ORAC-CAO

Embed Size (px)

Citation preview

  • 7/29/2019 ORAC-CAO

    1/6

    Subscriber access provided by University of Florida | Smathers Libraries

    Journal of Agricultural and Food Chemistry is published by the American ChemicalSociety. 1155 Sixteenth Street N.W., Washington, DC 20036

    Article

    Total Antioxidant Capacity of FruitsHong Wang, Guohua Cao, and Ronald L. Prior

    J. Agric. Food Chem., 1996, 44 (3), 701-705 DOI: 10.1021/jf950579y Publication Date (Web): 19 March 1996

    Downloaded from http://pubs.acs.org on May 4, 2009

    More About This Article

    Additional resources and features associated with this article are available within the HTML version:

    Supporting Information Links to the 59 articles that cite this article, as of the time of this article download

    Access to high resolution figures Links to articles and content related to this article

    Copyright permission to reproduce figures and/or text from this article

    http://pubs.acs.org/doi/full/10.1021/jf950579y
  • 7/29/2019 ORAC-CAO

    2/6

  • 7/29/2019 ORAC-CAO

    3/6

    chased from Wako Chemicals USA In c. (Richmond, VA).6-Hydroxy-2,5,7,8-tetramethyl-2-carboxylic acid (Trolox) wasobtained from Aldrich (Milwauk ee, WI). Acetone was fromSigma or Aldrich.

    S a m p l e P r e p a r a t i o n . All of the fruits except white andred grapes, strawberries, plums, and tomatoes were peeled.The edible portion of the fruit was weighed and then homog-enized by using a blender after deionized water was added(1:2 w/v). The homogenat e was centr ifuged at 4500g for 15min (4 C). The supern ata nt (juice fraction) was r ecoveredand used directly for the ORAC assay after suitable dilutionwith ph osphate buffer (75 mM, pH 7.0). The pulp (insolublefraction) was furt her extracted by u sing pur e acetone (1:7 w/v)with sha king a t r oom te m pe r a tur e f or 30 m in. Ace tone ha sbeen used by other investigators t o extract ant ioxidants fromfruit pu lp (Daniel et al., 1989; Mass et al., 1991). Acetone itselfhas only a very small effect on the ORAC assay (Cao et al. ,1995). The acetone extract was recovered after centr ifugat ion(4500g, 15 min, 4 C), and the sample was used for the ORACassay after suitable dilution with phosphate buffer. The drymat ter of fruit wa s determined by weighing th e water lost afterdrying at 40 C for 1 week.

    A u t o m a t e d O R AC A s s a y . The a ut om a te d OR AC a ssa ywas carried out on th e COBAS F ARA II centrifugal a nalyzer(R oche Dia gnostic S yste m I nc. , B r a nc hbur g, NJ) with afluorescence att achment; fluorescent filters were set to passthe l ight with a n e xc ita tion wa ve le ngth of 540 nm a nd a nemission wavelength of 565 nm. The procedur e was based ona pr e vious pa pe r of C a o e t a l . ( 1993), a s m odified for theCOBAS FARA II (Cao et al., 1995). Briefly, in the final a ssaymixtur e (0.4 mL t otal volum e), -PE (1.67 10-8 M) was u sedas a target of free radical damage, AAPH (4 mM) as a peroxylr a dica l ge ne r a tor , a nd Tr olox a s a contr ol sta nda r d. Theanalyzer was programmed t o record the fluorescence every 2min after AAPH addition. Fina l result s were calculat ed usingthe differences of areas under the quenching curves of -P Ebe twe e n a bla nk a nd a sa m ple a nd a r e e xpr e sse d a s m ic r o-moles of Trolox equivalents per gram or m illiliter. The ORACactivity of a fruit was calculated by adding the ORAC activityfrom the juice fraction and the pulp fraction extracted withacetone.

