18
Βρέντζου Τίνα – Φυσικός – Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Email : [email protected] ΜΑΘΗΜΑΤΙΚΑ Β΄ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β΄ΓΥΜΝΑΣΙΟΥ - ma8eno.gr1).pdf · : Αν α, β θετικοί και α < β τότε 1/α > 1/β Ποι 0ς ι /ιόη 2 0ς / 0ν έχουν

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ΜΑΘΗΜΑΤΙΚΑ Β΄ΓΥΜΝΑΣΙΟΥ - ma8eno.gr1).pdf · : Αν α, β θετικοί και α < β τότε 1/α > 1/β Ποι 0ς ι /ιόη 2 0ς / 0ν έχουν

Βρέντζου Τίνα – Φυσικός – Μεταπτυχιακός

τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Email : [email protected]

ΜΑΘΗΜΑΤΙΚΑ Β΄ΓΥΜΝΑΣΙΟΥ

Page 2: ΜΑΘΗΜΑΤΙΚΑ Β΄ΓΥΜΝΑΣΙΟΥ - ma8eno.gr1).pdf · : Αν α, β θετικοί και α < β τότε 1/α > 1/β Ποι 0ς ι /ιόη 2 0ς / 0ν έχουν

1

Βρέντζου Τίνα – Φυσικός – Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Email : [email protected]

1

1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ – ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ

ΟΡΙΣΜΟΙ

Μεταβλητή είναι ένα γράμμα , συνήθως το χ ή y , που παριστάνει

οποιοδήποτε αριθμό .

Αριθμητική παράσταση είναι μια παράσταση που περιέχει αριθμούς

που συνδέονται με τις γνωστές πράξεις .

Αλγεβρική παράσταση είναι μια παράσταση που περιέχει γράμματα

και αριθμούς που συνδέονται με τις γνωστές πράξεις .

Αναγωγή ομοίων όρων λέγεται η διαδικασία κατά την οποία

αντικαθιστούμε τους όμοιους όρους της παράστασης με το άθροισμα τους.

Ιδιότητες

Ι) Αν α = β τότε α + γ = β + γ .

Αν α = β τότε α – γ = β – γ .

ΙΙ) Αν α = β τότε α.γ = β.γ

Αν α = β τότε α : γ = β : γ , γ 0

ΙΙΙ) ( α + β ).γ = α . β + α . γ ( επιμεριστική )

ΙV) Αν α < β τότε α + γ < β + γ

Αν α < β τότε α – γ < β – γ

V) Αν α < β και γ > 0 τότε α . γ < β . γ και α : γ < β : γ

Αν α < β και γ < 0 , τότε α . γ > β . γ

και α : γ > β : γ

ΚΕΦΑΛΑΙΟ 1Ο : Εξισώσεις - Ανισώσεις

Page 3: ΜΑΘΗΜΑΤΙΚΑ Β΄ΓΥΜΝΑΣΙΟΥ - ma8eno.gr1).pdf · : Αν α, β θετικοί και α < β τότε 1/α > 1/β Ποι 0ς ι /ιόη 2 0ς / 0ν έχουν

2

Βρέντζου Τίνα – Φυσικός – Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Email : [email protected]

2

1.2 ΕΞΙΣΩΣΕΙΣ Α΄ ΒΑΘΜΟΥ

Εξίσωση είναι η ισότητα που περιέχει γνωστούς αριθμούς και τον άγνωστο

αριθμό χ , του οποίου την τιμή θέλουμε να προσδιορίσουμε.

Επίλυση εξίσωσης είναι η διαδικασία - ενέργειες που κάνουμε για να βρούμε

την τιμή της μεταβλητής .

Ταυτότητα ή αόριστη ονομάζουμε την εξίσωση που επαληθεύεται για κάθε τιμή

της μεταβλητής

Εξίσωση 1η

1ο μέλος 2

ο μέλος

2x + 2 = x - 1

Άγνωστος x

Γνωστός

Eπίλυση

1ος

τρόπος

Μπορούμε να γράψουμε την εξίσωση στη μορφή:

2x = x – 1 – 2

κατά τη μεταφορά του 2 στο 2ο μέλος χρησιμοποιήσαμε τον κανόνα αλλαγής

προσήμου του 2 και αφήσαμε μόνο το πολλαπλάσιο του αγνώστου x στο 1ο μέλος.

