55
Optimal Control of ODEs: Introductory Lecture Suzanne Lenhart University of Tennessee, Knoxville Department of Mathematics Lecture1 – p.1/55

Optimal Control of ODEs: Introductory Lecture

  • Upload
    hathien

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Optimal Control of ODEs: Introductory Lecture

Optimal Control of ODEs:Introductory Lecture

Suzanne Lenhart

University of Tennessee, Knoxville

Department of Mathematics

Lecture1 – p.1/55

Page 2: Optimal Control of ODEs: Introductory Lecture

Outline

1. Motivating Example2. Set-up of optimal control problem3. Necessary Conditions to characterize OC4. Simple Examples5. Back to motivating example

Lecture1 – p.2/55

Page 3: Optimal Control of ODEs: Introductory Lecture

Fishery Model

� � � � � � � � � � � �

� �� �

population level of fish� �� �

harvesting control

Maximizing net profit:

� � �� ����� � � � ��� � � � �� � �� � ��� �

where � �� is discount factor, � � � ��� � �� terms represent profit

from sale of fish, diminishing returns when there is a large

amount of fish to sell and cost of fishing. � � � � ��� � �� are

positive constants.Lecture1 – p.3/55

Page 4: Optimal Control of ODEs: Introductory Lecture

Overview

To formulate an appropriate OC problem, thesystem of differential equations must be areasonable representation of the scenario to beconsidered.Designing an appropriate objective functional isequally important.Balancing competing goals may be crucial.The form of the OC results depend strongly onthe system of equations, how the controls enterthat system, and the objective functional.

Lecture1 – p.4/55

Page 5: Optimal Control of ODEs: Introductory Lecture

Optimal Control

Adjust controls in a system to achieve a goalSystem:

Ordinary differential equations

Partial differential equations

Discrete equations

Stochastic differential equations

Integro-difference equations

Lecture1 – p.5/55

Page 6: Optimal Control of ODEs: Introductory Lecture

Big Idea

In optimal control theory, after formulating aproblem appropriate to the scenario, there areseveral basic problems :

(a) to prove the existence of an optimal control,

(b) to characterize the optimal control,

(c) to prove the uniqueness of the control,

(d) to compute the optimal control numerically,

(e) to investigate how the optimal controldepends on various parameters in the model.

Lecture1 – p.6/55

Page 7: Optimal Control of ODEs: Introductory Lecture

Notation

� � � ���

! � " �#

� ! $ � #

� � ! % � exponential growth

� & � ' ! ��( ) *+time is underlying variable.

Lecture1 – p.7/55

Page 8: Optimal Control of ODEs: Introductory Lecture

Deterministic Optimal Control

Control of Ordinary Differential Equations (DE), -�. /

control0 -�. /

stateState function satisfies DEControl affects DE

0 1 -�. / 2 3 -.4 0 -�. /4 , -. / /

, -�. / 0 -�. /

Goal (objective functional)

Lecture1 – p.8/55

Page 9: Optimal Control of ODEs: Introductory Lecture

Deterministic Optimal Control- ODEs

Find piecewise continuous control 5 6�7 8and

associated state variable 9 67 8

to maximize

: ;<=

>6�7? 9 6�7 8? 5 6�7 8 8@ 7

subject to

9 A 6�7 8 B C 6�7? 9 67 8? 5 6�7 8 8

9 6ED 8 B 9 >and 9 6 8 FG G

Lecture1 – p.9/55

Page 10: Optimal Control of ODEs: Introductory Lecture

Contd.

Optimal Control H I J�K L

achieves the maximum

Put H I J�K L

into state DE and obtain M I J�K L

M I J�K L

corresponding optimal state

H I J�K L

, M I J�K L

optimal pair

Lecture1 – p.10/55

Page 11: Optimal Control of ODEs: Introductory Lecture

Necessary and Sufficient Conds.

Necessary ConditionsIf N O P�Q R

, S O PQ R

are optimal, then the followingconditions hold...

Sufficient ConditionsIf N O P�Q R

, S O P�Q R

and

T

(adjoint) satisfy the conditions...then N O P�Q R

, S O P�Q Rare optimal.

