18
Opakovanie zo 7. lekcie Nanoelektronika Čím sa líšia polovodiče a izolanty? Keď zvýšime teplotu kovu, jeho elektrická vodivosť klesne (odpor vzrastie). Platí to isté aj pre polovodiče? Prečo? Ak k sebe priložíme polovodič typu P a typu N, ako sa zmení koncentrácia voľného náboja na ich rozhraní? Ako sa nazýva elektronická súčiastka, ktorá využíva externé fotóny prenikajúce do P-N rozhrania na tvorbu elektrón-dierových párov? Akým spôsobom vyrobí brána (G-gate) v tranzistore MOSFET vodivé prepojenie medzi vstupnou (S) a výstupnou (D) elektródou tranzistora? Z čoho sú vyrobené logické hradlá vo vnútri súčasných mikroprocesorov? Vymenujte aspoň tri problémy, ktorým čelíme pri ďalšom zmenšovaní polovodičových štruktúr v mikroelektronike. Je možné syntetizovať chemickú molekulu schopnú samostatne usmerniť smer elektrického prúdu? Ako sa nazýva vedný odbor, ktorý sa venuje tejto problematike? Ako sa prejaví pri nabíjaní kovovej nanočastice jedným elektrónom tzv. Coulombova blokáda?

Opakovanie zo 7. lekcie - Masaryk University · Lekcia 8 Uhlíkov aoštruktúry. Uhlík, elektrónová štruktúra Elektróová kofigurácia C: 21s2 22s 12p x 1 12p y 1 1s 2s1 2p

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Opakovanie zo 7. lekcie - Masaryk University · Lekcia 8 Uhlíkov aoštruktúry. Uhlík, elektrónová štruktúra Elektróová kofigurácia C: 21s2 22s 12p x 1 12p y 1 1s 2s1 2p

Opakovanie zo 7. lekcie

Nanoelektronika

• Čím sa líšia polovodiče a izolanty?

• Keď zvýšime teplotu kovu, jeho elektrická vodivosť klesne (odpor vzrastie). Platí to isté aj pre polovodiče? Prečo?

• Ak k sebe priložíme polovodič typu P a typu N, ako sa zmení koncentrácia voľného náboja na ich rozhraní?

• Ako sa nazýva elektronická súčiastka, ktorá využíva externé fotóny prenikajúce do P-N rozhrania na tvorbu elektrón-dierových párov?

• Akým spôsobom vyrobí brána (G-gate) v tranzistore MOSFET vodivé prepojenie medzi vstupnou (S) a výstupnou (D) elektródou tranzistora?

• Z čoho sú vyrobené logické hradlá vo vnútri súčasných mikroprocesorov?

• Vymenujte aspoň tri problémy, ktorým čelíme pri ďalšom zmenšovaní polovodičových štruktúr v mikroelektronike.

• Je možné syntetizovať chemickú molekulu schopnú samostatne usmerniť smer elektrického prúdu? Ako sa nazýva vedný odbor, ktorý sa venuje tejto problematike?

• Ako sa prejaví pri nabíjaní kovovej nanočastice jedným elektrónom tzv. Coulombova blokáda?

Page 2: Opakovanie zo 7. lekcie - Masaryk University · Lekcia 8 Uhlíkov aoštruktúry. Uhlík, elektrónová štruktúra Elektróová kofigurácia C: 21s2 22s 12p x 1 12p y 1 1s 2s1 2p

F3370 – Úvod do nanotechnológií 2015

Lekcia 8

Uhlíkové nanoštruktúry

Page 3: Opakovanie zo 7. lekcie - Masaryk University · Lekcia 8 Uhlíkov aoštruktúry. Uhlík, elektrónová štruktúra Elektróová kofigurácia C: 21s2 22s 12p x 1 12p y 1 1s 2s1 2p

Uhlík, elektrónová štruktúra

Elektrónová konfigurácia

C: 1s2 2s2 2px1 2py

1 1s2 2s1 2px1 2py

1 2pz1

Hybridizácia orbitálov C-C :

sp3 hybridný orbitál

sp2 hybridný orbitál

Tetrahedrálna štruktúra diamantu

Vrstevnatá štruktúra grafitu

Page 4: Opakovanie zo 7. lekcie - Masaryk University · Lekcia 8 Uhlíkov aoštruktúry. Uhlík, elektrónová štruktúra Elektróová kofigurácia C: 21s2 22s 12p x 1 12p y 1 1s 2s1 2p

Vlastnosti diamant vs. grafit

• Diamant je izolant, grafit je veľmi dobrý elektrický vodič

• Grafit je mäkký pre slabú π väzbu sprostredkovanú 2pz orbitálmi

• Diamant je mimoriadne tvrdý (10 Mohr vs. 1,5 Mohr pre grafit)

• Diamant sa postupne mení na grafit.