    Statistical Analysis. The effect of acetone extraction timeon the ORAC activity of a fruit pulp was analyzed by analysisof var iance (ANOVA) usin g SYSTAT (SYSTAT, Inc., Evan ston ,IL). Pairwise mu ltiple comparisons were evaluated by Tuk eyssignifican t difference (HSD) test used in SYSTAT. Differen cesa t P < 0.05 were considered significant.

    RESULTS

    The ORAC activity of a fruit (edible portion) wascalculated by a dding th e ORAC activity from its juicefraction and its pulp fraction extracted with acetone.Thirty minu tes of extra ction with acetone was found tobe sufficient to extra ct the a nt ioxidants contain ed in th epulp of a f r ui t ( str awber r y, or ange, and whi te gr apewere tested in t his stu dy; Table 1). The ORAC activitiesm e a s u r ed i n t h e p u lp of s t r a w b er r i es a n d or a n g esfollowing 2 min of acetone extra ction a t room temper-atur e wer e significantly (P < 0.05) l ower than thosemeasur ed after 30 min of acetone extra ction. However,the ORAC activities measu red in t he pu lp of strawber-ries a nd ora nges following 30 min of acetone extr action

    were not significant ly differen t from those mea sur ed byusing a 1 or 4 h a cetone extraction. The ORAC activitymeasured in the pulp of white grapes following 2 minof acetone extraction was not significantly different fromthat measured following 30 min or 1 or 4 h of acetoneextraction (Table 1).

    The ORAC activities of 12 fruits are shown in Table2. The ORAC assays of these fr uits wer e car r i ed outon three independent occasions using fruit purchasedon thr ee separa te occasions. The results are presenteda s m e a n ( SE. On th e basis of the wet weight of fruit(edible por tion) , str awber r y had the highest ORAC

    activity, followed by plum , orange, r ed gra pe, kiwi fruit,pink gr apef r uit , white gr ape, banana, apple, tomato,pear, an d melon. On th e basis of the dr y weight of fruit,str awberr y also had th e highest ORAC activity followedby plum, orange, pink gra pefruit, tomato, kiwi fru it, redgrape, white grape, apple, honeydew melon, pear, andbanana . I n m ost f r uits, the contr ibution of t he f r ui tpulp fraction (extra cted with a cetone) to the t otal ORACactivity of a fruit was usually less than 10%.

    The ORAC activities of five commercial fruit juicesar e shown in Figur e 1. Among the commer cial f r ui t

    ju ices tes t ed , gr a pe ju ice ha d th e h igh es t ORAC a cti vit y,followed by grap efruit juice, toma to juice, ora nge juice,an d apple juice. The calculat ed contr ibution of vitam inC t o the total ORAC activity of those commercial fruit

    T a b l e 1 . E f fe c t o f A c e t o n e E x t r a c t i o n T i m e o n O R A C

    ( N a n o m o l e s o f T r o l o x E q u i v a l e n t s p e r G r a m ) M e a s u r e di n F r u i t P u l p

    st rawberrya white grapea orangea

    2 m in 847 ( 29 (3) 248 ( 22 (3) 3556 ( 154 (3)30 m in 1264 ( 32 (3)* 306 ( 32 (3) 6041 ( 63 (3)*1 h 1116 ( 21 (3)* 340 ( 11 (3) 5782 ( 147 (3)*4 h 1129 ( 113 (3) 398 ( 80 (3) 5572 ( 182 (3)*

    a The dat a are present ed as mean ( SE (n ). * denotes P < 0.05using ANOVA in comparison with 2 min extraction.