Lecture1 – p.11/55

Page 12: Optimal Control of ODEs: Introductory Lecture

Adjoint

like Lagrange multipliers to attach DE to objective func-

tional.Lecture1 – p.12/55

Page 13: Optimal Control of ODEs: Introductory Lecture

Deterministic Optimal Control- ODEs

Find piecewise continuous control U V�W Xand

associated state variable Y VW X

to maximize

Z [\]

^V�W_ Y V�W X_ U V�W X X` W

subject to

Y a V�W X b c V�W_ Y VW X_ U V�W X X

Y VEd X b Y ^and Y V X ef f

Lecture1 – p.13/55

Page 14: Optimal Control of ODEs: Introductory Lecture

Quick Derivation of Necessary Condition

Suppose g h is an optimal control and i hcorresponding state.

j k�l m

variation function,n o .

t

u*(t)+ ah(t)

u*(t)

g h k�l m n j k�l m

another control.p klq n m state corresponding to g h n j

,

r p klq n mrl s t k lq p k�lq n mq k g h n j m k�l m m m

Lecture1 – p.14/55

Page 15: Optimal Control of ODEs: Introductory Lecture

Contd.

At

u v w

, x y wz { | v }�~

t

x * (t)

y(t,a)

x 0

all trajectories start at same position

x y uz w | v } � y u | when { v wz control � �

� y { | v�

~y uz x y uz { | z � � y u | { � y u | |� u

Maximum of�

w.r.t. { occurs at { v w

.Lecture1 – p.15/55

Page 16: Optimal Control of ODEs: Introductory Lecture

Contd.

�� ��� ���

���������� � � �

��

��� �� � � ��� � ��� � � � �� � � �� ��� �� � � ��� � � � ��� � �� � �

� ��

��� �� � � �� � ��� � � � �� � � � � �� � �� � � � � �� ��� �� � � � � �¡ 

Adding

to our

� �� �gives

Lecture1 – p.16/55

Page 17: Optimal Control of ODEs: Introductory Lecture

Contd.

¢ £�¤ ¥§¦ ¨© ª £«�¬ ­ £« ¬ ¤ ¥¬ ® ¯±° ¤ ² ¥ ° ³

³« £´ £« ¥ ­ £«�¬ ¤ ¥ ¥ ³«

° ´ £µ ¥ ­ £µ ¬ ¤ ¥�¶ ´ £· ¥ ­ £· ¬ ¤ ¥

¦ ¨© ¸ ª £« ¬ ­ £«�¬ ¤ ¥¬ ® ¯�° ¤ ² ¥ ° ´ ¹ £« ¥ ­ £« ¬ ¤ ¥

° ´ £« ¥�º £«�¬ ­¬ ® ¯° ¤ ² ¥» ³« ° ´ £µ ¥�¼ ©¶ ´ £· ¥ ­ £· ¬ ¤ ¥

here we used product rule and º ¦ ³ ­ ½ ³«

.

Lecture1 – p.17/55

Page 18: Optimal Control of ODEs: Introductory Lecture

Contd.Take the derivative of J with respect to aand evaluate it at a =0.¾¿ ¾ÁÀ

SIMPLIFY using the adjoint

Lecture1 – p.18/55

Page 19: Optimal Control of ODEs: Introductory Lecture

Contd.Choose

 Ã�Ä Å

to simplify this derivative.

Æ ÇÈÉ Ê§Ë Ì ÍÎÐÏ ÈÉ�Ñ Ò ÓÑ Ô Ó ÊÖÕ ÆÈÉ Ê�× Ï ÈÉ Ñ Ò ÓÑ Ô Ó ÊØ adjoint equationÆÈÙ ÊË Ú

transversality condition

ÚË ÛÜ È ÎÐÝ Õ Æ× Ý ÊÞ ÈÉ Êß É

Þ ÈÉ Ê

arbitrary variation

à ÎÐÝ ÈÉ Ñ Ò ÓÑ Ô Ó Ê Õ ÆÈÉ Ê× Ý ÈÉ Ñ Ò ÓÑ Ô Ó ÊË Ú

for all

Úá É á Ù â

Optimality condition.

