem S2. V předchozím výpočtu bylo milně uvažováno, že jde o

evolventu k první zatáčce se středem S1. Zavedení tohoto faktu do výpočtu ovšem nemá

vliv na změnu tvaru vytvořené křivky, pouze na její polohu (obr. 11).

Obr. 11: Evolventa - chybný výpočet (posun)

Při dalších úvahách bylo zjištěno, že je potřeba najít takovou část evolventy, kdy délka

její normály má hodnotu délky rovinky, tedy 84,39 m. Pokud je známa hodnota t (délka

normály evolventy, resp. tečny evoluty), lze ze vzorce 𝑡 = 𝑟 ∙ 𝜑 vypočítat potřebný úhel

odvalení 𝜑 = 𝑡/𝑟. Breakline je tedy část evolventy, jejíž začátek je při hodnotě úhlu

odvalení 𝜑 = 84,3936,80

= 2,293207 𝑟𝑎𝑑 = 145,9901 𝑔𝑜𝑛 .

25

Page 33: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Byly vypočteny souřadnice části evolventy pro hodnotu φ < 145,9901gon , 175gon >

s krokem 1 mgon. Část evolventy pro uvedený interval úhlu odvalení φ se nachází

v obecné poloze. Pro správné umístění vypočtené části evolventy musely být souřadnice

jejích bodů transformovány otočením o úhel α, který má stejnou hodnotu jako úhel

odvalení φ a následně posunuty o hodnoty souřadnic středu její evoluty. Vše je patrné

následujících obrázků (obr. 12, obr. 13, obr. 14).

Hodnota horní meze intervalu úhlu odvalení byla opět určena experimentálně pro

možnost vytvoření průsečíku evolventy s vodící čarou osmé dráhy.

Obr. 12: Evolventa - část křivky v obecné poloze

26

Page 34: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Obr. 13: Evolventa - Breakline

Obr. 14: Evolventa - Breakline (detail)

27

Page 35: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Po ověření správnosti výpočtu, byl program upraven tak, aby jeho výstupem byly body

Breakline ve vzdálenosti 0,4 m od sebe. Tím byl získán dostačující počet bodů pro její

realizaci v MS. Souřadnice bodů byly očíslovány, uloženy do textového souboru

a následně pomocí systému Groma importovány do MS. V MS byly body spojeny

aproximační křivkou B-spline.

Pro zjištění rozdílu mezi body Breakline vytvořenými pomocí manuálu a linií Breakline

tvořenou body z Matlabu byla zvolena funkce Změřit vzdálenost: Podél prvku. Tímto

prvkem byla vždy linie souběhu z 2. – 8. dráhy do první. Rozdíly byly tedy měřeny

7krát. Hodnoty rozdílů se pohybovaly v řádech 10-4 m, které jsou s největší

pravděpodobností způsobeny zaokrouhlením veličin pro konstrukci Breakline způsobem

daným manuálem.

Posledním krokem bylo vytvoření průsečíků Breakline s liniemi vodicích čar 1. a 8.

dráhy. Souřadnice těchto průsečíků byly exportovány do Gromy a uloženy v seznamu

souřadnic. B-spline křivka byla následně zkrácena k těmto průsečíkům, tak aby

odpovídala plánu značení.

6.2.1.3 Breakpoint

Vytvoření bodu souběhu (Breakpoint) bylo provedeno pouze v prostředí MS. Pro určení

jeho polohy byla použita vytvořená Breakline. Nejprve byla změřena vzdálenost od

začátku první rovinky k Breakline podél vodicí čáry mezi 4. a 5. dráhou. Linie o zjištěné

vzdálenosti byla nanesena podél té samé vodicí čáry od počátku druhé rovinky.

V průsečíku linie a vodící čáry byl vytvořen Breakpoint.

6.2.2 Starty závodů

Pro další výpočty zbylých evolvent je nutné zamyslet se, zda běžec v první dráze běží

již po tečně nějaké evoluty, nebo přímo po evolutě.

28

Page 36: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Pokud běží po tečně, je nutné určit její délku a z ní úhel odvalení v počátečním bodě

evolventy. Zatímco pokud běží přímo po evolutě, je počátek evolventy přímo na ní.

Úhel odvalení je tedy roven nule.

Není-li uvedeno jinak, byly vždy následující výpočty upraveny tak, aby jejich výstupem

byly souřadnice bodů, které jsou mezi sebou vzdáleny 0,4 m. Horní meze intervalů úhlů

odvalení byly voleny experimentálně pro potřebu určení průsečíků evolvent s vodící

linií osmé dráhy.

Starty závodů na 5 000 m a 10 000 m

Z popisu průběhu závodů na 5 000 m a 10 000 m vyplývá, že tvary křivek určující starty

těchto závodů jsou stejné. Jediným rozdílem mezi evolventami je, že se každá vztahuje

k jiné evolutě, ovšem o stejném poloměru.

Pro start závodu na 5 000 m je evolutou IS první dráhy v druhé zatáčce, zatímco pro

start závodu na 10 000 m je evolutou IS první dráhy v první zatáčce (obr. 15). Jak bylo

zmíněno v předchozím odstavci, je nutné určit, zda běžec v první dráze běží po tečně

nebo přímo po evolutě.

Ze startovní čáry obou těchto závodu běží závodník v první dráze přímo po evolutě.

Proto je počátek obou startovních linií při hodnotě odvalení φ = 0.

Do výpočtu souřadnic výše uvedených startů vstupuje hodnota poloměru evolut

r = 36,80 m a úhel odvalení φ je v intervalu < 0 , 50gon >.

Posunuté starty závodů na 5 000 m a 10 000 m

Linie startů těchto závodů mají opět stejný tvar a jsou tedy evolventami k evolutám

o stejných poloměrech. Konkrétně jsou to IS v pátých drahách oválu. Jak bylo zmíněno

v kap. 4 (odst. 3a, odst. 3b) jsou tyto křivky posunuty podél IS běhu páté dráhy v první,

resp. v druhé zatáčce (obr. 15). Tento posun je v obou případech od začátku příslušné

zatáčky ve směru běhu a má hodnotu 15,151 m.

29

Page 37: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Běžci se sbíhají do páté dráhy, z tohoto faktu vyplývá hodnota poloměrů evolut

r = 41,58 m. Závodník v páté dráze běží přímo po evolutě, počáteční hodnota intervalu

úhlu odvalení φ je tedy 0. Hodnota horní meze byla určena na 33 gon.

Pro správnou polohu začátku křivky ji bylo nutné ještě transformovat, resp. otočit podél

evoluty o úhel 𝛼 = 15,15141,58

= 0,364382 𝑟𝑎𝑑 = 23,1973 𝑔𝑜𝑛 .

Obr. 15: Starty závodů (5 000 m, 10 000 m)

Start závodu na 1 500 m

Při výpočtu souřadnic startu závodu na 1 500 m se postupovalo, jako kdyby běžci běželi

od cíle ke startu.

Běžci uběhnou 3 celá kola, dohromady tedy 1 200 m. Do naplnění délky závodu tedy

chybí 300 m. Od této hodnoty byly postupně odečteny délky celých úseků oválu, které

běžci musejí ještě uběhnout. Konkrétně tedy druhá rovinka (84,39 m), délka druhé

zatáčky ( π · 36,80 m = 115,611 m) a délka první rovinky (84,39 m). Rozdíl vzdálenosti

30

Page 38: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

ke startu (300 m) a součtu délek celých úseků je tedy 300 – 284,391 = 15,609 m.

Z výše uvedeného výpočtu je patrné, že start závodu se nachází ve vzdálenosti 15,609 m

před koncem první zatáčky měřeno podél IS v první dráze. Jelikož se běžci sbíhají do

první dráhy, poloměr evoluty je r = 36,80 m. Běžec v první dráze navíc běží přímo po

evolutě, interval úhlu odvalení začíná na hodnotě 0 gon. Horní hodnota intervalu byla

určena na 50 gon.