    T a b l e 2 . O R AC o f S e l e c t e d F r u i t s U s i n g A AP H a s a

    P e r o x y l R a d i c a l G e n e r a to ra

    total ORAC

    item

    dr ym a t t e r

    (%) a s is ba sisb DM basisc

    ju iceextractORACb

    st r a wber r y 10.0 15.36 ( 2 .3 8 1 53 .6 ( 7 .5 1 2.4 4plu m 12.0 9.49 ( 0.67 79.1 ( 1.9 8.35or a n ge 14.5 7.50 ( 1.01 51.7 ( 2.7 6.82gr a pe, r ed 20.5 7.39 ( 0.48 36.0 ( 1.1 3.99kiwi fr u it 16.5 6.02 ( 0.52 36.5 ( 1.3 5.54gr a pe fr u it , p in k 1 0.0 4.83 ( 0.18 48.3 ( 0.6 4.54

    gr a pe, whit e 17.0 4.46 ( 1.06 26.2 ( 2.6 2.89ba n a na 24.5 2.21 ( 0.19 9.0 ( 0.4 2.10a pple 16.5 2.18 ( 0.35 13.2 ( 0.9 1.92t om a t o 5.0 1.89 ( 0.12 37.8 ( 0.5 1.57pea r 14.0 1.34 ( 0.06 9.6 ( 0.2 1.23m elon 7.5 0.97 ( 0.15 12.9 ( 0.5 0.88

    a Dat a expressed as means ( SEM of three samples purchasedand analyzed independently. b Data expressed as micromoles ofTrolox equivalents per gram of fruit (as is basis). c Data expressedas micromoles of Trolox equivalents per gram of dry matt er (DM)(DM basis).

    F i g u r e 1 . ORAC (micromoles of Trolox equivalent per mil-liliter) of common commer cial fruit juices. Th e ORAC contrib-ute d by vita m in C in a c om m e r c ia l juic e wa s ba se d on theORAC activity of vitamin C (Cao et al., 1993) and the contentof vitamin C obtained from t he commercial juice label. No datawe r e a va ila ble f or a pple juice . Vita m in C in tom a to juice

    account ed for 0.02 mol of Trolox equivalent/mL.

    702 J. Agric. Food Chem., Vol. 44, No. 3, 1996 Wang et al.

  • 7/29/2019 ORAC-CAO

    4/6

    ju ices wa s less t h a n 30 %. Da t a on vit a m in C con t en tof the commercial juices were from their labels exceptfor apple juice, which h ad n o such da tum . The ORACactivity of 1.0 mol of vitamin C is 0.52 mol of Tr oloxequiv (Cao et al., 1993).

    DISCUSSION

    Reactive oxygen species (ROS) are constantly gener-ated in vivo, both by accidents of chemistry and for

    specific purposes. To countera ct ROS and t o preventtheir possible damage to biological molecules, especiallyt o DNA, l ipi ds and pr oteins, al l oxygen-consumingorganisms are endowed with well-integrated an tioxidantsyst ems, whi ch include enzymes such as super oxidedismuta se, cat alase, and glutat hione per oxidase, an dmacromolecules, such as albumin, ceruloplasmin, andfe r r it i n , a n d a n a r r a y of s m a l l m ol ecu l es , s u c h a sascorbic acid, R-tocopherol, -car otene, a nd r educedglutathione.

    There ar e ma ny different ant ioxidant components inanimal and plant tissues, and it is relatively difficultt o measur e each antioxidant component separ ately.Therefore, several methods (Cao et al., 1993; Glazer,1990; Miller et al., 1993; Wayner et al., 1985; Whitehead

    et al . , 1992) have been developed in r ecent year s toevaluate t he total ant ioxidant capacity of biol ogicalsam ples. In th ese methods, the inhibition of free radicalaction by an an tioxidant conta ins two components: theinhibition time and the inh ibition degree. We used theORAC ass ay system becau se it combines both inhibitiontime and inhibition degree into a single quantity (Caoet a l ., 1993, 1995). Al l other met hods use eit her thei n h ib it i on t i m e a t a fi xe d i n h ib it i on d e gr e e or t h ei n h ib it i on d e gr e e a t a fi xe d t i m e a s t h e b a s is forquant itating t he r esults.