Συντελεστής του

αγνώστου x.

Page 4: ΜΑΘΗΜΑΤΙΚΑ Β΄ΓΥΜΝΑΣΙΟΥ - ma8eno.gr1).pdf · : Αν α, β θετικοί και α < β τότε 1/α > 1/β Ποι 0ς ι /ιόη 2 0ς / 0ν έχουν

3

Βρέντζου Τίνα – Φυσικός – Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Email : [email protected]

3

Αν ο ίδιος αριθμός

προστεθεί ή

αφαιρεθεί και από

τα δύο μέλη της

εξίσωσης, τα δύο

μέλη παραμένουν

ίσα.

2ος

τρόπος

Μπορούμε να λάβουμε το ίδιο αποτέλεσμα ως εξής:

2x + 2 - 2= x – 1 - 2

Κάθε μέλος μειώθηκε κατά 2 , αλλά τα δύο μέλη παρέμειναν ίσα.

Έτσι στο 1ο μέλος θα μείνει μόνο το 2x.

2x = x – 1 - 2

Ακολουθούμε τον 1ο ή 2

ο τρόπο αυτή τη φορά για το x.

Σύμφωνα με τον 2ο τρόπο έχουμε:

2x – x = x – 1 - 2 – x

αφαιρέσαμε και από τα 2 μέλη το x

Τώρα έχουμε

x = – 1 - 2

Δηλαδή x = -3

Επαλήθευση (αντικατάσταση του -3)

Για x = - 3 έχουμε στην αρχική εξίσωση ότι : 2(-3) + 2 = (-3) – 1 ή

- 6 + 2= - 4 ή - 4 = - 4 που ισχύει.

Αν ο ίδιος

αριθμός

προστεθεί ή

αφαιρεθεί και από

τα δύο μέλη της

εξίσωσης, τα δύο

μέλη παραμένουν

ίσα.

Page 5: ΜΑΘΗΜΑΤΙΚΑ Β΄ΓΥΜΝΑΣΙΟΥ - ma8eno.gr1).pdf · : Αν α, β θετικοί και α < β τότε 1/α > 1/β Ποι 0ς ι /ιόη 2 0ς / 0ν έχουν

4

Βρέντζου Τίνα – Φυσικός – Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Email : [email protected]

4

Αν τα δύο μέλη μιας εξίσωσης πολλαπλασιαστούν ή

διαιρεθούν με τον ίδιο αριθμό, τότε τα δύο μέλη της

νέας εξίσωσης είναι ίσα. Αν ο πολλαπλασιαστής

είναι αρνητικός αριθμός, τότε αλλάζουν τα πρόσημα

και στα δύο μέλη της εξίσωσης.

Εξίσωση 2η

Έστω η εξίσωση

2χ = 4

ή χ = 2

Διαιρώ και τα δύο μέλη με

το συντελεστή του

αγνώστου χ.

Page 6: ΜΑΘΗΜΑΤΙΚΑ Β΄ΓΥΜΝΑΣΙΟΥ - ma8eno.gr1).pdf · : Αν α, β θετικοί και α < β τότε 1/α > 1/β Ποι 0ς ι /ιόη 2 0ς / 0ν έχουν

5

Βρέντζου Τίνα – Φυσικός – Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Email : [email protected]

5

Διαιρώ με το

συντελεστή του

αγνώστου

Εξίσωση 3η

3χ ∙ 3 = 4 ∙ 4

9χ = 16 ή χ = 16/9

1.3 ΕΠΙΛΥΣΗ ΤΥΠΩΝ

Όταν μια ποσότητα εκφράζεται συναρτήσει άλλων ποσοτήτων τότε ο τύπος εκφράζει

τις μεταξύ τους σχέσεις.

Π.χ Τύπος της ταχύτητας

Στον παραπάνω τύπο η ταχύτητα εμφανίζεται συναρτήσει της απόστασης χ και του

χρόνου t.