Po importu bodů do MS a spojení bodů B-spline křivkou bylo provedeno kontrolní

měření délek. Při něm bylo zjištěno, že délka podél IS v první dráze vyhovuje

požadované vzdálenost 300 m. Ovšem vzdálenost od bodu v 8. dráze, běžena nejprve po

tečně a poté podél IS první dráhy, požadované vzdálenosti nevyhovovala. Vzdálenost

byla dlouhá 299,083 m, tedy o 0,917 m kratší, než bylo požadovaných 300 m.

Při vyhodnocování výpočtů, bylo zjištěno, že se startovní čára závodu na 1 500 m

skládá ze dvou evolvent.

První (kratší) je část evolventy k IS v první dráze první zatáčky, posunutá proti směru

běhu podél zmíněné IS o 15,609 m, resp. o úhel 𝛼 = 15,60936,80

= 0,424158 𝑟𝑎𝑑 =

27,0027 𝑔𝑜𝑛.

Druhá (delší) je část evolventy k IS v první dráze druhé zatáčky. Tato evolventa začíná

v bodě na startu, ze kterého závodník může běžet rovně až nakonec první rovinky. Běží

tedy rovnou po tečně o délce t = 84,39 m + 15,609 m = 99,999 m.

Postup výpočtu souřadnic bodů této evolventy je totožný s postupem u Breakline.

V tomto případě je také evolutou IS v první dráze druhé zatáčky. Rozdílná je pouze

délka tečny t, z níž je vypočítán potřebný úhel 𝜑 = 99,99936,80

= 2,717364 𝑟𝑎𝑑 =

172,9928 𝑔𝑜𝑛 . Do výpočtu souřadnic vstupoval poloměr evoluty r = 36,80 m a úhel

odvalení φ v intervalu < 172,9928g , 200g >.

Křivka byla následně otočena o úhel α, rovnající se úhlu φ.

Tato problematiky je patrná z obrázků č. 16 a 17.

31

Page 39: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Obr. 16: Evolventa - Start závodu na 1 500 m

Obr. 17: Evolventa - Start závodu na 1 500 m (detail)

32

Page 40: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Souřadnice částí obou evolvent byly importovány do MS. Body první křivky (modře)

byly spojovány pomocí B-spline až k počátečnímu bodu druhé křivky (červeně). Odtud

pokračovala B-spline po bodech druhé křivky.

Následná kontrola vzdáleností provedených v MS potvrdila správnost výpočtů.

Start závodu na 1 míly

Délka jedné míle odpovídá 1 609,344 m. Z uvedeného údaje je patrné, že při závodu

uběhne běžec 4 celá kola, tj. 1 600 m. Do splnění vzdálenosti tedy zbývá 9,344 m, což

je také délka tečny t.

Startovní čára tohoto závodu je na první pohled část evolventy k IS první dráhy v první

zatáčce (obr. 18). Požadovaná část křivky má počátek při úhlu odvalení 𝜑 = 9,34436,80

=

0,253913 𝑟𝑎𝑑 = 16,1646 𝑔𝑜𝑛 .

Do výpočtu souřadnic startovní čáry tohoto závodu vstupuje poloměr evoluty

r = 36,80 m a úhel odvalení φ v intervalu < 16,1646gon , 60gon >. Pro správné umístění

křivky do výkresu následovalo otočení o úhel α, rovnající se úhlu odvalení φ.

Obr. 18: Start závodu na 1 míly

33

Page 41: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

7. Stadion ve městě Haugesund

7.1 Zaměření Zaměření skutečného stavu atletického oválu, nacházejícího se v norském městě

Haugesund, bylo provedeno ing. Lubošem Smržem. Na oválu proběhla renovace jeho

povrchu (retoping) a bylo tedy nutné znovu vyznačit potřebné linie čar.

Pro zaměření skutečného stavu oválu a následné vytyčování bylo nutné vybudovat

vytyčovací síť. Ta byla realizována šesti body (4001 – 4006), které byly signalizovány

odraznými fóliemi nalepenými na zábradlí kolem atletické dráhy. Body byly

rovnoměrně rozmístěny, vždy přibližně na začátku, uprostřed a na konci obou oblouků.

Měření totální stanicí (TS) bylo provedeno z bodu 9001 (přechodné stanovisko), který

byl přibližně uprostřed plochy uvnitř oválu. V první fázi byly pomocí prostorové polární

metody vypočteny souřadnice bodů (4001 – 4006) vztahující se k poloze TS (místní

síť). Následně byly metodou Volné stanovisko určeny souřadnice polohy TS v místní

síti. Jako orientace byly použity zmíněné body (4001 – 4006).

Poté bylo provedeno zaměření skutečného stavu oválu. Pro ověření rozměrů oválu byl

zaměřen vnitřní obrubník. Pro ověření rozměrů bezpečnostní zóny vně oválu, byly

zaměřeny maximální možné rozměry umělého povrchu. Nakonec byly zaměřeny tři

lomové body vodního příkopu a oba podstavce pro překážku před ním.

7.2 Zpracování zaměření

Body ze zaměření byly poskytnuty v textovém souboru (příloha č. 2), který byl

importován prostřednictvím systému Groma do MS (obr. 19).

7.2.1 Výpočet středů kružnicových oblouků

Z neuvedených důvodů nebyly zaměřeny středy oblouků oválu. S největší

pravděpodobnostní nebyly při původní konstrukci stadionu stabilizovány.

34

Page 42: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Vzhledem k těmto skutečnostem, bylo nutné středy oblouků určit početně. Určení

proběhlo metodou nejmenších čtverců pomocí zaměřených bodů vnitřního obrubníku.

Výpočet touto metodou byl realizován v programu Matlab za použití následujících

vzorů:

Středová rovnice kružnice: (𝑥 − 𝑥𝑠)2 + (𝑦 − 𝑦𝑠)2 = 𝑟2,

kde xs, ys jsou souřadnice středu kružnice

r je poloměr kružnice

tvar po úpravě: 𝑥2 − 2𝑥𝑥𝑠 + 𝑥𝑠2 + 𝑦2 − 2𝑦𝑦𝑠 + 𝑦𝑠2 = 𝑟2

dále se označí: 𝐷 = −2𝑥𝑠

𝐸 = −2𝑦𝑠

𝐹 = 𝑥𝑠2 + 𝑦𝑠2 − 𝑟2 = 14

(𝐷2 + 𝐸2) − 𝑟2

souřadnice středu: 𝑆 [𝑥𝑠;𝑦𝑠] → 𝑆 �−12𝐷; −1

2𝐸�

hodnota poloměru: 𝑟 = 12√𝐷2 − 4𝐹 + 𝐸2

středová rovnice po substituci: 𝑥2 + 𝑦2 + 𝐷𝑥 + 𝐸𝑦 + 𝐹 = 0

vyrovnání zprostředkujících měření metodou MNČ:

𝑥1 𝑦1 1𝑥2 𝑦2 1. . .𝑥𝑛 𝑦𝑛 1

� ∙ �𝐷𝐸𝐹� = −�

𝑥12 + 𝑦12

𝑥22 + 𝑦22.

𝑥𝑛2 + 𝑦𝑛2� → 𝐴 ∙ 𝑥 = −𝑏

𝑥 = −(𝐴𝑇𝐴)𝑇 ∙ 𝐴𝑇𝑏

35

Page 43: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Výpočtem byly zjištěny vyrovnané souřadnice středů a poloměry obou kružnicových

oblouků

oblouk (zatáčka) střed X [m] Y [m] poloměr r [m]

1. S1 195,338 49,931 36.5026 2. S2 210,528 132,938 36.5007

Vypočtené souřadnice středů oblouků byly přidány do seznamu souřadnic a zobrazeny

(obr. 19.).

Obr. 19: Stadion Haugesund - skutečný stav

černě body na obrubníku a body maximálního rozměru umělého povrchu modře body vodního příkopu a překážky před ním červeně body orientací a stanoviska zeleně vypočtené body středů oblouků

36

Page 44: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

7.2.2 Ověření rozměrů atletického oválu

Vyhodnocení rozměrů oválu bylo provedeno ve výpočetním systému Groma postupem

patrným z obrázku č. 5 a zaznamenáno v tabulce č. 4.