    Fru its are good sources of an tioxidant s. Considera bleattention ha s been focused on the vitamin C, vit aminE, and -carotene cont ent of fruits. However, fruits a lsocontain many other substances that have antioxidantactivit ies. By usi ng the ORAC assay, we ha ve mea-sured, for the first time, the total antioxidant capacityof some common fruits. On th e basis of the da ta fromUSDA han dbooks (USDA, 1986) th e vitam in C cont entsof kiwi fruit, str awberry, orange, gra pefruit, honeydewmelon, and tomato ar e 5.0, 2.9, 2.7, 1.8, 1.3, a nd 0.9mol/g (wet wt), resp ectively. The other fru its includingplum, r ed gr ape, white gr ape, banana, a pple, and pearcontain less than 0.49 mol of vitamin C/g (wet wt). TheORAC activity of 1.0 mol of vitamin C is 0.52 mol ofTr olox equiv (Cao et al ., 1993). Ther efor e, i t wascalculat ed tha t th e contribution of vitamin C to the t otalORAC a ctivi ty of a f r uit was usually less t han 15%except for kiwi fruit a nd h oneydew melon. This sug-

    gests that the major source of antioxidant capacity ofmost fruits a nd commercial fru it juices ma y be not fromvitamin C.

    W e d i d n o t m e a s u r e t h e v i t a m i n C c o n t e n t o f t h efruits directly but used vitamin C data from the USDAhandbooks (USDA, 1986), realizing that this may in-troduce some added variability in the estima te. How-ever, since the estimated contribution of vitamin C tot h e t ot a l O RAC a ct i vi t y i s r e la t i ve ly l ow , w e fe elconfident in concluding th at th is cont ribution is low an dthat other antioxidants in fruits should be consideredas significan t contr ibutors t o the total ORAC activity.The vitamin C values conta ined in th e USDA handbookgener ally wil l r epr esent a diver se sam pling, and thusone would not expect severalfold fluctuations in the

    amount of vitamin C concentr a tion in th e f ood. Theob je ct i ve of t h i s s t u d y w a s t o d e t er m i n e t h e t ot a lant ioxidan t capacity (ORAC a ctivity) of fruits and notthe contr ibution of any individual anti oxidant to t hetotal antioxidant capacity. Our da ta in f act indicat ethat some un known a ntioxidants may need to be identi-fied in these fruits.

    The total antioxidant capacity var ies consider abl yfrom one kind of fruit t o another. For example, on th eb a sis of t h e w et w eig h t of a fr e sh fr u it , t h e t ot a l

    a n t i ox id a n t ca p a ci t y o f s t r a w b er r y w a s 2 t i m es t h ecapacity measured in oran ges or r ed grapes, 7 times thecapacity measur ed in apple and banana, 11 t i mes t hecapacity measured in pears, and 16 times the capacitymeasur ed in honeydew melon. The ant ioxidant capaci-ties of the five commercial fruit juices were not alwayssimilar to those measu red in respective fresh fruits u sedin this stu dy. The commercial grape juice and t omato

    ju ice h a d m u ch h igh er ORAC t h a n t h e fr es h r ed gr a pe sand the fr esh tomatoes, while the commer cial or ange

    ju ice h a d m u ch lowe r OR AC t h a n t h e fr es h or a n ges.However, the commercial grape juice was made fromConcord grapes which have a dark color and thick skinand which are different from the red gr apes t ested inthis st udy. Red wine h ad a n ORAC activity of 12.34 (0.47 mmol/L (Cao et al., 1995), which is similar to thatmeasu red in grape juice. The varieties of tomatoes andoranges u sed in the commercial juices could a lso havebeen very different from t he fresh tomat oes an d oranges.I n addition, we do not know whether vitami n C wasadded into these commer cial fr uit juices. However ,other commercial processing factors, such as the pro-cedures used for juice preparation (diluting and con-centr ating) and storage, can not be excluded in explain-ing the observed difference.