Lecture1 – p.19/55

Page 20: Optimal Control of ODEs: Introductory Lecture

Using Hamiltonian

Generate these Necessary conditions fromHamiltonian

ã�äå æå çå è é ê ã äå æå ç é èìë ã�äå æå ç éintegrand (adjoint) (RHS of DE)

maximize w.r.t. ç at ç í

îî ç ê ï ð èë ð ê ï

optimality eq.

è ñ ê òî

î æ è ñ ê ò ãó èìëó é

adjoint eq.

è ã é ê ïtransversality condition

Lecture1 – p.20/55

Page 21: Optimal Control of ODEs: Introductory Lecture

Given ô õ÷ö ø ùú�û ôû ü ý DEô ùúÿþ ý ö ôþ IC �Use Hamiltonian to get other conditions� �� ü ö �

� õö � � �� ô� ù� ý ö � �

Converted problem of finding control to maximize objective

functional subject to DE, IC to using Hamiltonian pointwise.Lecture1 – p.21/55

Page 22: Optimal Control of ODEs: Introductory Lecture

For maximization��� � �

at � � as a function of

For minimization��� � �

at � � as a function of

Lecture1 – p.22/55

Page 23: Optimal Control of ODEs: Introductory Lecture

Two unknowns � � and � �

introduce adjoint

(like a Lagrange multiplier)

Three unknowns � � , � � and

�nonlinear w.r.t. �

Eliminate � � by setting � � �and solve for � � in terms of � � and

Two unknowns � � and�

with 2 ODEs (2 point BVP)+ 2 boundary conditions.

Lecture1 – p.23/55

Page 24: Optimal Control of ODEs: Introductory Lecture

Pontryagin Maximum Principle

If � � ��� � and � � ��� � are optimal for above problem, then thereexists adjoint variable

� �� �

s.t.

� ��� � � � ��� �� � ��� �� � ��� � � ! � �� � � � ��� �� � � ��� �� � ��� � ��

at each time, where Hamiltonian�

is defined by

� ���� � ��� �� � ��� �� � ��� � � " # ���� � ��� �� � ��� � � $ �&% �� � � ��� �� � ��� � �'

and

� ( ��� � " ) * � ���� � ��� �� � ��� �� � ��� � �* �� �+ � " , transversality condition

Lecture1 – p.24/55

Page 25: Optimal Control of ODEs: Introductory Lecture

Hamiltonian

-/. 0 1�2 3 43 5 6 7 8 1 2 6 0 1 23 43 5 6

5 9 maximizes

-

w.r.t. 5, -

is linear w.r.t. 5

-/. : 1�2 3 43 8 6 5 1 2 6 7 ; 1 23 43 8 6

bounded controls, < = 5 1�2 6 = >.

Bang-bang control or singular control

Example:

-/. ? 5 7 8 5 7 4A@ 8 4 BC -C 5 . ? 7 8 D. E

cannot solve for 5

-

is nonlinear w.r.t. 5, set

-GF . E

and solve for 5 9

optimality equation.Lecture1 – p.25/55

Page 26: Optimal Control of ODEs: Introductory Lecture

Example 1

H IKJ LM N OQP�R ST R

U V W U X NZY UP[ S W \

] W integrand X ^

RHS of DE W N O X ^P U X N S_ ]_ N W ` N X ^ W[ a N b Wdc ^` at N b

_ O ]_ N O W `^ V Wc _ ]_ U Wdc ^ ^P \ S W[

^ W ^ M e f g h[ W ^ M e f L a ^ M W[^ji [ Y N b i [ Y U b W e g

Lecture1 – p.26/55

Page 27: Optimal Control of ODEs: Introductory Lecture

Example 2

k lnmop

q r sut v wx y s t v p{z t

subject to r | sut v } r s t v y sut v~ r s�� v } wx � p � w�

What optimal control is expected?