Měření Naměřená vzdálenost [m]

Odchylka od požadované

vzdálenosti [mm]

Výpočet délky IS z průměrné

odchylky [m] 1: S1 – 114 36,503 + 3

2: S1 – 115 36,503 + 3 3: S1 – 116 36,504 + 4 4: S1 – 117 36,502 + 2 5: S1 – 118 36,501 + 1 6: S1 – 119 36,505 + 5 7: S1 – 120 36,503 + 3 8: S1 – 121 36,501 + 1 9: S1 – 122 36,504 + 4 10: S1 – 123 36,502 + 2 11: S1 – 124 36,504 + 4 12: S1 – 125 36,501 + 1

1. oblouk

Průměr měření 1 – 12 + 33 / 12 = + 2,75 0,00275 x 3,1416 = + 0,0086

14: S2 – 101 36,501 + 1

15: S2 – 102 36,501 + 1 16: S2 – 103 36,497 - 3 17: S2 – 104 36,502 + 2 18: S2 – 105 36,503 + 3 19: S2 – 106 36,498 - 2 20: S2 – 107 36,500 ± 0 21: S2 – 108 36,501 + 1 22: S2 – 109 36,503 + 3 23: S2 – 110 36,497 - 3 24: S2 – 111 36,501 + 1 25: S2 – 112 36,501 + 1

2. oblouk

Průměr měření 14 – 25 + 5 / 12 = + 0,42 0,00042 x 3,1416 = + 0,0013

13: 125 – 101 84,392 + 2 26: 112 – 114 84,389 - 1

2 rovinky Součet měření 13 a 26 + 1 + 0,0010

37

Page 45: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Odchylka od délky IS [m]

1. oblouk + 0,0086 2. oblouk + 0,0013 2 rovinky + 0,0010 celkem + 0,0109

maximální povolená odchylka + 0,040 Tab. 4: Ověření rozměrů oválu

Dále byla ověřena vzdálenost mezi vypočtenými středy oblouků. Ty jsou od sebe

vzdáleny 84,385 m a splňují tedy požadovanou přesnost 84,390 m ± 0,005 m.

38

Page 46: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

8. Steeplechase

Jak již bylo uvedeno, pro potřeby vyznačení linie startu běhu na 3 000 m (resp.

2 000 m) překážek, je nutné znát skutečnou polohu vodního příkopu na oválu.

Existují dvě možnosti pro umístění vodního příkopu, které jsou dány manuálem:

1. Vodní příkop je umístěn uvnitř druhé zatáčky (obr. 20). Toto umístění je častější.

Obr. 20: Vodní příkop uvnitř druhé zatáčky

Uvnitř druhé zatáčky je vytvořena dráha skládající se z rovinky a přechodových

oblouků, široká 3,66 m. Dráha je vyznačena po obou stranách bílými lajnami, širokými

0,05 m. Na rovince je umístěn vodní příkop s rozměry 3,66 m (± 0,02 m) x 3,66 m

(± 0,02 m) x 0,50 m – 0,70 m (obr. 21). Z obrázku je patrné, že se délka vodního

příkopu měří od hrany překážky umístěné před ním.

39

Page 47: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Obr. 21: Vodní příkop - rozměry

A půdorys vodního příkopu B překážka před vodním příkopem C bokorys vodního příkopu

Pokud je dráha ohraničena zleva pouze bílou lajnou (namísto obrubníku), je IS v této

části oválu měřena 0,20 m od vnitřní bílé čáry.

40

Page 48: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

2. Vodní příkop je umístěn vně druhé zatáčky (obr. 22).

Obr. 22: Vodní příkop vně druhé zatáčky

V případě, kdy je vodní příkop umístěn uvnitř zatáčky, je uběhnutá vzdálenost přes

vodní příkop kratší než délka podél IS první dráhy.

V druhém případě, kdy je vodní příkop umístěn vně druhé zatáčky, je uběhnutá

vzdálenost naopak delší.

8.1 Vodní příkop uvnitř druhé zatáčky

Pro určení zkrácení, resp. prodloužení, uběhnuté vzdálenosti přes vodní příkop je nutné

ověřit jeho polohu a rozměry.

Na stadionu, jehož ovál je v rámci této BP zpracováván, je vodní příkop umístěn uvnitř

druhé zatáčky. Je tedy nutné ověřit, zda se vodní příkop nachází v poloze dané

manuálem (obr. 23).

41

Page 49: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Obr. 23: Vodní příkop - detail

1 odnímatelný obrubník 2 vodní příkop 3 rovinka uvnitř druhé zatáčky 4 vzdálenost IS od obrubníku, resp. od lajny dráhy uvnitř druhé zatáčky 5 střed oblouku

Z obrázku č. 23 je patrné, že vzdálenost rovinky od středu oblouku, podél kolmice

k rovince, by měla být 13,863 m + 16,000 m = 29,863 m. Dále by měla být rovinka

dlouhá 2·15,101 m = 30,202 m. Přechodové oblouky mezi rovinkou a obrubníkem

zatáčky mají poloměry r = 16,000 m.

Pro konstrukci rovinky s těmito vlastnostmi jsou důležité úhly β a α. Úhel β je středový

úhel určující začátek přechodového oblouku od začátku druhé zatáčky. Úhel α je

středový úhel určující délku přechodového oblouku.

42

Page 50: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

8.2 Ověření polohy a rozměrů vodního příkopu

Ověření polohy a rozměrů vodního příkopu na zpracovávaném oválu proběhlo v MS

pomocí zaměřených bodů a vypočteného středu druhého oblouku S2.

Postup kontroly polohy příkopu je patrný z obrázku č. 24.

Nejprve byla zkonstruována spojnice středů oblouků. Ta byla následně prodloužena ze

středu S2 až k obrubníku druhé zatáčky. Poté byla bodem č. 1, zaměřeným v rohu

vodního příkopu, vedena kolmice prodloužené spojnici středů. Následně byla změřena

vzdálenost d = 29,769 m mezi vytvořeným průsečíkem P a středem S2.

Obr. 24: Poloha vodního příkopu

Postup kontroly rozměrů příkopu je patrný z obrázku č. 25.

Obr. 25: Rozměry vodního příkopu

43

Page 51: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

8.3 Projektování značení dráhy vedoucí přes vodní příkop

Z naměřených hodnot (tab. 5) lze prohlásit, že vodní příkop splňuje předepsané

rozměry, ale nenachází se v předepsané poloze. Je blíže ke středu, proto není možné pro

značení zachovat délku rovinky (30,202 m) a hodnoty úhlů β a α.

Poloha a rozměry vodního příkopu

Skutečný stav IAAF

poloha (vzdálenost rovinky od středu podél kolmice) 29,769 m 29,863 m

délka vodního příkopu 3,674 m 3,66 m ± 0,02 m

šířka vodního příkopu 3,665 m 3,66 m ± 0,02 m Tab. 5: Poloha a rozměry vodního příkopu

Je tedy nutné navrhnout značení rovinky a přechodových oblouků pro dráhu vedoucí

přes vodní příkop.

Před projektováním byl určen požadavek, aby přechodové oblouky měly poloměr

rp = 16,000 m, jak předepisuje manuál.

Celý návrh značení byl proveden v prostředí MS. Nejprve byla vytvořena linie (l1)

kolmá na prodlouženou spojnici středů oblouků a procházející bodem č. 1. Následně

byla tato linie rovnoběžně zkopírována ve vzdálenosti 16,000 m směrem ke středu (l2).