    Par t of the antioxidant capacity of these f r ui t s ma ybe fr om flavonoids. Flavonoids ar e low molecul arweight polyphenolic compound s t ha t a re widely distrib-u t e d i n v eg et a b le s a n d fr u i t s (H e r t og e t a l ., 1 99 2;

    Ortun o et al., 1995). Many flavonoids, such as kaem -pherol, quercetin, luteolin, myricetin, eridictyol, andcatechin, h ave been shown to ha ve an t i oxidant (Bor sa n d S a r a n , 1 98 7; B or s e t a l ., 1 9 9 0; H a n a s a k i e t a l .,1994), a nti-inflamm atory, a ntiallergic, ant ican cer, andant ihemorrhagic properties (Das, 1994). Hertog et al.(1992) measured the flavonoid conten t (including k aem-pherol, quercetin, luteolin, and myricetin) of importantfruits, vegetables, an d beverages in the Dut ch diet andr elated t he baseline inta ke of dietar y flavonoids t osubsequent cor onar y hear t disease mor tali t y and t heincidence of myocardial infarction in t he Zutphen Eld-erly Study du ring a 5-year followup per iod. They foun dth at flavonoid inta ke was significan tly inversely related

    to mortality from coronary h eart disease an d of border-line significan ce (P < 0.08 for trend) with the incidenceof a first fat al or nonfata l myocar dial infarction (Hertoget al., 1993). This furt her suggests tha t other an tioxi-dants besides vitamins E and C and -carotene a re a lsoresponsible for the protection provided by fruits a ndvegetables against various diseases.

    The antioxidant defense system of the body is com-posed of different an tioxidant component s. The supple-ment ation of one or a few ant ioxidants m ay not be veryeffective. Fru its contain a group of na tu ral an tioxidant stha t could ha ve not only a high a ntioxidant activity butalso a good combina tion or mixtu re of an tioxidan ts. F orexample, 1 lb of fresh str awberries (454 g) ha s a n ORACactivity (6973 mol of Trolox equiv) equal to about 1.7

    Total Antioxidant Capacity of Fruits J. Agric. Food Chem., Vol. 44, No. 3, 1996 703

  • 7/29/2019 ORAC-CAO

    5/6

    g of Trolox, 3.0 g ofR-tocopher ol (the ORAC a ctivity of1 mol ofR-tocopherol ) 1 mol of Trolox equiv; Cao etal., 1993) or 2.3 g of vitamin C (the ORAC activity of 1mol of vitamin C ) 0.52 mol of Trolox equ iv; Cao etal., 1993). A high int ake of vitamin C may a ct in somes it u a t i on s a s a p r o-ox id a n t i n t h e b od y w h en fr e et r a n s it ion m e ta ls a r e a va ila b le a t t h e s a m e t im e .Ther efor e, the supplementation of these na tur al anti-oxidants thr ough a balanced diet containing enoughfruits could be mu ch more effective and also economical

    tha n th e supplementat ion of an individual antioxidant,such as vitamin C or vitamin E, in protecting the bodyagainst oxidative dama ge un der different conditions.

    I n summar y, the total an t ioxidant act ivit ies of 12fruits and 5 commercial fruit juices were measured byusing an au tomated ORAC assa y with a peroxyl radicalg en e r a t or . O n t h e b a s is of t h e w et w ei gh t of fr u i t s(edible por ti on) , str awber r y had t he highest ORACactivity followed by plum, ora nge, red gr ape, kiwi fruit,pink gr apef r uit , white gr ape, banana, apple, t omato,p e a r , a n d h o n e yd e w m e lon . O n t h e b a s is of t h e d r yweight of fruits, st rawberry a lso had t he h ighest ORACactivity followed by plum, or ange, pink gr apefr uit ,t om a t o, k i wi fr u i t , r e d g r a p e, w h it e g r a p e, a p p le ,honeydew melon, pear , and banana . Among the com-

    mercial fruit and vegetable juices, grape juice had thehighest antioxidant activity, followed by tomato juice,orange juice, a nd apple juice.