Αλλά μπορεί να είναι ανάγκη να εκφράσουμε την απόσταση συναρτήσει της

ταχύτητας και του χρόνου, οπότε:

x = u∙t

Κάνω σταυρωτά

γινόμενα

Page 7: ΜΑΘΗΜΑΤΙΚΑ Β΄ΓΥΜΝΑΣΙΟΥ - ma8eno.gr1).pdf · : Αν α, β θετικοί και α < β τότε 1/α > 1/β Ποι 0ς ι /ιόη 2 0ς / 0ν έχουν

6

Βρέντζου Τίνα – Φυσικός – Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Email : [email protected]

6

Ο τύπος τώρα έχει μετασχηματιστεί. Όταν μια ποσότητα εκφράζεται συναρτήσει

άλλων ποσοτήτων , ονομάζεται υποκείμενο του τύπου.

Όταν θέλετε να μετασχηματίσετε έναν τύπο ακολουθήστε τα βήματα:

Αρχικός τύπος Ε = β ∙ υ

Εντοπισμός του αρχικού υποκειμένου Ε = β ∙ υ

Εντοπισμός του τελικού υποκειμένου π.χ Ε = β ∙ υ

Επίλυση σύμφωνα με τους κανόνες επίλυσης εξισώσεων υ =

1.4 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΕΞΙΣΩΣΕΩΝ

1.5 ΑΝΙΣΩΣΕΙΣ Α΄ ΒΑΘΜΟΥ

Ανίσωση είναι η ανισότητα που περιέχει ένα άγνωστο χ ή y ή άλλον .

Η έννοια της διάταξης

Ένας αριθμός α λέμε ότι είναι μεγαλύτερος από έναν αριθμό β, και γράφουμε α > β,

όταν η διαφορά α - β είναι θετικός αριθμός.

Ο αριθμός α είναι μικρότερος του β (συμβολικά α < β), όταν η διαφορά α – β είναι

αρνητικός αριθμός.

Καλό είναι να κυκλώνετε

το υποκείμενο, μέχρι να

αποκτήσετε ευχέρεια.

Page 8: ΜΑΘΗΜΑΤΙΚΑ Β΄ΓΥΜΝΑΣΙΟΥ - ma8eno.gr1).pdf · : Αν α, β θετικοί και α < β τότε 1/α > 1/β Ποι 0ς ι /ιόη 2 0ς / 0ν έχουν

7

Βρέντζου Τίνα – Φυσικός – Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Email : [email protected]

7

Ορισμός : α > β <=>α – β > 0 (ισχύει και αντίστροφα)

Ιδιότητες

(α > 0 και β > 0) =>α + β > 0 (όχι αντίστροφα)

(α < 0 και β < 0) =>α + β < 0 (όχι αντίστροφα)

α, β ομόσημοι <=>α.β > 0 <=>

> 0

α, β ετερόσημοι<=>α.β < 0

α2 ≥ 0 για κάθε α ℝ

α2 = 0 <=>α = 0

α2 + β2 = 0 <=>α = 0 και β = 0

α2 + β2 > 0 <=>α ≠ 0 και β ≠ 0

Μεταβατική ιδιότητα

(α > β και β > γ) <=>α > γ (όχι αντίστροφα)

α > β <=>α + γ > β + γ

ή <=>α - γ > β - γ

Για γ > 0 : α > β <=>α.γ > β.γ

Για γ < 0 : α > β <=>α.γ < β.γ

α > β και γ > δ <=>α + γ > β + δ

Για α, β, γ, δ θετικούς : (α > β και γ > δ) <=>α.γ > β.δ

Προσοχή!

Σε μία ανίσωση, όταν κάνουμε απαλοιφή παρανομαστών, δεν

κάνουμε τίποτε άλλο παρά να πολλαπλασιάζουμε τα δύο μέλη με το

Ε.Κ.Π των παρανομαστών.

Πρέπει, λοιπόν, να προσέχουμε αν το Ε.Κ.Π είναι θετικό ή αρνητικό,

οπότε θα παραμείνει ή θα αλλάξει η φορά της ανίσωσης.

Προσοχή στο λάθος : x < 5 ⇒ x 2< 25

Ας θέσουμε όπου x το – 7

– 7 < 5 ⇒ (−7)2 < 25 δηλαδή 36 < 25 !