Lecture1 – p.27/55

Page 28: Optimal Control of ODEs: Introductory Lecture

Hamiltonian

� � �� � � � � � � �

The adjoint equation and transversality conditiongive

� � �u� � � � �� � � � � � �� � � � � � � � �u� � � � �� � � � �

Lecture1 – p.28/55

Page 29: Optimal Control of ODEs: Introductory Lecture

Example 2 continued

and the optimality condition leads to

� � ��� � � � � � �u� � � � � �   � ¡ ¢£ ¤¥

The associated state is

¦ � �u� � �  § ¡ ¢£ ¤ �   ¥

Lecture1 – p.29/55

Page 30: Optimal Control of ODEs: Introductory Lecture

Graphs, Example 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2−1

0

1

2

3

Time

Sta

te

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

2

4

6

8

Time

Adj

oint

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2−8

−6

−4

−2

0

Time

Con

trol

Example 2.2

Lecture1 – p.30/55

Page 31: Optimal Control of ODEs: Introductory Lecture

Exercise

¨©ª«¬

­®°¯ ± ²³ ´

¯ µ ¶ · ¸ ± ¹º ¯ ®�» ² ¶ · º ± control ¼ ¶½½ ± ¶ »

¾ µ ¶ ¾ ¶

¾ ® · ² ¶± ¿ ¶ ¯ ¿ ¶

Lecture1 – p.31/55

Page 32: Optimal Control of ODEs: Introductory Lecture

Example

À ÁÂÃÄ

Å ÆÈÇ ÉËÊ ÌÍÎ

Ç ÏÑÐ ÒÔÓ Ê ÕÖ Ç Æ× Ì Ð Ò Ê controlØ ÆÎ Ö Ç Ö Ê Ö Ù Ì Ð Ç É Ê É Ù Æ ÒÔÓ Ê Õ Ì

Ú ØÚÊ Ð Ò Ó Û ÙÊ Ð × Ü Ê Ð ÒÛ Ù Ý Ø Ã ÃÐ Ó Û ÙÞ × Ö

Ù ÏÐ Ó Ú ØÚÇ Ð Ó ÒÖ Ù Æ Ò Ì Ð × Ö Ü ÙÐ Ò Ó Î

Ç ÏÑÐ ÒÔÓ Ê Õ Ð Ò Ó Òß Æ ÒÔÓ Î Ì Õ

Ç à ÆÎ Ì Ð Î Ó Ò á ß Æ ÒÔÓ Î Ì É â á ßÖ Ê à ÆÎ Ì Ð Ò á Û Æ Ò Ó Î Ìã

Lecture1 – p.32/55

Page 33: Optimal Control of ODEs: Introductory Lecture

Contd.

äå

æ°ç è éuê ë ì è éuê ëí îê ïThere is not an “Optimal Control" in this case.

Want finite maximum.

Here unbounded optimal stateunbounded OC

Lecture1 – p.33/55

Page 34: Optimal Control of ODEs: Introductory Lecture

Salvage Term

ðñò ó ôÈõ ôö ÷ ÷ùø úû ü ô�ý þ õ ô�ý ÷þ ÿ ô�ý ÷ ÷� ý

õ � � � ô�ýþ õ þ ÿ ÷ õ ô� ÷ � õ ûwhere

ó ôõ ôö ÷ ÷

is final payoff. What change results?

� ô�� ÷ � úû ü ô�ýþ � ô�ý þ � ÷þ ÿ ø � ÷� ý ø ó ô � ôö þ � ÷ ÷

...� �� � ô� ÷ � � � úû � � � ý

same as before� � ôö ÷ � �� � ôö þ � ÷ ø ó � ôÈõ ôö ÷ ÷ � �� � ôö þ � ÷

Lecture1 – p.34/55

Page 35: Optimal Control of ODEs: Introductory Lecture

Only change

� � � � � ��� � � � �Example

� �� ��� � � � �

�"!# � # $ �% !

��� � � �� � � � &' �

� � � � &' � � � �

Lecture1 – p.35/55

Page 36: Optimal Control of ODEs: Introductory Lecture

Back to Fishery Model

( )+* , ( - . ( / . 0 (

( -21 /

population level of fish0 -21 /

harvesting control

Maximizing net profit:

34 5 6 78 9;:=< 0 ( . :=> - 0 ( /> . ?< 0 @"A 1

where 5 6 78 is discount factor, : <CB :=>CB ?< terms represent profit

from sale of fish, diminishing returns when there is a large

amount of fish to sell and cost of fishing. B : < B :=>CB ?< are

positive constants.Lecture1 – p.36/55

Page 37: Optimal Control of ODEs: Introductory Lecture

Contd.