Poté byla ze středu S2 sestrojena část kružnice (k1) o poloměru 20,501 m (= 36,501 m –

16,000 m). Zde byla uvažována vypočtená průměrná hodnota poloměru druhého

oblouku (tab. 4). Na průsečících linie (l2) s kružnicí (k1) leží středy přechodových

oblouků (s1, s2). Následně byla linie (l1) určující rovinku prodloužena, resp. zkrácena

tak, aby její délka byla stejná, jako vzdálenost vytvořených středů. Poté byly vytvořeny

přechodové oblouky o poloměru rp = 16,000 m, které začínají na prodloužené spojnici

středů S2 - s1 (resp. S2 – s2) a končí na koncích linie (l1) určující rovinku. Nakonec

byla vytvořena vnější linie rovinky (l3), která je rovnoběžná s linií (l1) a prochází

hranou vodního příkopu.

44

Page 52: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Celý postup zmíněné konstrukce je patrný z obrázku č. 26.

Obr. 26: Projekt dráhy pro vodní příkop

Z výkresu byly zjištěny hodnoty potřebně pro realizaci značení (tab. 6).

Středový úhel pro určení začátku přechodového oblouku β = 46,8807gon

Středový úhel pro určení délky přechodového oblouku α = 53,1193gon

Poloměr přechodového oblouku rp = 16,000 m

Polovina délky rovinky c = 15,189 m Tab. 6: Hodnoty prvků dráhy vedoucí přes vodní příkop

45

Page 53: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

8.4. Určení linií startů

Pro přesné určení linií startů závodů je nutné znát, o kolik se zkrátí délka dráhy

uběhnutá závodníkem přes vodní příkop oproti standardní délce oválu (400 m).

Výpočet zkrácení dráhy byl určen pomocí oficiálních tabulek IAAF pro certifikaci

stadionů (tab. 7, tab. 8).

Measured Standard IAAF

Radius of inner lane: R = 36.5013 m 36.50m

Theoretical running line of the track: L = 0.30 m 0.30m

The steeplechase track has an inside kerb.

Y N

Theoretical running line of the steeple: l = 0.20 m 0.20m

Axis: S = 84.385 m 84.39m

Radius of steeplechase kerb/inside line r = 16.000 m 16.00m

Angle 1 Track: β = 46.8807 gon 47.2806 gon 42.5525 deg

Angle 2 Steeplechase: α = 53.1193 gon 52.7194 gon 47.4475 deg

Tab. 7: IAAF délka Steeplechase - 1. část

R

r

αβ

1

2c

Obr. 27: IAAF: Výpočet - Steeplechase

46

Page 54: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Measured Standard IAAF Formula

Length curve 1 (Running track): a 27.100 m (+) 27.331 m (+) π x β x (R+L) 200

Length curve 2 (Steeplechase): b 13.517 m (+) 13.415 m (+) π x α x (r+l) 200

Length c: c 15.189 m (+) 15.101 m (+) z 55.806 m (=) 55.847 m (=) = a + b + c Steeplechase curve: 111.612 m (=) 111.694 m (=) = z x 2 Normal curve: d 115.615 m (+) 115.610 m (+) Steeplechase curve: e 111.612 m (-) 111.694 m (-) Shortening measure: VM 4.003 m (=) 3.916 m (=) = d-e Steeplechase lap: 395.997 m (=) 396.084 m = 400 -VM

Tab. 8: IAAF délka Steeplechase - 2. část

V tabulce č. 8 byla vypočtena délka jednoho oválu podél IS běžena přes vodní příkop

(Steeplechase lap = 395,997 m).

Pro určení polohy startů byla také použita tabulka pro certifikaci stadionů (tab. 9), ve

které se počítají násobky hodnoty VM v závislosti na délce závodu (tab. 8).

Measured Standard IAAF Location 2000 m Steeplechase 5 VM 20.015 m 19.580 m in front of A 3000 m Steeplechase 7 VM 28.021 m 27.412 m in front of C

Tab. 9: IAAF poloha startů Steeplechase

2 000 m Steeplechase

Z tabulky č. 9 vyplývá, že start závodu 2 000 m Steeplechase se nachází 20,015 m před

bodem A (obr. 1) podél IS první dráhy. Jelikož je startovní linie křivka, ze které se

závodníci ihned po startu sbíhají do první dráhy, jedná se také o evolventu. V tomto

případě bylo nutné najít část evolventy pro délku tečny t = 20,015 m evoluty

o poloměru r = 36,80 m.

Start závodu 2 000 m Steeplechase je tedy část evolventy, která začíná při úhlu odvalení

𝜑 = 20,01536,80

= 0,543886 𝑟𝑎𝑑 = 34,6249 𝑔𝑜𝑛. Souřadnice bodů této křivky byly

vypočteny opět v Matlabu a importovány do výkresu. Zde byly body spojeny B-spline

křivkou a vytvořen průsečík křivky s vodící čarou osmé dráhy.

47

Page 55: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

3 000 m Steeplechase

Startovní linie závodu 3 000 m Steeplechase byla vytvořena stejným postupem jako

start závodu 2 000 m Steeplechase. Jediným rozdílem při výpočtu byly vstupní hodnoty.

Část evolventy byla vypočtena pro tečnu evoluty t = 28,021 m a úhel odvalení

𝜑 = 28,02136,80

= 0,761440 𝑟𝑎𝑑 = 48,4748 𝑔𝑜𝑛.

Obr. 28: Starty závodů Steeplechase

48

Page 56: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

9. Příprava před vytyčováním

Aby bylo možné použít vytvořený výkres pro vytyčování, je nutné jej transformovat na

skutečný stav stadionu, tedy do vytvořené místní sítě.

Tato operace byla provedena v prostředí MS. Nejprve byla vytvořena spojnice

vypočtených středů oblouků. Poté byl určen její střed. Stejným způsobem byl určen i

střed spojnice středů výkresu. Určené středy spojnic jsou zároveň jejich těžišti.

Následovalo ztotožnění obou těžišť, při kterém byl posunut vytvořený výkres. Poté byl

výkres otočen kolem těžiště tak, aby se spojnice jeho středů ztotožnila se spojnicí

vypočtených středů (příloha č. 3).

Tím byl projekt transformován na skutečný stav stadionu a mohlo být také provedeno

ověření rozměrů bezpečnostní zóny vně oválu. Bylo změřeno, že v každém místě oválu

by měl zůstat po vytyčení minimálně 1 m široký prostor. Tím je tedy splněna podmínka

pro rozměr bezpečnostní zóny.

49

Page 57: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Závěr

Tato bakalářská práce popisuje podrobnou metodiku postupu při ověřování

rozměrů atletického oválu a přípravu pro následné vytyčování značení na jeho povrchu.

Z počátku bylo nejkomplikovanější a časově nejnáročnější částí práce pochopení

principů při určování zakřivených linií – evolvent. Jednotlivé výpočty těchto

specifických křivek byly provedeny v softwaru Matlab a prakticky se jedná pouze

o modifikaci jednoho výpočetního postupu, který je ovšem nutné stoprocentně chápat.

Naprogramované výpočty, výsledné souřadnice bodů evolvent a souřadnice

vytvořených průsečíků (v soustavě výkresu) jsou k nahlédnutí v příloze č. 4.

Výsledkem této práce je vytvořený digitální výkres, který byl transformován do

místního souřadnicového systému stadionu (Haugesund), jehož rozměry byly po

ověření prohlášeny za standardní. Z výkresu je tedy možné získat souřadnice

konkrétních bodů, které je nutné pro realizaci značení vytyčit. Vytyčení bodů by bylo

provedeno polární metodou z přechodného stanoviska, jehož souřadnice by byly

vypočteny metodou volné stanovisko s orientacemi na určené body místní sítě.

Pro potřeby certifikace stadionu by bylo nutné zaměřit polohu všech vyznačených linií

a naměřené hodnoty zaznamenat do oficiálního formuláře2 IAAF. Dále by bylo nutné

znát veškeré vybavení stadionu pro další disciplíny lehké atletiky. Vytyčení značení

a vyhotovení certifikačního formuláře by mohlo být předmětem další (diplomové)

práce.

Problematika atletických oválů mne velice zaujala a rád bych se jí nadále věnoval.

Bohužel vzhledem k poloze zpracovávaného atletického oválu a ojedinělosti takovýchto

projektů v rámci ČR, jsem neměl zatím tu možnost sledovat postup při vytyčování, ani

samotnou realizaci značení.