Ισχύει μόνο για x ≥ 0

Προσοχή στο λάθος : x 2< 25 ⇒ x < 5

Ισχύει μόνο για x ≥ 0

Ο πολλαπλασιασμός με

αρνητικό αριθμό.

Όταν πολλαπλασιάζουμε

(διαιρούμε) τα δύο μέλη

ανίσωσης με αρνητικό αριθμό,

πρέπει να αλλάζουμε τη φορά

της ανίσωσης. Το ίδιο όταν

αλλάζουμε πρόσημα στα δύο

μέλη.

Μπορούμε να

πολλαπλασιάζουμε κατά

μέλη ομοιόστροφες

ανισότητες , εφ’όσον

όλα τα μέλη είναι

θετικά.

Όχι όμως να διαιρούμε.

Page 9: ΜΑΘΗΜΑΤΙΚΑ Β΄ΓΥΜΝΑΣΙΟΥ - ma8eno.gr1).pdf · : Αν α, β θετικοί και α < β τότε 1/α > 1/β Ποι 0ς ι /ιόη 2 0ς / 0ν έχουν

8

Βρέντζου Τίνα – Φυσικός – Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Email : [email protected]

8

Η αντιστροφή των μελών

Όταν αντιστρέφουμε τα δύο θετικά μέλη ανίσωσης , αντιστρέφουμε και τη φορά της

ανίσωσης. : Αν α, β θετικοί και α < β τότε 1/α > 1/β

Ποιες ιδιότητες δεν έχουν οι ανισότητες

Δεν επιτρέπεται να αφαιρέσουμε κατά μέλη δύο ανισότητες.

Δεν επιτρέπεται να διαιρέσουμε κατά μέλη δύο ανισότητες.

Δεν επιτρέπεται να πολλαπλασιάσουμε κατά μέλη δύο ανισότητες, αν

δεν είναι όλα τα μέλη τους θετικά.

Επίλυση ανισώσεων

Στις ανισώσεις ακολουθούμε την ίδια στρατηγική που περιγράφτηκε παραπάνω στην

ενότητα των εξισώσεων. Προσοχή , βέβαια στις ιδιότητες. Επιπλέον θα πρέπει να

αναπαραστήσουμε τις λύσεις ή τη λύση σ’ έναν άξονα.

Π.χ 2χ + 1 > 3χ

2χ - 3χ > - 1

-χ > -1

χ < +1

0 +1

Χωρίζω

γνωστούς από

αγνώστους

Διαιρώ με τον

συντελεστή του

αγνώστου δηλ. το -1

και αλλάζει φορά η

ανίσωση

Page 10: ΜΑΘΗΜΑΤΙΚΑ Β΄ΓΥΜΝΑΣΙΟΥ - ma8eno.gr1).pdf · : Αν α, β θετικοί και α < β τότε 1/α > 1/β Ποι 0ς ι /ιόη 2 0ς / 0ν έχουν

9

Βρέντζου Τίνα – Φυσικός – Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Email : [email protected]

9

Πραγματικοί αριθμοί : Αποτελούνται από τους ρητούς αριθμούς και τους

άρρητους αριθμούς. Αν πάρουμε μία ευθεία , κάθε σημείο της αντιστοιχεί

σ' ένα πραγματικό αριθμό. Η ευθεία αυτή ονομάζεται ευθεία των πραγματικών

αριθμών .

Παράσταση των πραγματικών σε άξονα

Κάθε πραγματικός αριθμός αντιστοιχίζεται σε ένα σημείο του άξονα χ΄χ .

2 1 2

αρνητικοί θετικοί

0 1-1 π-2,25χ' χ

άτιτλο-n

0 1-1 π-2,25χ' χ

2ο Κεφ. Πραγματικοί Αριθμοί

Page 11: ΜΑΘΗΜΑΤΙΚΑ Β΄ΓΥΜΝΑΣΙΟΥ - ma8eno.gr1).pdf · : Αν α, β θετικοί και α < β τότε 1/α > 1/β Ποι 0ς ι /ιόη 2 0ς / 0ν έχουν

10

Βρέντζου Τίνα – Φυσικός – Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Email : [email protected]

10

RΠραγματικοί αριθμοί

Q΄Άρρητοι αριθμοί Q Ρητοί αριθμοί

Άρρητοι : Οι αριθμοί που δεν

μπορούν να γραφούν σαν κλάσματα

ή σαν δεκαδικοί περιοδικοί

αριθμοί είναι οι άρρητοι .