    ABBREVIATIONS USED

    AAPH, 2,2-azobis(2-am idinopropan e) dihydr ochlo-ride; ORAC, oxygen radical absorbance capacity; -PE,-phycoerythr in; ROS, r eactive oxygen s pecies; Trolox,6-hydroxy-2,5,7,8-tetra met hyl-2-carboxylic acid.

    LITERATURE CITED

    Acheson, R. M.; Williams, D. R. R.. Does consum ption of fru itand vegetables protect a gainst st roke? Lancet1983, 1 (8335),

    1191-1193.Ames, B. M. Dietary carcinogens a nd ant icarcinogens: oxygen

    r a dica ls a nd de ge ne r a tive dise a se s. S cience 1983, 22 1,1256-1263.

    Ames, B. M.; Shigena, M. K.; Hagen , T. M. Oxidants , an tioxi-dants and the degenerative diseases of aging. Proc. Natl.A cad . S ci. U .S .A . 1993, 90 , 7915-7922.

    Ar m str ong, B . K. ; M a nn, J . I . ; Ade lste in, A. M . ; Eskin, F .Commodity consum ption an d ischemic heart disease mor-tality, with special reference to dietary practices . J. Chron.Di s. 1975, 28, 455-469.

    Ascherio, A.; Rimm, E . B.; Giovannu cci, E. L.; Colditz, G. A.;Rosner, B.; Willett, W. C.; Sacks, F.; Stampfer, M. J. Aprospective study of nutritional factors and hypertensiona m ong US m e n. Circulation 1992, 86, 1475-1484.

    Belman, S. Onion an d gar lic oils inhibit t umor promotion.

    Carcinogenesis 1983, 4, 1063-1065.Bingham, S. A. Mechanisms a nd experimental and epidemio-

    logical evidence relating dietary fibre (non-starch polysac-cha r ide s) a nd sta r c h to pr ote ction a ga inst la r ge bowe lcancer . Proc. N utr. S oc. 1990, 49 , 153-171.

    Bors, W.; Saran, M. Radical scavenging by flavonoid antioxi-d a n t s. Free Radical R es. Comm un. 1987, 2, 289-294.

    Bors, W.; Werner, H.; Michel, C.; Saran, M. Flavonoids asant ioxiants: determinat ion of radical scavenging efficien-cies. Methods Enzymol. 1990, 18 6, 343-355.

    Bresnick, E.; Birt, D. F.; Wolterman , K.; Wheeler, M.; Markin,R . S . R eduction in m a m m a r y tum or ige ne sis in the r a t byca bba ge a nd ca bba ge r e sidue . Carcinogenesis 1990, 11 ,1159-1163.

    Burr, M. C.; Sweetnam, P. M. Vegetarianism, dietary fibre,a nd m or ta lity. A m . J . C li n . N u t r . 1982, 36, 673-677.

    Cao, G.; Alessio, H. M.; Culter, R. G. Oxygen-radical absor-bance capacity assay for antioxidants. Free Radical Biol.M ed. 1993, 14 , 303-311.

    Cao, G.; Verdon, C. P.; Wu, A. H. B.; Wang, H .; Prior, R. L.Automated oxygen radical absorbance capacity assay usingthe COBAS FARA II. Clin. Chem . 1995, 41 , 1738-1744.

    Daniel, E. M.; Krupnick, A. S.; Heur, Y. H.; Blinzler, J. A.;N i ms , R . W .; S t on e r , G . D . E x t r a ct i on , s t a b il it y , a n dquantitation of ellagic acid in various fruits and nuts. J .Food Compos. Anal. 1989, 2, 338-349.