Zajímavou problematikou by mohly být výpočty spojené se značením oválů

nestandardních rozměrů.

2 Certifikační formulář REPORT FORMS - Measurement Report Forms – Outdoor je k dispozici na http://www.iaaf.org/about-iaaf/documents/technical

50

Page 58: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Použitá literatura

[1] IAAF Track and Field Facilities Manual 2008 Edition – Chapters 1 – 3

Dostupné z http://www.iaaf.org/about-iaaf/documents/technical

[2] BUDINSKÝ, Bruno. Základy diferenciální geometrie s technickými aplikacemi.

Vyd. 1. Praha: SNTL, 1970, 342 s.

51

Page 59: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Seznam obrázků

Obr. 1: Rozměry standardního oválu ................................................................................ 4

Obr. 2: Ideální stopy ......................................................................................................... 5

Obr. 3: Kontrolní měření na standardním oválu ............................................................... 6

Obr. 4: Stabilizace středů .................................................................................................. 7

Obr. 5: Vyhodnocení kontrolního měření ......................................................................... 9

Obr. 6: Starty závodu na 5 000 m (1 000 m, 3 000 m) ................................................... 14

Obr. 7: Starty závodu na 10 000 m (2 000 m) ................................................................ 15

Obr. 8: Evolventa kružnice ............................................................................................. 20

Obr. 9: Evolventa ............................................................................................................ 23

Obr. 10: Evolventa - chybný výpočet (detail) ................................................................. 24

Obr. 11: Evolventa - chybný výpočet (posun) ................................................................ 25

Obr. 12: Evolventa - část křivky v obecné poloze .......................................................... 26

Obr. 13: Evolventa - Breakline ....................................................................................... 27

Obr. 14: Evolventa - Breakline (detail) .......................................................................... 27

Obr. 15: Starty závodů (5 000 m, 10 000 m) .................................................................. 30

Obr. 16: Evolventa - Start závodu na 1 500 m ................................................................ 32

Obr. 17: Evolventa - Start závodu na 1 500 m (detail) ................................................... 32

Obr. 18: Start závodu na 1 míly ...................................................................................... 33

Obr. 19: Stadion Haugesund - skutečný stav .................................................................. 36

Obr. 20: Vodní příkop uvnitř druhé zatáčky ................................................................... 39

Obr. 21: Vodní příkop - rozměry .................................................................................... 40

Obr. 22: Vodní příkop vně druhé zatáčky ....................................................................... 41

Obr. 23: Vodní příkop - detail ........................................................................................ 42

Obr. 24: Poloha vodního příkopu ................................................................................... 43

Obr. 25: Rozměry vodního příkopu ................................................................................ 43

Obr. 26: Projekt dráhy pro vodní příkop ......................................................................... 45

Obr. 27: IAAF: Výpočet - Steeplechase ......................................................................... 46

Obr. 28: Starty závodů Steeplechase .............................................................................. 48

52

Page 60: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Seznam tabulek

Tab. 1: Posunuté starty závodů (hodnoty v m) ............................................................... 12

Tab. 2: Překážkové závody (hodnoty v m) ..................................................................... 16

Tab. 3: Evolventa (jednotky m/gon) ............................................................................... 23

Tab. 4: Ověření rozměrů oválu ....................................................................................... 38

Tab. 5: Poloha a rozměry vodního příkopu .................................................................... 44

Tab. 6: Hodnoty prvků dráhy vedoucí přes vodní příkop ............................................... 45

Tab. 7: IAAF délka Steeplechase - 1. část ...................................................................... 46

Tab. 8: IAAF délka Steeplechase - 2. část ...................................................................... 47

Tab. 9: IAAF poloha startů Steeplechase ....................................................................... 47

53

Page 61: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Seznam příloh

1 IAAF Track and Field Facilities Manual 2008 Edition - Marking Plan 400m Standard

Track (plán značení standardního oválu)

2 Souřadnice bodů ze zaměření skutečného stavu stadionu ......................................... 55

3 Vytvořený výkres transformovaný do místní souřadnicové soustavy stadionu

4 Výpočetní skripty evolvent a jejich výsledky ............................................................ 56

54

Page 62: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Příloha č. 2

Souřadnice bodů ze zaměření skutečného stavu stadionu

Číslo bodu X [m] Y [m]

1 211,934 162,944

2 212,543 166,566

3 209,051 167,189

4 212,617 166,229

5 212,112 163,240

101 246,433 126,369

102 246,827 136,777

103 244,254 146,887

104 239,014 155,762

105 231,439 162,858

106 222,123 167,545

107 211,898 169,412

108 201,556 168,319

109 191,943 164,356

110 183,884 157,880

111 177,929 149,359

112 174,624 139,514

113 167,137 98,601

114 159,432 56,504

115 159,038 46,084

116 161,606 35,978

117 166,854 27,105

118 174,450 19,997

119 183,727 15,322

120 193,955 13,454

121 204,346 14,559

122 213,925 18,513

123 221,976 24,975

124 227,947 33,524

125 231,242 43,355

126 238,360 82,250

301 257,040 124,421

302 257,568 137,715

Číslo bodu X [m] Y [m]

303 254,523 150,255

304 248,198 161,508

305 238,330 171,175

306 226,940 177,272

307 213,626 180,112

308 199,698 178,956

309 187,517 174,237

310 178,911 168,090

311 169,215 169,864

312 157,470 105,693

313 145,736 41,577

314 148,919 40,992

315 152,782 29,337

316 159,475 19,117

317 168,746 10,831

318 180,543 5,023

319 192,681 2,721

320 205,161 3,681

321 217,743 8,298

322 227,251 15,047

323 236,005 25,815

324 241,828 41,369

325 249,370 82,535

4001 179,273 168,459

4002 218,214 179,613

4003 256,981 141,964

4004 226,467 14,300

4005 187,511 3,250

4006 148,862 40,898

9001 204,545 87,137

55

Page 63: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Příloha č. 4

Výpočetní skripty evolvent a jejich výsledky

Breakline clc;clear; format long g pi=3.1416; % zaokrouhleno dle manualu rad=pi/200; gon=200/pi; %% vypocet evolventy a=36.8; % delka tecny v idealni stope v prvni draze je 84.39m t=(84.39/36.8)*gon:0.001:170; tt= t*rad; x=[];y=[]; R1=[200,200]; R2=[200,284.39]; %% evolventa for i=1:length(t) xX(i)=(a)*(cos(tt(i)) + (tt(i))*sin(tt(i)) ); yY(i)=(a)*(sin(tt(i)) - (tt(i))*cos(tt(i)) ); alfa= -84.39/36.8; x(i)=xX(i)*cos(alfa)- yY(i)*sin(alfa)+R2(1); y(i)=xX(i)*sin(alfa)+ yY(i)*cos(alfa)+R2(2); end vysledky=[x',y']; %% body Breakline vzdalene 0.4m Body_E=[x(1) y(1)]; a=1; rozdil=0.4; for i=1:length(x) vzdal= sqrt((Body_E(a,1)-x(i))^2+(Body_E(a,2)-y(i))^2); vzdal_1= sqrt((Body_E(1,1)-x(i))^2+(Body_E(1,2)-y(i))^2); if vzdal>=rozdil && vzdal_1 <=10 Body_E(a+1,1)=x(i); Body_E(a+1,2)=y(i); a=a+1; end

end Body_Ex=Body_E(:,1); Body_Ey=Body_E(:,2); for i=1:length(Body_Ey) MS(i,1)=i+1000; MS(i,2)=(Body_Ex(i)); MS(i,3)=(Body_Ey(i)); end MS; fid = fopen('BreaklineXY.txt','w'); fprintf(fid,'%6.0f %12.3f %12.3f\n',MS'); fclose(fid); Výsledky 1001 236.800 200.000 1002 237.201 200.001 1003 237.601 200.004 1004 238.002 200.009 1005 238.403 200.015 1006 238.802 200.024 1007 239.203 200.034 1008 239.603 200.046 1009 240.004 200.061 1010 240.404 200.077 1011 240.804 200.094 1012 241.204 200.114 1013 241.604 200.136 1014 242.004 200.159 1015 242.404 200.185 1016 242.804 200.212 1017 243.204 200.241 1018 243.603 200.271 1019 244.002 200.304 1020 244.401 200.339 1021 244.800 200.375 1022 245.199 200.413 1023 245.598 200.453 1024 245.997 200.495 1025 246.396 200.539 prusecik_1 237.720 200.005 prusecik_8 246.260 200.524 Breakpoint 158.620 284.267