D E F GH IKJML NO P JMQ R NO SQ P TL N U

V R O R P O S P NO S

V W D PX

XO D P Y E F GH R J L N P Z J"Q NQ O S

V R P Z O P N S[

XX N D E F GH R J L O P Z JMQ NO Q P TL S V R P O S D \

N ] D P V O ] E F GH R J"L O ] P TL S

Z E F GH J"Q R O ] SQ

Lecture1 – p.37/55

Page 38: Optimal Control of ODEs: Introductory Lecture

Contd.

Solve for ^ _` a _` b

numerically.

Need control bounds

c ^ d"e f gMhRef:B D Craven bookControl and Optimization

Lecture1 – p.38/55

Page 39: Optimal Control of ODEs: Introductory Lecture

Interpretation of Adjoint

i jklmon

mopq"rs ts u vw r x q tMy s r y v

( Definition of value function )

t z { | q"rs ts u v

t qr y v { t y

}} t q t y s r y v { ~ q"r y v

�� i� � yq t y �s r y v � q t�y s r y v

Units: money/unit item in profit problems.Lecture1 – p.39/55

Page 40: Optimal Control of ODEs: Introductory Lecture

� �"��� �

= marginal variation in the optimal objectivefunctional value of the state value at

� � .“Shadow price”� additional money associated with addi-tional increment of the state variable

���� � � � �� �� � � � � �"� �

for all

� � � ���

“If one fish is added to the stock, how much is thevalue of the fishery affected ?"

Lecture1 – p.40/55

Page 41: Optimal Control of ODEs: Introductory Lecture

���� � �M� � �� � � � � �� �

Approximate

� � � � � �� � � � �"� � �� �

� � � � �� �

� � � � � �� � � � � � � �� � � � �� �

New value Original value + adjoint

Lecture1 – p.41/55

Page 42: Optimal Control of ODEs: Introductory Lecture

Principle of Optimality

If   ¡¢ £ ¡

is an optimal pair on¤�¥ ¤ ¤�¦ and

¤�¥ §¤ ¤�¦ ,then   ¡¢ £ ¡

is also optimal for the problem on§¤ ¤ ¤¦ :

¨©ª«¬�­

®¬¯ ¤¢ £¢   °± ¤ £ ² ³ ´ ¯ ¤¢ £¢   °

£ ¯ §¤ ° ³ £ ¡ ¯ §¤ °t

x 0

t 0 t t 1

(t, x*(t ))

x

Lecture1 – p.42/55

Page 43: Optimal Control of ODEs: Introductory Lecture

Optimality System

State system coupled with adjoint system- optimal control’s expressions substituted in

Numerical Solutions by Iterative Method- with Runge Kutta 4, Matlab or favorite ODE solver- guess for controls, solve forward for states- solve backward for adjoints- update controls, using characterization- repeat forward and backwards sweeps and controlupdates until convergence of iterates

Lecture1 – p.43/55

Page 44: Optimal Control of ODEs: Introductory Lecture

Bounded Controls

As long as the final position of the state variableis not fixed in advance:Control µ ¶ ·"¸ ¹ º

Solve for the optimal control using the optimalitycondition and then impose the bounds on theformula.In that exercise, suppose for all controls» ¶ · ¸ ¹ ¼

Then ¶ ½ ·"¸ ¹ ¾ ¿ ÀoÁ · ¼Â ¿ µÃ · »Â ÄÅ Æ ¹ ¹

Lecture1 – p.44/55

Page 45: Optimal Control of ODEs: Introductory Lecture

Multiple States and Controls

Consider a problem with Ç state variables, È

control variables, and a payoff function ,

É ÊËÌÎÍÐÏÑ Ñ Ñ Ï ÌÓÒÔ�Í

ÔoÕÖ"×Ø Ù"Ú Ö"× ÛØ Ü Ü ÜØ ÙÞÝ Ö"× ÛØ ßÚ Ö"× ÛØ Ü Ü ÜØ ßÞà Ö× Û Ûá ×

Ö Ù�Ú Ö"× Ú ÛØ Ü Ü ÜØ Ù Ý Ö× Ú Û Û

subj. to Ù âã Ö"× Û ä å ã Ö×Ø ÙÚ Ö"× ÛØ Ü Ü ÜØ ÙæÝ Ö× ÛØ ßÚ Ö"× ÛØ Ü Ü ÜØ ßà Ö"× Û ÛØ