    Das, D. K. Nat urally occurring flavonoids: stru cture, chem-

    istry, and high-performa nce liquid chromatography m ethodsfor se pa r a tion a nd cha r a c te r iz a tion . M e th o d s E n z y m o l.1994, 23 4, 411-421.

    Doll, R. An overview of the epidemiological evidence linkingdiet and cancer . Proc. N utr. S oc. 1990, 49 , 119-131.

    Dragsted, L. O.; Strube, M.; Larsen, J. C. Cancer-protectivefactors in fruits and vegetables: biochemical and biologicalbackground. Ph arm acol. T oxicol. 1993, 72 (Suppl. 1), 116-135.

    Gey, K. F . The a ntioxida nt hypothe sis of ca r diova scula rdisea se : e pide m iology a nd m e cha nism s. B i och e m . S o c.T r a n s. 1990, 18, 1041-1045.

    G ey , K . F .; P u s k a , P .; J o r d a n , P . ; M os er , U . K . I n ve r secorrelation between plasma vitamin E and mortality fromischemic heart disease in cross-cultural epidemiology. A m .J . Cl in . N u tr . 1991, 53 , 326S-334S.

    Glazer, A. N. Phycoerythrin flourescence-based assay forreactive oxygen species. Methods E nzymol. 1990, 18 6, 161-168.

    Han asaki, Y.; Ogawa, S.; Fuku i, S. The correlation betweenactive oxygen scavenging and antioxidative effects of fla-vonoids. Free Radical Biol. Med. 1994, 16, 845-850.

    Hertog, M. G. L.; Hollman , P. C. H .; Katan, M. B. Content ofpotentia lly ant icarcinogenic flavonoids of 28 vegetables a nd9 fruits commonly consumed in the Netherlands. J . Agric.Food Chem. 1992, 40 , 2379-2383.

    Hertog, M. G. L.; Feskens, E. J. M.; Hollman, P. C. H.; Katan,M. B.; Kromhout , D. Dietary a nt ioxidant flavonoids an d th erisk of coronary heart disease: the Zutph en Elderly Study.L an cet 1993, 34 2, 1007-1011.

    Maltzman, T. H.; Hurt, L. M.; Elson, C. E.; Tanner, M. A.;

    Gould, M. N. The prevention of nitrosomethylurea-inducedm a m m a r y tum or s by D-limonene and orange oil. Carcino-genesis 1989, 10 , 781-783.

    M a ss , J . L .; W a n g, S . Y. ; G a ll et t a , G . J . E v a lu a t i on of strawberry cultivars for ellagic acid content. HortScience1991, 26, 66-68 .

    Miller, N. J .; Rice-Evans, C.; Davies, M. J .; Gopinath an, V.;M ilne r , A. A nove l m e thod for m e a sur ing a ntioxida ntcapacity and its application to monitoring the antioxidantsta tus in pr e m a tur e ne ona toe s. Clin. Sci. 1993, 84 , 407-412.

    Ort uno, A.; Gar ca-Puig, D.; F uster, M. D.; Pe rez, M. L.;S a ba te r , F . ; P or r a s, I . ; Ga r c a-Lidon , A.; Del R o, J . A.Flavanone and nootkatone levels in different varieties ofgrapefruit and pummelo. J. Agric. Food Chem. 1995, 43 ,1-5.

    Phillips, R. L.; Lemon, F. R.; Beeson, W. L.; Kuzma, J. W.Coronary h eart disease mortality among Seventh-Day Ad-ventists with differing dietary h abits: a pr eliminary report.A m . J . Cl in . N u tr. 1978, 31 , 191-198.

    Riemersma, R. A.; Wood, D. A.; Macintyre, C. C. A.; Elton, R.;Ge y, K. F . ; Olive r , M . F . Low pla sm a vita m in E a nd Cincreased risk of angina in Scottish men . A n n . N . Y . A c ad .Sci. 1989, 57 0, 291-295.

    Sacks, F. M.; Kass, E. H. Low blood pressure in vegetarians:effects of specific foods and nutrients. A m . J . C li n . N u t r .1988, 48, 795-800.