56

Page 64: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Start 1 000m, 3 000m a 5 000m clc;clear; format long g pi=3.1416; % zaokrouhleno dle manualu rad=pi/200; gon=200/pi; %% vypocet evolventy a=36.8; t=0:0.001:50; tt= t*rad; x=[];y=[]; R1=[200,200]; R2=[200,284.39]; %% evolventa for i=1:length(t) xX(i)=(a)*(cos(tt(i)) + (tt(i))*sin(tt(i)) ); yY(i)=(a)*(sin(tt(i)) - (tt(i))*cos(tt(i)) ); alfa= 0; x(i)=xX(i)*cos(alfa)- yY(i)*sin(alfa)+R2(1); y(i)=xX(i)*sin(alfa)+ yY(i)*cos(alfa)+R2(2); end vysledky=[x',y']; %% body evolventy Start 1000m/3000m/5000m vzdalene 0.4m Body_E=[x(1) y(1)]; a=1; rozdil=0.4; for i=1:length(x) vzdal= sqrt((Body_E(a,1)-x(i))^2+(Body_E(a,2)-y(i))^2); vzdal_1= sqrt((Body_E(1,1)-x(i))^2+(Body_E(1,2)-y(i))^2); if vzdal>=rozdil && vzdal_1 <=15 Body_E(a+1,1)=x(i); Body_E(a+1,2)=y(i); a=a+1; end end

Body_Ex=Body_E(:,1); Body_Ey=Body_E(:,2); for i=1:length(Body_Ey) MS(i,1)=i+1100; MS(i,2)=(Body_Ex(i)); MS(i,3)=(Body_Ey(i)); end MS; fid = fopen('Start_1km3km5kmXY.txt','w'); fprintf(fid,'%6.0f %12.3f %12.3f\n',MS'); fclose(fid); Výsledky 1101 236.800 284.390 1102 237.198 284.429 1103 237.592 284.501 1104 237.981 284.593 1105 238.366 284.702 1106 238.747 284.825 1107 239.123 284.961 1108 239.495 285.107 1109 239.863 285.265 1110 240.227 285.431 1111 240.586 285.607 1112 240.942 285.791 1113 241.293 285.983 1114 241.640 286.182 1115 241.983 286.389 1116 242.321 286.602 1117 242.656 286.821 1118 242.987 287.047 1119 243.313 287.278 1120 243.636 287.516 1121 243.954 287.758 1122 244.268 288.006 1123 244.578 288.259 1124 244.885 288.517 1125 245.187 288.779 1126 245.485 289.046 1127 245.780 289.317 1128 246.070 289.593 1129 246.356 289.872 prusecik_8 245.977 289.503

57

Page 65: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Start 2 000m a 10 000m clc;clear; format long g pi=3.1416; % zaokrouhleno dle manualu rad=pi/200; gon=200/pi; %% vypocet evolventy a=36.8; t=0:0.001:50; tt= t*rad; x=[];y=[]; R1=[200,200]; R2=[200,284.39]; %% evolventa for i=1:length(t) xX(i)=(a)*(cos(tt(i)) + (tt(i))*sin(tt(i)) ); yY(i)=(a)*(sin(tt(i)) - (tt(i))*cos(tt(i)) ); alfa= pi; x(i)=xX(i)*cos(alfa)- yY(i)*sin(alfa)+R1(1); y(i)=xX(i)*sin(alfa)+ yY(i)*cos(alfa)+R1(2); end vysledky=[x',y']; %% body evolventy start 2000m/10000m vzdalene 0.4m Body_E=[x(1) y(1)]; a=1; rozdil=0.4; for i=1:length(x) vzdal= sqrt((Body_E(a,1)-x(i))^2+(Body_E(a,2)-y(i))^2); vzdal_1= sqrt((Body_E(1,1)-x(i))^2+(Body_E(1,2)-y(i))^2); if vzdal>=rozdil && vzdal_1 <=15 Body_E(a+1,1)=x(i); Body_E(a+1,2)=y(i); a=a+1; end end Body_Ex=Body_E(:,1);

Body_Ey=Body_E(:,2); for i=1:length(Body_Ey) MS(i,1)=i+1200; MS(i,2)=(Body_Ex(i)); MS(i,3)=(Body_Ey(i)); end MS; fid = fopen('Start_2km10kmXY.txt','w'); fprintf(fid,'%6.0f %12.3f %12.3f\n',MS'); fclose(fid); Výsledky 1201 163.200 200.000 1202 162.802 199.960 1203 162.408 199.889 1204 162.019 199.797 1205 161.634 199.688 1206 161.253 199.565 1207 160.877 199.429 1208 160.505 199.282 1209 160.137 199.125 1210 159.773 198.958 1211 159.414 198.783 1212 159.058 198.599 1213 158.707 198.407 1214 158.360 198.207 1215 158.017 198.001 1216 157.679 197.788 1217 157.344 197.568 1218 157.013 197.343 1219 156.687 197.111 1220 156.364 196.874 1221 156.046 196.632 1222 155.732 196.384 1223 155.422 196.131 1224 155.115 195.873 1225 154.813 195.611 1226 154.515 195.344 1227 154.220 195.072 1228 153.930 194.797 1229 153.644 194.517 prusecik_8 154.024 194.886

58

Page 66: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Posunutý start 1 000m, 3 000m a 5 000m clc;clear; format long g pi=3.1416; % zaokrouhleno dle manualu rad=pi/200; gon=200/pi; %% vypocet evolventy a=41.58; %polomer oblouku idealni stopy ctvrte drahy t=0:0.001:33; tt= t*rad; x=[];y=[]; R1=[200,200]; R2=[200,284.39]; %% evolventa for i=1:length(t) xX(i)=(a)*(cos(tt(i)) + (tt(i))*sin(tt(i)) ); yY(i)=(a)*(sin(tt(i)) - (tt(i))*cos(tt(i)) ); alfa= 15.151/a; % 15.151 vzdalenost podel IS ctvrte drahy (stejne jako start na 800m) x(i)=xX(i)*cos(alfa)- yY(i)*sin(alfa)+R2(1); y(i)=xX(i)*sin(alfa)+ yY(i)*cos(alfa)+R2(2); end vysledky=[x',y']; %% body evolventy Vnejsi start 1000m/3000m/5000m vzdalene 0.4m Body_E=[x(1) y(1)]; a=1; rozdil=0.4; for i=1:length(x) vzdal= sqrt((Body_E(a,1)-x(i))^2+(Body_E(a,2)-y(i))^2); vzdal_1= sqrt((Body_E(1,1)-x(i))^2+(Body_E(1,2)-y(i))^2); if vzdal>=rozdil && vzdal_1 <=6

Body_E(a+1,1)=x(i); Body_E(a+1,2)=y(i); a=a+1; end end Body_Ex=Body_E(:,1); Body_Ey=Body_E(:,2); for i=1:length(Body_Ey) MS(i,1)=i+1150; MS(i,2)=(Body_Ex(i)); MS(i,3)=(Body_Ey(i)); end MS; fid = fopen('Start_1km3km5km_vnejsiXY.txt','w'); fprintf(fid,'%6.0f %12.3f %12.3f\n',MS'); fclose(fid); Výsledky 1151 238.850 299.208 1152 239.209 299.384 1153 239.554 299.588 1154 239.887 299.808 1155 240.212 300.042 1156 240.529 300.287 1157 240.837 300.541 1158 241.139 300.805 1159 241.433 301.076 1160 241.720 301.354 1161 242.001 301.638 1162 242.276 301.929 1163 242.545 302.226 1164 242.807 302.528 prusecik_8 242.639 302.333 prusecik_4 238.663 299.137