Energetický diagram pre diamant a uhlík

Vodivostný pás

Valenčný pás

Zakázaný pás

Z polovice zaplnený vodivostný pás

Page 5: Opakovanie zo 7. lekcie - Masaryk University · Lekcia 8 Uhlíkov aoštruktúry. Uhlík, elektrónová štruktúra Elektróová kofigurácia C: 21s2 22s 12p x 1 12p y 1 1s 2s1 2p

Fulerény / Fullerenes

• Fulerény sú sférické molekuly (klastre) zložené z päť- alebo šesť- početných kruhov atómov uhlíka. Pomenované podľa architekta Richarda Buckminstera "Bucky" Fuller-a.

• 1985 Hmotnostná spektroskopia produktov rozprašovania uhlíkového disku laserovým lúčom vo vysokom vákuu odhalila molekulu C60. Príčinou je separácia jednej grafitovej vrstvy, ktorá následne vytvorí C60.

• 1996 Nobelova cena za chémiu (Robert Curl, Richard Smalley, Harold Kroto)

C60

priemer 0,7 nm

Pôvodný experiment podľa Nature 318, 1985 (študovali mechanizmus vzniku uhlíkových reťazcov vo vesmíre )

Montréal Biosphère EXPO 67

C70(rugby ball) C78 atď.

Page 6: Opakovanie zo 7. lekcie - Masaryk University · Lekcia 8 Uhlíkov aoštruktúry. Uhlík, elektrónová štruktúra Elektróová kofigurácia C: 21s2 22s 12p x 1 12p y 1 1s 2s1 2p

Vlastnosti a aplikácie C60

• Mimoriadne mechanicky stabilná molekula (vydrží 3000 atm.)

• Je možné pripraviť mimoriadne čisté vzorky (99,99%)

• Chemicky stabilné, mierne elektronegatívne (schopné prijať až 3 elektróny)

• C60 je polovodič, je možné z neho deponovať tenké vrstvy. Alkáliami dopované C60 (A3C60, A=K,Rb a Cs) sú supravodivé

• Chemické úpravy zahŕňajú:

1. Úprava vonkajšieho povrchu fulerénu – exohedrálne fulerény

2. Umiestnenie atómu , iónu, klastra do vnútra fulerému – endohedrálne fulerény

3. Usporiadanie fulerénov do 2D, 3D štruktúr, a to aj s pomocou (1) a (2) – viď. nasledujúci slide.

1 2 3

Page 7: Opakovanie zo 7. lekcie - Masaryk University · Lekcia 8 Uhlíkov aoštruktúry. Uhlík, elektrónová štruktúra Elektróová kofigurácia C: 21s2 22s 12p x 1 12p y 1 1s 2s1 2p
Page 8: Opakovanie zo 7. lekcie - Masaryk University · Lekcia 8 Uhlíkov aoštruktúry. Uhlík, elektrónová štruktúra Elektróová kofigurácia C: 21s2 22s 12p x 1 12p y 1 1s 2s1 2p

Uhlíkové nanorúrky (nanotrubky) / Carbon nanotubes

• Sumio Iijima 1991 pri pozorovaní uhlíkových sadzí z oblúkového výboja v nízkotlakom argóne.

• Poznáme SWNT – single walled carbon nanotubes a MWNT – multiple walled carbon nanotubes.

• Fyzikálne vlastnosti uhlíkovej nanorúrky závisia (pre jednoduchosť SWNT) od spôsobu zrolovania elementárnej grafitovej vrstvy – grafénovej vrstvy.