Π.χ

Ρητοί : Κάθε αριθμός που μπορεί να

πάρει κλασματική μορφή, δηλαδή τη

μορφή , 0

με α, β ακέραιοι

αριθμοί , λέγεται ρητός . Κάθε ρητός

αριθμός μπορεί να γραφεί ως

δεκαδικός ή περιοδικός δεκαδικός

και αντιστρόφως, κάθε δεκαδικός ή

περιοδικός δεκαδικός που μπορεί να

πάρει κλασματική μορφή , είναι

ρητός .

Page 12: ΜΑΘΗΜΑΤΙΚΑ Β΄ΓΥΜΝΑΣΙΟΥ - ma8eno.gr1).pdf · : Αν α, β θετικοί και α < β τότε 1/α > 1/β Ποι 0ς ι /ιόη 2 0ς / 0ν έχουν

1

Βρέντζου Τίνα – Φυσικός – Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Email : [email protected]

1

ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

Ιδιότητες των πράξεων

Στους πραγματικούς αριθμούς ορίστηκαν οι πράξεις της πρόσθεσης και του

πολλαπλασιασμού και με την βοήθειά τους η αφαίρεση και η διαίρεση.

Για τον πολλαπλασιασμό και την πρόσθεση ισχύουν οι ιδιότητες που αναφέρονται

στον παρακάτω πίνακα , οι οποίες αποτελούν την βάση του αλγεβρικού λογισμού.

Ιδιότητες

Πρόσθεση Πολλαπλασιασμός

αντιμεταθετική α+ β = β+α α∙β = β∙α

προσεταιριστική α+( β+γ ) = ( α+β )+γ α.( β

.γ ) = ( α

. β)

επιμεριστική α . ( β + γ ) = α

. β + α

ουδέτερο α + 0 = α α . 1 = α

αντίθετο α + (-α ) = 0 α

. 1

α= 1 , α0

Η αφαίρεση και η διαίρεση ορίζονται , με τη βοήθεια της πρόσθεσης και του

πολλαπλασιασμού , ως εξής :

α - β = α+(-β) και α : β = α / β = α ∙ 1 / β , όπου β ≠0

Για τις τέσσερις πράξεις ισχύουν και οι ακόλουθες ιδιότητες :

1. Αν α = β και γ = δ τότε: α + γ = β + δ και αγ = βδ

Δηλαδή:

Δύο ισότητες μπορούμε να τις προσθέσουμε και να τις πολλαπλασιάσουμε κατά

μέλη.

2. Αν α = β τότε : α + γ = β + δ και α∙γ = β∙γ

Δηλαδή:

Page 13: ΜΑΘΗΜΑΤΙΚΑ Β΄ΓΥΜΝΑΣΙΟΥ - ma8eno.gr1).pdf · : Αν α, β θετικοί και α < β τότε 1/α > 1/β Ποι 0ς ι /ιόη 2 0ς / 0ν έχουν

2

Βρέντζου Τίνα – Φυσικός – Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Email : [email protected]

2

Μπορούμε και στα δύο μέλη μίας ισότητας να προσθέσουμε τον ίδιο αριθμό .

Μπορούμε και τα δύο μέλη μίας ισότητας να πολλαπλασιάσουμε με τον ίδιο αριθμό .

3. Αν α + γ = β + γ , τότε α = β

Αν αγ = βγ και γ ≠0 , τότε α = β

Δηλαδή :

Μπορούμε και από τα δύο μέλη μιας ισότητας να διαγράψουμε τον ίδιο προσθετέο ή

τον ίδιο μ η μ η δ ε ν ι κ ό παράγοντα.

Βλέπουμε ότι , αν ισχύει μία από τις ισότητες α = β , α+γ = β+γ , τότε ισχύει και η

άλλη .

Γι ‘ αυτό λέμε ότι οι ισότητες αυτές είναι ισοδύναμες και γράφουμε :

α = β => α+γ = β+γ

Συμβολικά πλέον οι προηγούμενες δύο ιδιότητες γράφονται:

• α = β => α+γ = β+γ

• Αν γ ≠ 0 , τότε : α = β => αγ = βγ

4.