59

Page 67: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Posunutý start 2 000m a 10 000m clc;clear; format long g pi=3.1416; % zaokrouhleno dle manualu rad=pi/200; gon=200/pi; %% vypocet evolventy a=41.58; %polomer oblouku idealni stopy ctvrte drahy t=0:0.001:33; tt= t*rad; x=[];y=[]; R1=[200,200]; R2=[200,284.39]; %% evolventa for i=1:length(t) xX(i)=(a)*(cos(tt(i)) + (tt(i))*sin(tt(i)) ); yY(i)=(a)*(sin(tt(i)) - (tt(i))*cos(tt(i)) ); alfa= 15.151/a + pi; % 15.151 vzdalenost podel IS ctvrte drahy (stejne jako start na 800m) x(i)=xX(i)*cos(alfa)- yY(i)*sin(alfa) +R1(1); y(i)=xX(i)*sin(alfa)+ yY(i)*cos(alfa) +R1(2); end vysledky=[x',y']; %% body evolventy Vnejsi start 2000m/10000m vzdalene 0.4m Body_E=[x(1) y(1)]; a=1; rozdil=0.4; for i=1:length(x) vzdal= sqrt((Body_E(a,1)-x(i))^2+(Body_E(a,2)-y(i))^2); vzdal_1= sqrt((Body_E(1,1)-x(i))^2+(Body_E(1,2)-y(i))^2);

if vzdal>=rozdil && vzdal_1 <=6 Body_E(a+1,1)=x(i); Body_E(a+1,2)=y(i); a=a+1; end end Body_Ex=Body_E(:,1); Body_Ey=Body_E(:,2); for i=1:length(Body_Ey) MS(i,1)=i+1250; MS(i,2)=(Body_Ex(i)); MS(i,3)=(Body_Ey(i)); end MS; fid = fopen('Start_2km10km_vnejsiXY.txt','w'); fprintf(fid,'%6.0f %12.3f %12.3f\n',MS'); fclose(fid); Výsledky 1251 161.150 185.182 1252 160.791 185.005 1253 160.447 184.802 1254 160.113 184.581 1255 159.788 184.348 1256 159.471 184.103 1257 159.163 183.848 1258 158.862 183.585 1259 158.567 183.314 1260 158.280 183.036 1261 157.999 182.751 1262 157.724 182.460 1263 157.455 182.164 1264 157.193 181.862 prusecik_8 157.361 182.058

61

Page 68: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

První část startu 1500m clc;clear; format long g pi=3.1416; % zaokrouhleno dle manualu rad=pi/200; gon=200/pi; %% vypocet evolventy %delka tecny zbytek=1500 - 3*400 - 2*84.39 - pi*36.8; % rozdil delky zavodu a ubehnutych celych kol a celych useku a=36.8; t=0:0.001:100; tt= t*rad; x=[];y=[]; R1=[200,200]; R2=[200,284.39]; %% evolventa for i=1:length(t) xX(i)=(a)*(cos(tt(i)) + (tt(i))*sin(tt(i)) ); yY(i)=(a)*(sin(tt(i)) - (tt(i))*cos(tt(i)) ); alfa= -zbytek/36.8; x(i)=xX(i)*cos(alfa)- yY(i)*sin(alfa)+R1(1); y(i)=xX(i)*sin(alfa)+ yY(i)*cos(alfa)+R1(2); end vysledky=[x',y']; %% body evolventy start 1500m vzdalene 0.4m Body_E=[x(1) y(1)]; a=1;

rozdil=0.4; for i=1:length(x) vzdal= sqrt((Body_E(a,1)-x(i))^2+(Body_E(a,2)-y(i))^2); vzdal_1= sqrt((Body_E(1,1)-x(i))^2+(Body_E(1,2)-y(i))^2); if vzdal>=rozdil && vzdal_1 <=5 Body_E(a+1,1)=x(i); Body_E(a+1,2)=y(i); a=a+1; end end Body_Ex=Body_E(:,1); Body_Ey=Body_E(:,2); for i=1:length(Body_Ey) MS(i,1)=i+1400; MS(i,2)=(Body_Ex(i)); MS(i,3)=(Body_Ey(i)); end MS; fid = fopen('Start_1500mXY_cast1.txt','w'); fprintf(fid,'%6.0f %12.3f %12.3f\n',MS'); fclose(fid); Výsledky 1401 233.539 184.855 1402 233.918 184.727 1403 234.306 184.630 1404 234.699 184.554 1405 235.094 184.495 1406 235.492 184.450 1407 235.891 184.419 1408 236.291 184.399 1409 236.691 184.391

61

Page 69: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Druhá část startu 1500m clc;clear; format long g pi=3.1416; % zaokrouhleno dle manualu rad=pi/200; gon=200/pi; %% vypocet evolventy a=36.8; %delka tecny zbytek=1500 - 3*400 - 2*84.39 - pi*36.8; % rozdil delky zavodu a ubehnutych celych kol a celych useku t=((84.39+zbytek)/36.8)*gon:0.001:200; tt= t*rad; x=[];y=[]; R1=[200,200]; R2=[200,284.39]; %% evolventa for i=1:length(t) xX(i)=(a)*(cos(tt(i)) + (tt(i))*sin(tt(i)) ); yY(i)=(a)*(sin(tt(i)) - (tt(i))*cos(tt(i)) ); alfa= -((84.39+zbytek)/36.8); x(i)=xX(i)*cos(alfa)- yY(i)*sin(alfa)+R2(1); y(i)=xX(i)*sin(alfa)+ yY(i)*cos(alfa)+R2(2); end vysledky=[x',y']; %% body evolventy start 1500m vzdalene 0.4m Body_E=[x(1) y(1)]; a=1; rozdil=0.4; for i=1:length(x) vzdal= sqrt((Body_E(a,1)-x(i))^2+(Body_E(a,2)-y(i))^2); vzdal_1= sqrt((Body_E(1,1)-x(i))^2+(Body_E(1,2)-y(i))^2); if vzdal>=rozdil && vzdal_1 <=9 Body_E(a+1,1)=x(i); Body_E(a+1,2)=y(i);

a=a+1; end end Body_Ex=Body_E(:,1); Body_Ey=Body_E(:,2); for i=1:length(Body_Ey) MS(i,1)=i+1450; MS(i,2)=(Body_Ex(i)); MS(i,3)=(Body_Ey(i)); end MS; fid = fopen('Start_1500mXY_cast2.txt','w'); fprintf(fid,'%6.0f %12.3f %12.3f\n',MS'); fclose(fid); Výsledky 1451 236.800 184.391 1452 237.201 184.392 1453 237.602 184.394 1454 238.003 184.398 1455 238.404 184.404 1456 238.804 184.411 1457 239.204 184.420 1458 239.605 184.430 1459 240.005 184.442 1460 240.406 184.456 1461 240.807 184.471 1462 241.207 184.488 1463 241.607 184.506 1464 242.008 184.526 1465 242.408 184.547 1466 242.809 184.570 1467 243.209 184.595 1468 243.609 184.621 1469 244.009 184.649 1470 244.408 184.678 1471 244.808 184.709 1472 245.207 184.741 1473 245.606 184.775 prusecik_8 243.629 184.622