SWNT podľa grafika

MWNT cez TEM

Page 9: Opakovanie zo 7. lekcie - Masaryk University · Lekcia 8 Uhlíkov aoštruktúry. Uhlík, elektrónová štruktúra Elektróová kofigurácia C: 21s2 22s 12p x 1 12p y 1 1s 2s1 2p

armchair

zig-zag chiral

chiral

Page 10: Opakovanie zo 7. lekcie - Masaryk University · Lekcia 8 Uhlíkov aoštruktúry. Uhlík, elektrónová štruktúra Elektróová kofigurácia C: 21s2 22s 12p x 1 12p y 1 1s 2s1 2p

Chirálny vektor – definuje spôsob zrolovania

Pre priemer nanotrúbky platí:

Ak je (n1-n2) resp. (n2-n1)násobkom 3, potom je rúrka elektrický vodič. Inak je polovodič

2,2

0,0

1,1

3,0 6,0 9,0 12,0

4,1 7,1 10,1 13,1

5,2 8,2 11,2

3,3

vodič polovodič

6,3 9,3 12,3

4,4 7,4 10,4

5,5 8,5 11,5

6,6 9,6

1,0 2,0

2,1

zig-zag

armchair

Page 11: Opakovanie zo 7. lekcie - Masaryk University · Lekcia 8 Uhlíkov aoštruktúry. Uhlík, elektrónová štruktúra Elektróová kofigurácia C: 21s2 22s 12p x 1 12p y 1 1s 2s1 2p

Výroba nanorúrok/nanotrubek

• Problémy: Homogenita výťažku, energetická účinnosť, scaling na veľkovýrobu

• Hlavné metódy:

– oblúkový výboj (odparovanie uhlíkových elektród s prípadným dopovaním kovmi)

– laserové odparovanie (uhlíkový terč)

– depozícia chemických pár CVD. Vysokou teplotou alebo plazmou rozbíjame plynný uhlíkový prekurzor. Atomárny uhlík následne kondenzuje na substráte na kovových katalytických centrách, viď obr.:

http://students.chem.tue.nl/ifp03/synthesis.html

Viac informácií na prednáške F3390 Výroba mikro a nanostruktur alebo napr.:

Page 12: Opakovanie zo 7. lekcie - Masaryk University · Lekcia 8 Uhlíkov aoštruktúry. Uhlík, elektrónová štruktúra Elektróová kofigurácia C: 21s2 22s 12p x 1 12p y 1 1s 2s1 2p

• Výstužné vlákna – rádovo 100x vyššia medza pevnosti pri 6x menšej hmotnosti (napr. kozmický výťah). Kompozity. Pokusy so spriadaním nanovlákien (viď. obr.)

• Nanopumpa, laserom ovládaná – osvitom sa nanotrúbka rozvlní, doprava niekoľkých atómov na presné miesto

• Absorpcia vodíka – schopnosť pohltiť až 40% H2, bežné metódy iba 5 hm.%.

• Absorpcia Li+ – batérie (480 mA h/g vs. 330 mA h/g - D.Y. Zhang et al., Appl. Phys. Lett. 79, 3500 (2001)).

• Separácia trícia – 40x väčšia absorpcia než 1H

• Nové hroty pre AFM a STM. Vďaka malému rozmeru je možný AFM semikontaktný (tapping) mód na kvapalinách. Možná funckionalizácia konca CNT. STM umožní emisný prúd až 1013 A/m2

• Senzory s rýchlou reakciou

Aplikácie nanorúrok/nanotrubek

Page 13: Opakovanie zo 7. lekcie - Masaryk University · Lekcia 8 Uhlíkov aoštruktúry. Uhlík, elektrónová štruktúra Elektróová kofigurácia C: 21s2 22s 12p x 1 12p y 1 1s 2s1 2p

Aplikácie nanorúrok v elektronike

• Polovodiče, PN prechody, FET tranzistory. IBM už oznámila vyrobený 9mm CNTFET (2012).

• Výborná teplotná vodivosť pozdĺž trúbiek, malý prestup naprieč trúbkami = možnosť odvádzať teplo z horúceho jadra procesoru na väčšiu plochu

• Pamäťový prvok, fulerén na jednom/druhom konci trubky, prepínanie/čítanie elektrickým poľom na konci trubiek, Terabity v cm3

bit 1

bit 0

Schéma FET tranzistorov

Pamäťový prvok

Infineon

H Park et al. Nature Nanotechnology (2012)

IBM CNTFET

Page 14: Opakovanie zo 7. lekcie - Masaryk University · Lekcia 8 Uhlíkov aoštruktúry. Uhlík, elektrónová štruktúra Elektróová kofigurácia C: 21s2 22s 12p x 1 12p y 1 1s 2s1 2p

Prehľad nanotrúbiek z iných materiálov

H-E Schaefer Nanoscience, 2010 Chap.5

Page 15: Opakovanie zo 7. lekcie - Masaryk University · Lekcia 8 Uhlíkov aoštruktúry. Uhlík, elektrónová štruktúra Elektróová kofigurácia C: 21s2 22s 12p x 1 12p y 1 1s 2s1 2p

Grafény

• Individuálnu sp2 vrstvu grafitu – grafén sa podarilo pripraviť iba nedávno.