    Sta h elin, H . B.; Gey, K. F .; Eichholzer, M.; Lu din , E .; Ber-nasconi, F.; Thurn eysen, J .; Brubacher, G. Plasma ant ioxi-dant vitamins and subsequent cancer mortality in the 12-yea r follow-up of the pr ospe ctive ba se l study. A m . J .E pi d em iol . 1991a , 13 3, 766-775.

    704 J. Agric. Food Chem., Vol. 44, No. 3, 1996 Wang et al.

  • 7/29/2019 ORAC-CAO

    6/6

    Sta h elin, H. B.; Gey, K. F.; E ichholzer, M.; Ludin , E. -Car-otene and cancer prevention: the Basel study. A m . J . C li n .N u tr . 1991b , 53 , 265S-269S.

    S te inbe r g, D. Antioxida nts a nd a the r oscler osis: a cur r e ntassessment . Circulation 1991, 84 , 1420-1425.

    Steinberg, D.; Parthasarathy, S.; Carew, T. E.; Khoo, J. C.;Witztum , J . L. Beyond cholestrol: modification of low-density lipoprotein th at increase its at herogenicity. N e wE n gl . J . M ed . 1989, 32 0, 915-924.

    Stoewsand, G. S.; Anderson, J. L.; Munson, L. Protective effectof dietary Brussels spr outs against mamm ary carcinogenesis

    in Sprague-Dawleys rats. Cancer Lett. 1988, 39 , 199-

    207.Stoewsand, G. S.; Anderson, L. J.; Munson, L.; Lisk, D. J.Effect of dietary Brussels sprouts with increased seleniumcontent on mammary carcinogenesis in the rat . Cancer Lett.1989, 45 , 43-48 .

    USDA. Agriculture Handbook 8, Composition of Foods; U.S.Government Printing Office: Washington, DC, 1986.

    Verlangieri, A. J.; Kapeghian, J. C.; el-Dean, S.; Bush, M. Fruitand vegetable consumption and cardiovascular mortality .M ed . H yp oth eses 1985, 16, 7-15 .

    Watt enberg, L. W.; Coccia, J . B. Inh ibition of 4-(methylnit ros-amin o)-1-(3-pyridyl)-1-butan one carcinogenesis in mice byD-limonene and citrus fruit oils. Carcinogenesis 1991, 12 ,11 5-117.

    Wayner, D. D. M.; Burton, G. W.; Ingold, K. U.; Locke, S .Qua ntita tive m e a ur e m e nt of t he tota l , pe r oxyl r a dica l-tr a pping a n tioxida nt ca pa city of hum a n pla sm a by c on-trolled peroxidation . F E B S L e tt . 1985, 18 7, 33-37 .

    Whitehead, T. P.; Thorpe, G. H. G.; Maxwell, S. R. J. Enhancedchemoluminescent assay for ant ioxidant capacity in biologi-cal fluids. Anal. Chim. Acta 1992, 26 6, 265-277.

    Willett, C. W. Diet and health : what should we eat? S cience1994a , 26 4, 532-537.

    Willett, C. W. Micronutrients and cancer risk. A m . J . C l i n .N u tr . 1994b , 59 , 162S-165S.

    Received for review August 23, 1995. Revised man uscriptreceived December 4, 1995. Accepted December 18, 1995.X

    M ention of a tr a de na m e , pr opr ieta r y pr oduct, or spe cifice qu i pm e n t d oe s n ot con s t it u t e a g u a r a n t ee b y t h e U .S .Department of Agricultur e and does not imply its approval tothe exclusion of other products that may be suitable.

    JF950579Y

    X Abstract published in Advance ACS Abstracts, Feb-r uar y 1, 1996.

    Total Antioxidant Capacity of Fruits J. Agric. Food Chem., Vol. 44, No. 3, 1996 705