Ù ã Ö"×�ç Û ä Ù ãç fixed, Ù ã Ö"× Ú Û

free

Lecture1 – p.45/55

Page 46: Optimal Control of ODEs: Introductory Lecture

Vector Notation

è éêëíìîoï

îoðñ"òó ô�õ ñ"ò öó ô�÷ ñ"ò ö öø ò

ñ ôõ ñ"ò�ù ö ösubject to

ô�õ ú ñ"ò ö û ô�ü ñ"ò ó ôõ ñ"ò öó ô�÷ ñ"ò ö öóô�õ ñò�ý ö û ô�õý ó ô�õ ñò ù ö

free þ

Lecture1 – p.46/55

Page 47: Optimal Control of ODEs: Introductory Lecture

Hamiltonian

ÿ�� � ��� � ��� � ��� ÿ� � ��� � ��� �� ÿ�� �� �� ÿ�� � ��� � ��� �

ÿ�� � ��� � ��� � ��� ÿ� � ��� � ��� �

��� �� �ÿ�� �ÿ�� � �� � ���

Lecture1 – p.47/55

Page 48: Optimal Control of ODEs: Introductory Lecture

Necessary Conditions

� �� ��� � � ��� � � � � ���� ��� �� �� � � ���"! � � � �! � # � $� % % %� &�

� �' ��� � � (�

� � '� � ' ���*) � � +-, � � ��*) � �� . � $� % % %� &�

/ � �� 10 � 2 � $� % % %� 3�

Lecture1 – p.48/55

Page 49: Optimal Control of ODEs: Introductory Lecture

Optimality Conditions

44�576 8 9

to

:;;=<

5 6 8 >6 if

?@?BAC D 9

>6 516 E6 if

?@?BAC 8 9

5 6 8 E6 if

?@?BAC F 9G

Lecture1 – p.49/55

Page 50: Optimal Control of ODEs: Introductory Lecture

States and Adjoints

To each state, there corresponds an adjoint.The first adjoint corresponds to the first state...

Lecture1 – p.50/55

Page 51: Optimal Control of ODEs: Introductory Lecture

Simple Example

Consider a well-stirred bioreactor in whichcontaminant and bacteria present in spatiallyuniform, time varying concentrations.

H I�J K L concentration of contaminant

M I�J K L concentration of bacteria

The bioreactor is rich in all nutrients except oneto be controlled,

N IJ K L concentration of input nutrient O

Lecture1 – p.51/55

Page 52: Optimal Control of ODEs: Introductory Lecture

The bacteria degrades contaminant viaco-metabolism, meaning degradation of thecontaminant is a byproduct of the bacteriametabolism. The growth of the bacteria as resultof the nutrient P is a limited growth function,called Monod or Michealis-Menton kinetics.

Q RS�T U V S P U QXW S Q U YZ where

S P U V PP

[ RS�T U V W Q [with

\ PS�T Ucontrol, QS \ U Z [S \ U

known.Lecture1 – p.52/55

Page 53: Optimal Control of ODEs: Introductory Lecture

Objective

We wish to minimize the final contaminantconcentration and total injection of the nutrient.Thus, the objective functional

] ^ _ `a b ^�c _d c

should be minimized.Hamiltonian

e b fhg ^ ^ b _"i j i k _ f k ^ j i ] _

Lecture1 – p.53/55

Page 54: Optimal Control of ODEs: Introductory Lecture

Two adjoints

l mn o�p q r s tu tBvl mw o�p q r s tu tBxl n o q r yz l w o q r {

Lecture1 – p.54/55

Page 55: Optimal Control of ODEs: Introductory Lecture

Optimality Condition

| } ~�� � � } �"� � � � � ~ � � � � � �with� } � | ����� �� ��� | � ~h� � � �� �� � ��

When } � ��� � � �

, then } � | � � ~ � � � � � � �

One must check that this expression is positive.

Lecture1 – p.55/55