• 2010 Nobelova cena pre Andre Geim a Konstantin Novoselov (University of Manchester, 2004)

• Novoselov a Geim použili na výrobu lepiacu pásku (exfoliated graphen). Tým, že dokázali, že samostatný grafén je vďaka pružnosti termodynamicky stabilný (v rozpore s predpoveďou Landau a Peierls 1935) inšpirovali ďalších k vývoju nových techník prípravy – epitaxný rast, chemická redukcia…

• Aplikácie:

– experimenty , grafén je základnou stavebnou jednotkou nanotrubiek aj fulerénov. Je to ideálny 2D kryštál, deje pre 2D fermiónový plyn

– Spinotronika - slabá spin-orbitálová interakcia, stredná dráha spinu je na úrovni μm aj pri izbovej teplote.

– Priesvitné elektricky vodivé elektródy

– Flexibilné solárne články (transparentná anóda)

– Integrované obvody (IBM)

– Graphén-oxidové membrány sú priepustné iba pre H2O

čistenie, desalinácia

- Umožňuje kvantový Hallov jav pri izbovej teplote (ale vysoké B) – odporový etalón (metrológia)

Page 16: Opakovanie zo 7. lekcie - Masaryk University · Lekcia 8 Uhlíkov aoštruktúry. Uhlík, elektrónová štruktúra Elektróová kofigurácia C: 21s2 22s 12p x 1 12p y 1 1s 2s1 2p

Hallov a kvantový Hallov jav

• Klasický Hallov jav (1879 Edwin H. Hall)

FH=q (v x B)

• Experimentálny dôkaz, že prúd je prenášaný elektrónami, Hallova sonda- meranie magnetických. polí.

• Kvantový Hallov jav (Klaus von Klitzing, Nobel 1985) – vzniká vo veľmi tenkých (2D) štruktúrach ako dôsledok Landauových hladín.

Landauove hladiny – externé pole B zmení trajektórie e- na kružnice, kde majú kvantované energie. Zreteľné len pri nízkych teplotách.

Rast R kvôli stratám pri excitácii e-

Page 17: Opakovanie zo 7. lekcie - Masaryk University · Lekcia 8 Uhlíkov aoštruktúry. Uhlík, elektrónová štruktúra Elektróová kofigurácia C: 21s2 22s 12p x 1 12p y 1 1s 2s1 2p

Čo priniesol grafén?

• Napriek tomu, že existuje viacero známych 2D štruktúr, grafén vďaka svojej mimoriadnej pravidelnosti je špeciálne vhodný na štúdium základných fyzikálnych javov.

• Pohyb elektrónov je možné popísať Diracovou relativistickou rovnicou (QED – kvantová elektrodynamika), s nehmotnými relativistickými časticami (tzv. Diracove fermióny). Šanca experimentálne verifikovať závery QED.

• Okrem samotného kvantového HJ je napríklad zaujímavá kvantové minimum elektrickej vodivosti čiže „vodivosť bez elektrického náboja “ .

• Mimoriadne vysoká pohyblivosť nosičov náboja pri izbovej teplote (15 000 vs 200 000 cm2/V.s pri 300K) => malý šum, citlivý atomárny detektor.

• Po zvládnutí prípravy grafénových waferov možnosť využiť nové javy v elektronike.

SEM obrázok grafénu

L. A. Ponomarenko, et al. Science 320, 356 (2008)

Grafénový tranzistor

Page 18: Opakovanie zo 7. lekcie - Masaryk University · Lekcia 8 Uhlíkov aoštruktúry. Uhlík, elektrónová štruktúra Elektróová kofigurácia C: 21s2 22s 12p x 1 12p y 1 1s 2s1 2p

Zhrnutie

A. Hirch, Nature materials, Vo. 9, Nov. 2010