15
Opportunities of exascale computing for lattice QCD + QED QCDSF - Collaboration Gerrit Schierholz Deutsches Elektronen-Synchrotron DESY

OpportunitiesofexascalecomputingforlatticeQCD+QED QCDSF

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: OpportunitiesofexascalecomputingforlatticeQCD+QED QCDSF

Opportunities of exascale computing for lattice QCD + QED

QCDSF - Collaboration

Gerrit Schierholz

Deutsches Elektronen-Synchrotron DESY

Page 2: OpportunitiesofexascalecomputingforlatticeQCD+QED QCDSF

J. M. Bickerton (Adelaide)C. Cahill (Liverpool)U. Can (Adelaide)F.-K. Guo (Beijing)A. Hannaford-Gunn (Adelaide)S. Hollit (Dortmund)R. Horsley (Edinburgh)T. Howson (Adelaide)Z. R. Kordov (Adelaide)Z. Koumi (Adelaide)U.-G. Meißner (Bonn)Y. Nakamura (RIKEN)H. Perlt (Leipzig)D. Pleiter (Julich&Regensburg)P. E. L. Rakow (Liverpool)A. Rusetsky (Bonn)G. Schierholz (Hamburg)K. Somfleth (Adelaide)H. Stuben (Hamburg)A. W. Thomas (Adelaide)J.-J. Wu (Beijing)R. D. Young (Adelaide)J. M. Zanotti (Adelaide)

Page 3: OpportunitiesofexascalecomputingforlatticeQCD+QED QCDSF

Projects

Strong CP violation, probed with electric dipole moment

η → 2π

QCD θ term

Quark EDM

Quark&Gluon chromo-EDM

Hadron structure PDFs Regge limit and small x, higher twist

GPDs Encompasing form factors and PDFs

Dynamical QCD + QED Nf=1+1+1

Clover fms

Isospin violations: Hadron spectroscopy,

flavor decomposition of hadron structure,

quark masses

Precision calculations: Muon (g−2), CKM

matrix elements, leptonic and semileptonic

decay rates, neutron lifetime and axial

coupling connection, neutrino-nucleus

interactions

Page 4: OpportunitiesofexascalecomputingforlatticeQCD+QED QCDSF

Strong CP violation

The new generation of precision searches for electric dipole moments (EDMs) will probe new

physics interactions that appear at energies well beyond the reach of high energy colliders. With

the increasingly precise experimental efforts to observe EDMs it is now important to have a rigorous

calculation directly from QCD

〈p′, s′|Jµ|p, s〉 = u(~p ′, s′)Jµ u(~p, s) Jµ = γµF1(q2) + σµνqν

F2(q2)

2mN

+ σµνqνγ5

F3(q2)

2mN

dN =eF3(0)

2mN

∝ eqℓ

Sources QCD

S = SQCD + i θ Q

Quark EDM qσµνq

GUTs

Quark chromo-EDM

Gluon chromo-EDM

SUSY Standard Model

CKM

︸ ︷︷ ︸

Inherent CP violation

Page 5: OpportunitiesofexascalecomputingforlatticeQCD+QED QCDSF

Experiment

Distancesprob

ed(e

=1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...............

...............

............... 10−10

10−12

10−14

θ

QCD

↑Strong CP problem

Page 6: OpportunitiesofexascalecomputingforlatticeQCD+QED QCDSF

Monte Carlo simulations of Sθ = i θ Q are not

feasible. Instead, we rotate the theta term into

mass matrix

Sθ =i

3θ m

x

(uγ5u + dγ5d + sγ5s)

and simulate at imaginary vacuum angle, θ → i θ

Common practice

〈O〉θ → 〈O exp{i θ Q}〉

On very large volume one representative

field (called the master field) is sufficient.

Choose Q = 0. Then dn = 0 Luscher

Preliminary results PRL 115 (2015) 062001

243 × 48

−0.04

−0.03

−0.02

−0.01

0

0.01

0 0.1 0.2 0.3−0.04

−0.03

−0.02

−0.01

0

0.01

0 0.1 0.2 0.3−0.04

−0.03

−0.02

−0.01

0

0.01

0 0.1 0.2 0.3−0.04

−0.03

−0.02

−0.01

0

0.01

0 0.1 0.2 0.3−0.04

−0.03

−0.02

−0.01

0

0.01

0 0.1 0.2 0.3

dn[e

fmθ]

m2

π [GeV2]

dn[e

fmθ]

m2

π [GeV2]

dn[e

fmθ]

m2

π [GeV2]

dn[e

fmθ]

m2

π [GeV2]

dn[e

fmθ]

m2

π [GeV2]

Projected onto neutron state. Compatible

with dn = 0 Strong CP Problem?