α ∙ 0 = 0

Αν αβ = 0 , τότε α = 0 ή β = 0

Δηλαδή :

Άμεση συνέπεια της ιδιότητας αυτής είναι η ακόλουθη :

α ∙ β ≠ 0<-> α ≠ 0 και β ≠ 0

5. ( -1 ) α = - α

( - α) β = - αβ

Page 14: ΜΑΘΗΜΑΤΙΚΑ Β΄ΓΥΜΝΑΣΙΟΥ - ma8eno.gr1).pdf · : Αν α, β θετικοί και α < β τότε 1/α > 1/β Ποι 0ς ι /ιόη 2 0ς / 0ν έχουν

3

Βρέντζου Τίνα – Φυσικός – Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Email : [email protected]

3

( -α )(- β)= αβ ( Κανόνας των προσήμων)

6. -( α + β) = -α-β

(1/αβ) = 1/α ∙ 1/β (Κανόνας απαλοιφής παρενθέσεων)

Δηλαδή :

Ο αντίθετος ενός αθροίσματος ισούται με το άθροισμα των αντίθετων των

προσθετέων .

Ο αντίστροφος ενός γινομένου ισούται με το γινόμενο των αντίστροφων των

παραγόντων .

Οι ιδιότητες αυτές ισχύουν και για περισσότερους από δύο προσθετέους ή

παράγοντες αντίστοιχα .

Ας δούμε ότι: α

γ

β

γ

α β

γ

(1)

α

β

γ

δ

αδ βγ

βδ

(3)

α

β

γ

δ

αγ

βδ (2)

α

β:γ

δ

α

β

δ

γ=

αδ

βγ (4)

και α

β

γ

δαδ=βγ (5)

α

β

γ

δ

α

γ =

β

δ ( 7)

α

β

γ

δ

α β

β=

γ δ

δ

(6)

α

β

γ

δ τοτε

α

β

γ

δ

α+γ

β+δ (8)

Page 15: ΜΑΘΗΜΑΤΙΚΑ Β΄ΓΥΜΝΑΣΙΟΥ - ma8eno.gr1).pdf · : Αν α, β θετικοί και α < β τότε 1/α > 1/β Ποι 0ς ι /ιόη 2 0ς / 0ν έχουν

4

Βρέντζου Τίνα – Φυσικός – Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Email : [email protected]

4

Όταν έχουμε ισότητα κλασμάτων π.χ.

x

a τότε ονομάζοντας το λόγο

αυτό λ έχουμε:

Με την αντικατάσταση αυτή μειώνουμε το πλήθος των μεταβλητών, πράγμα

χρήσιμο στην αντιμετώπιση πολλών σχετικών προβλημάτων.

Σχόλια :

Συγκεκριμένος αριθμός χωρίς πρόσημο: σημαίνει ότι είναι θετικός , δηλαδή έχει

πρόσημο +.

Τυχαίος αριθμός α χωρίς πρόσημο: Δε σημαίνει ότι είναι θετικός , αφού μπορεί

να έχει μέσα του το « – » . Ακόμη και αν γράψουμε + α , δε σημαίνει ότι ο α είναι

θετικός .

Οι δύο σημασίες του συμβόλου « + » :

i) Μπροστά από αριθμό σημαίνει ότι ο αριθμός είναι θετικός

+ 4 , + 7, 6

ii) Μεταξύ δύο αριθμών σημαίνει την πράξη της πρόσθεσης

6 + 2 , –5 + 1 , 5 + (–4) , –3 + (–5)

Οι δύο σημασίες του συμβόλου « – » :

i) Μπροστά από αριθμό σημαίνει ότι ο αριθμός είναι αρνητικός

–3 , – 1

ii) Μεταξύ δύο αριθμών σημαίνει την πράξη της αφαίρεσης

5 – 1 , –5 – 1 , 5 – (–3) , –4 – (–1)

Page 16: ΜΑΘΗΜΑΤΙΚΑ Β΄ΓΥΜΝΑΣΙΟΥ - ma8eno.gr1).pdf · : Αν α, β θετικοί και α < β τότε 1/α > 1/β Ποι 0ς ι /ιόη 2 0ς / 0ν έχουν