62

Page 70: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Mile clc;clear; format long g pi=3.1416; % zaokrouhleno dle manualu rad=pi/200; gon=200/pi; %% vypocet evolventy a=36.8; % delka mile je 1609.344m %delka tecny zbytek=1609.344 - 4*400; % rozdil delky zavodu a ubehnutych celych kol t=(zbytek/36.8)*gon:0.001:53; tt= t*rad; x=[];y=[]; R1=[200,200]; R2=[200,284.39]; %% evolventa for i=1:length(t) xX(i)=(a)*(cos(tt(i)) + (tt(i))*sin(tt(i)) ); yY(i)=(a)*(sin(tt(i)) - (tt(i))*cos(tt(i)) ); % otoceni o stredovy uhel alfa= -(zbytek)/36.8 + pi; x(i)=xX(i)*cos(alfa)- yY(i)*sin(alfa)+R1(1); y(i)=xX(i)*sin(alfa)+ yY(i)*cos(alfa)+R1(2); end vysledky=[x',y']; %% body evolventy start Mile vzdalene 0.4m Body_E=[x(1) y(1)]; a=1; rozdil=0.4; for i=1:length(x) vzdal= sqrt((Body_E(a,1)-x(i))^2+(Body_E(a,2)-y(i))^2); vzdal_1= sqrt((Body_E(1,1)-x(i))^2+(Body_E(1,2)-y(i))^2); if vzdal>=rozdil && vzdal_1 <=12 Body_E(a+1,1)=x(i); Body_E(a+1,2)=y(i); a=a+1; end end

Body_Ex=Body_E(:,1); Body_Ey=Body_E(:,2); for i=1:length(Body_Ey) MS(i,1)=i+1300; MS(i,2)=(Body_Ex(i)); MS(i,3)=(Body_Ey(i)); end MS; fid = fopen('MileXY.txt','w'); fprintf(fid,'%6.0f %12.3f %12.3f\n',MS'); fclose(fid); Výsledky 1301 163.200 209.344 1302 162.800 209.336 1303 162.401 209.313 1304 162.002 209.276 1305 161.605 209.228 1306 161.209 209.169 1307 160.815 209.099 1308 160.423 209.020 1309 160.033 208.931 1310 159.644 208.834 1311 159.258 208.728 1312 158.874 208.615 1313 158.493 208.494 1314 158.114 208.366 1315 157.737 208.231 1316 157.363 208.089 1317 156.992 207.941 1318 156.622 207.786 1319 156.256 207.625 1320 155.892 207.459 1321 155.531 207.286 1322 155.172 207.109 1323 154.817 206.925 1324 154.464 206.737 1325 154.113 206.544 1326 153.766 206.345 1327 153.421 206.142 1328 153.079 205.934 1329 152.740 205.721 prusecik_0 163.500 209.344 prusecik_8 153.740 206.330

63

Page 71: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Steeplechase 2000m clc;clear; format long g pi=3.1416; % zaokrouhleno dle manualu rad=pi/200; gon=200/pi; %% vypocet evolventy a=36.8; % delka tecny v idealni stope v prvni draze je 20.015 t=(20.015/36.8)*gon:0.001:70; tt= t*rad; x=[];y=[]; R1=[200,200]; R2=[200,284.39]; %% evolventa for i=1:length(t) xX(i)=(a)*(cos(tt(i)) + (tt(i))*sin(tt(i)) ); yY(i)=(a)*(sin(tt(i)) - (tt(i))*cos(tt(i)) ); % otoceni o stredovy uhel alfa= -(20.015)/36.8 + pi; x(i)=xX(i)*cos(alfa)- yY(i)*sin(alfa)+R1(1); y(i)=xX(i)*sin(alfa)+ yY(i)*cos(alfa)+R1(2); end vysledky=[x',y']; %% body evolventy start Mile vzdalene 0.4m Body_E=[x(1) y(1)]; a=1; rozdil=0.4; for i=1:length(x) vzdal= sqrt((Body_E(a,1)-x(i))^2+(Body_E(a,2)-y(i))^2); vzdal_1= sqrt((Body_E(1,1)-x(i))^2+(Body_E(1,2)-y(i))^2); if vzdal>=rozdil && vzdal_1 <=12 Body_E(a+1,1)=x(i); Body_E(a+1,2)=y(i); a=a+1; end end Body_Ex=Body_E(:,1);

Body_Ey=Body_E(:,2); for i=1:length(Body_Ey) MS(i,1)=i+1500; MS(i,2)=(Body_Ex(i)); MS(i,3)=(Body_Ey(i)); end MS; fid = fopen('2000mSteepleXY.txt','w'); fprintf(fid,'%6.0f %12.3f %12.3f\n',MS'); fclose(fid); Výsledky 1501 163.200 220.015 1502 162.800 220.011 1503 162.400 219.999 1504 162.000 219.980 1505 161.601 219.954 1506 161.202 219.920 1507 160.804 219.880 1508 160.406 219.833 1509 160.010 219.780 1510 159.614 219.720 1511 159.219 219.655 1512 158.826 219.583 1513 158.433 219.505 1514 158.041 219.422 1515 157.651 219.333 1516 157.262 219.239 1517 156.875 219.139 1518 156.488 219.034 1519 156.103 218.924 1520 155.720 218.809 1521 155.338 218.689 1522 154.958 218.564 1523 154.579 218.435 1524 154.203 218.300 1525 153.827 218.161 1526 153.453 218.018 1527 153.081 217.870 1528 152.711 217.718 1529 152.343 217.562 1530 151.976 217.401 1531 151.612 217.236 prusecik_0 163.500 220.015 prusecik_8 153.740 218.128

64

Page 72: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE STUDIJNÍ …geo.fsv.cvut.cz/proj/bp/2014/matous-vondracek-bp-2014.pdf · 2014-06-09 · Standardní ovál se tedy skládá ze dvou půlkruhů,

ČVUT v Praze, Fakulta stavební, Katedra speciální geodézie Bakalářská práce

Steeplechase 3000m clc;clear; format long g pi=3.1416; % zaokrouhleno dle manualu rad=pi/200; gon=200/pi; %% vypocet evolventy a=36.8; % delka tecny v idealni stope v prvni draze je 28.021 t=(28.021/36.8)*gon:0.001:100; tt= t*rad; x=[];y=[]; R1=[200,200]; R2=[200,284.39]; %% evolventa for i=1:length(t) xX(i)=(a)*(cos(tt(i)) + (tt(i))*sin(tt(i)) ); yY(i)=(a)*(sin(tt(i)) - (tt(i))*cos(tt(i)) ); alfa= -28.021/36.8; x(i)=xX(i)*cos(alfa)- yY(i)*sin(alfa)+R2(1); y(i)=xX(i)*sin(alfa)+ yY(i)*cos(alfa)+R2(2); end vysledky=[x',y']; %% body evolventy 3000m Steeplechase vzdalene 0.4m Body_E=[x(1) y(1)]; a=1; rozdil=0.4; for i=1:length(x) vzdal= sqrt((Body_E(a,1)-x(i))^2+(Body_E(a,2)-y(i))^2); vzdal_1= sqrt((Body_E(1,1)-x(i))^2+(Body_E(1,2)-y(i))^2); if vzdal>=rozdil && vzdal_1 <=10 Body_E(a+1,1)=x(i); Body_E(a+1,2)=y(i); a=a+1; end end

Body_Ex=Body_E(:,1); Body_Ey=Body_E(:,2); for i=1:length(Body_Ey) MS(i,1)=i+1600; MS(i,2)=(Body_Ex(i)); MS(i,3)=(Body_Ey(i)); end MS; fid = fopen('3000mSteepleXY.txt','w'); fprintf(fid,'%6.0f %12.3f %12.3f\n',MS'); fclose(fid); Výsledky 1601 236.800 256.369 1602 237.200 256.372 1603 237.600 256.380 1604 238.000 256.394 1605 238.400 256.414 1606 238.799 256.438 1607 239.199 256.468 1608 239.597 256.503 1609 239.995 256.543 1610 240.393 256.589 1611 240.790 256.639 1612 241.187 256.694 1613 241.582 256.753 1614 241.977 256.817 1615 242.371 256.886 1616 242.765 256.960 1617 243.158 257.038 1618 243.549 257.120 1619 243.940 257.207 1620 244.330 257.298 1621 244.719 257.394 1622 245.107 257.493 1623 245.494 257.597 1624 245.879 257.705 1625 246.264 257.817 1626 246.647 257.932 prusecik_0 236.500 256.369 prusecik_8 246.260 257.816

65