To connect EDM measurements to particle

physics, we need to improve the precision

of the calculation by simulating on larger

volumes, at realistic quark masses and at

two different lattice spacings at least

Inclusion of chromo-EDM is straightforward

Page 7: OpportunitiesofexascalecomputingforlatticeQCD+QED QCDSF

Hadron structure

The partonic structure of hadrons plays an important role in a vast array of high-energy and nuclear

physics experiments. It also underpins the theoretical understanding of hadron structure

We have embarked on a program, starting from the Compton amplitude, that allows to compute

hadron structure functions down to the Regge region and small x, including higher twist, thus

avoiding issues of mixing and renormalization, as well as GPDs

Regge

γ+

−0

t’

ππ

Y

ρ

PI

p n

M

(d)

peripheral→ R,

x qv(x) = A(1−x)ηx1−α(0)(

1+ǫ√x+γx

)

↑Not accessible on the light cone

Computationally, we are able to take advantage of the efficiency of the Feynman-Hellmann approach

and avoid the need to compute four-point functions

Page 8: OpportunitiesofexascalecomputingforlatticeQCD+QED QCDSF

Hu(x, b

2⊥) Valence quarks, q2 = 4GeV2

Page 9: OpportunitiesofexascalecomputingforlatticeQCD+QED QCDSF

All hadron structure functions (as well as PDFs and GPDs) derive from the Compton Amplitude

Tµν(p, q) =

d4x e

iqx〈N(p)|TJµ(x)Jν(0)|N(p)〉. For example

T33(p, q) = 4ω

∫ 1

0

dxωx

1− (ωx)2F1(x, q

2)

Tµν(p, q) can be computed most efficiently, including singlet (disconnected) matrix elements, by

the Feynman-Hellmann technique. By introducing the perturbation to the Lagrangian, L(x) →L(x) + λµ cos(q · x) Jµ(x), it is obtained by the second derivative of the energy shift,

−2Eλ(p, q)∂2

∂λ2µ

Eλ(p, q)∣∣λ=0

= Tµµ(p, q)

The amplitude encompasses the dominating ‘handbag’

diagram as well as the power-suppressed ‘cats ears’

diagram. Varying q2 will allow to test the twist expansion

No renormalization is needed

Page 10: OpportunitiesofexascalecomputingforlatticeQCD+QED QCDSF

Preliminary resultsRegge

←−mπ = 410MeV

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.20

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2

Tp−n

1(ω,q

2)

ω

q2 = 4.6GeV2

Tp−n

1(ω,q

2)

ω

❇�✁✂✄

▼☎✆✝

✵✞✵ ✵✞✟ ✵✞✠ ✵✞✡ ✵✞☛ ✶✞✵✵✞✵

✵✞✶

✵✞✟

✵✞☞

✵✞✠

✌✭✉✲❞✮

Handbag diagram

Higher

twist

Prior: AxB(1− x)C

arXiv:2001.05366

Page 11: OpportunitiesofexascalecomputingforlatticeQCD+QED QCDSF

What is possible?

In

Tu+d+S33 (ω)=4ω

∫ 1

0

dxωx

1−(ωx)2F

u+d+S1 (x)

Out

2xFu+d+S1 (x)=

1

3x[u(x)+d(x)+S(x)]

× × × × ×××

×××××

××

×

×

×

×

×

×

×

××××××××

✵�✵✵✁ ✵�✵✵✂ ✵�✵✁✵ ✵�✵✂✵ ✵�✁✵✵ ✵�✂✵✵ ✁✵�✵

✵�✄

✵�☎

✵�✆

✵�✝

✁�✵

✻✞✟✶✉

✰❞✰❙✭✞✮

✞❬✠✭✞✮✡☛✭✞✮✡☞✭✞✮❪

MSTW-lo

Singlet structure functions require extra

simulations with the Lagrangian L(x) +

λµ cos(q · x) Jµ(x) for each value of photon

momentum q

GPDs require calculation of off-forward

Compton amplitude

Page 12: OpportunitiesofexascalecomputingforlatticeQCD+QED QCDSF

Dynamical QCD + QED

Lattice simulations of QCD are now reaching

a precision, where isospin breaking effects can

be investigated and QED corrections become

important, due to the difference of mass and

charge of the quarks

We perform simulations of dynamically-coupled

QCD + QED, where the electric charges of

sea-quark loops are included in the fermion

determinant. Starting from an SU(3) symmetric

point inspired by Dashen’s scheme, we use

a flavor symmetry breaking expansion to

extrapolate to the physical quark masses and

interpolate to the physical QED coupling

These new gauge field configurations will allow

us to resolve the influence of electromagnetic

interactions on hadronic masses, structure and

processes

Density of +ve (red) & -ve (purple) chg

compared with QCD action density

Chiral magnetic effect

Page 13: OpportunitiesofexascalecomputingforlatticeQCD+QED QCDSF

Pion and Kaon decays

π+ → µ

+νµ Diagrammatically

Green function

uνGuµ = Mπfπe(Eµ−Mπ)τ 2mµ

√Eµ − p

Page 14: OpportunitiesofexascalecomputingforlatticeQCD+QED QCDSF

Neutron lifetime puzzle

1

τn=

G2µ|Vud|2

2π3m

5e (1 + 3 g

2A) (1 + RC)

↑main uncertainty

It has been argued that neutrons sometimes decay

into dark matter instead of protons, disappearing

from bottles at a faster rate than protons appear

in beams, exactly as observed

Fornal & Grinstein

l

gA

Page 15: OpportunitiesofexascalecomputingforlatticeQCD+QED QCDSF

Summary

– CP violation in nucleon and nuclei from EDM (qγ5q), quark chromo–EDM (qγ5σµνqGµν) and

gluon chromo–EDM (GµνGνρGρσ)

– Unpolarized and polarized nucleon structure functions, down to small x including higher twist,

and generalized parton distribution functions (GPDs)

– Isospin violation and precision calculation of hadronic processes from Nf = 1 + 1 + 1 lattice

QCD + QED using O(a) improved clover fermions

Benefit to EU Research Infrastructures: Lattice calculations have become an essential tool to realize

and exploit the full potential of the investment in accelerators and detectors