5

Βρέντζου Τίνα – Φυσικός – Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Email : [email protected]

5

Η πράξη της πρόσθεσης

i) Πρόσθεση ομοσήμων

(+2) + (+5) = + 7 = 7

2 + 5 = 7

(–2) + (–5) = – 7

ii) Πρόσθεση ετεροσήμων

(–2) + (+5) = +3 = 3

–2 + (+5) = +3 = 3

–2 + 5 = +3 = 3

2 + (–5) = – 3

Η πράξη της αφαίρεσης

5 – 2 = 3

3- 5 = 3 + (-5) = −2

3-(-5) = 3+ 5 = 8

Η επιμεριστική ιδιότητα αντίστροφα

Μας δίνει κοινό παράγοντα : α.β + α.γ = α.( β + γ)

2 χ + 2 ψ = 2 ( χ + ψ )

– 4α – 4β = – 4(α + β)

4α – 4β = 4(α – β)

Η διαίρεση με το 0 είναι αδύνατη.

Επειδή κάθε κλάσμα δηλώνει διαίρεση , πρέπει κάθε παρανομαστής

να είναι ≠ 0, ώστε το κλάσμα να έχει νόημα πραγματικού αριθμού .

Θέτουμε το κοινό

πρόσημό τους και

προσθέτουμε τους

αριθμούς

Θέτουμε το

πρόσημο του

μεγαλύτερου και

αφαιρούμε τους

αριθμούς

Αν το αποτέλεσμα δεν

είναι προφανές,

μετατρέπουμε την

αφαίρεση σε

πρόσθεση αλλάζοντας

το πρόσημο του

δεύτερου

Page 17: ΜΑΘΗΜΑΤΙΚΑ Β΄ΓΥΜΝΑΣΙΟΥ - ma8eno.gr1).pdf · : Αν α, β θετικοί και α < β τότε 1/α > 1/β Ποι 0ς ι /ιόη 2 0ς / 0ν έχουν

6

Βρέντζου Τίνα – Φυσικός – Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Email : [email protected]

6

Οι υπόριζες ποσότητες

θεωρούνται ≥ 0 ή τις

υποχρεώνουμε να είναι ≥ 0

Τετραγωνική ρίζα

Τετραγωνική ρίζα ενός θετικού αριθμού α , λέγεται ο θετικός αριθμός χ

ο οποίος αν υψωθεί στο τετράγωνο, δίνει τον αριθμό α .(ρίζα αρνητικού αριθμού

δεν ορίζεται στους πραγματικούς αριθμούς).

Ορίζουμε aa 1 γιατί α1=α

aa 2

Έτσι: 22=4 , οπότε το 2 είναι η τετραγωνική ρίζα του 4 ή 24

53=125 , οπότε το 5 είναι η τρίτη ή κυβική ρίζα του 125 ή 51253

Είναι α2=|α|

2 οπότε |||| 22 aaa

Ορισμός

α μ/ν

=

α > 0 και μ, ν ∈ℕ∗

Ο αριθμός ν α είναι η μη αρνητική

λύση της εξίσωσης xν = α ,

αφού ( ν

= α

δηλαδή την επαληθεύει

Page 18: ΜΑΘΗΜΑΤΙΚΑ Β΄ΓΥΜΝΑΣΙΟΥ - ma8eno.gr1).pdf · : Αν α, β θετικοί και α < β τότε 1/α > 1/β Ποι 0ς ι /ιόη 2 0ς / 0ν έχουν

7

Βρέντζου Τίνα – Φυσικός – Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Email : [email protected]

7

Ιδιότητες ριζών

Για α 0 , και π.χ. 66

55 ,

447 7

Για α, β 0 , και

,

β 0

Για α 0 και μ,ν θετικούς ακέραιους:

και

Έχουμε ακόμη για α,β 0 , κ θετικό ακέραιο

Ας είναι γνωστό ακόμη ότι κάθε ριζικό μπορεί να γραφεί σαν δύναμη με ρητό

εκθέτη

Έτσι :

α + β ≠ α β

α

=

=

(ισχύει και το αντίστροφο)

Προσοχή!

Προσοχή!