15
PACMAN Workshop OUTLINE Introduction ESR 3.1 Challenges - Stability budget and Precision Mechanical Design - Precision Assembly of MBQ and BPM - System Integration Done and Undergoing Future CERN 03/02/2015 by Iordan Doytchinov “If you grasp the principles – myths fall & Ideas take-off” David Lentink (TUDELFT) TED Conference Amsterdam (“ ة ف ي ل خ ج ر ب, "Khalifa Tower“) – Dubai 2010 Babylon tower by Tobias Verhaecht (1561 – 1631)

PACMAN Workshop OUTLINE Introduction ESR 3.1 Challenges - Stability budget and Precision Mechanical Design - Precision Assembly of MBQ and BPM - System

Embed Size (px)

Citation preview

Page 1: PACMAN Workshop OUTLINE Introduction ESR 3.1 Challenges - Stability budget and Precision Mechanical Design - Precision Assembly of MBQ and BPM - System

PACMAN Workshop

OUTLINE

IntroductionESR 3.1 Challenges

- Stability budget and Precision Mechanical Design- Precision Assembly of MBQ and BPM - System Integration

Done and UndergoingFuture

CERN 03/02/2015by

Iordan Doytchinov

 “If you grasp the principles – myths fall & Ideas take-off” David Lentink 

(TUDELFT) TED Conference Amsterdam

(“  خليفة  (“Khalifa Tower" ,برج– Dubai 2010

Babylon tower by Tobias Verhaecht (1561 – 1631)

Page 2: PACMAN Workshop OUTLINE Introduction ESR 3.1 Challenges - Stability budget and Precision Mechanical Design - Precision Assembly of MBQ and BPM - System

CLIC Challenge

2

200m

2m

CLIC alignment Challenge:

Calibrate and pre-align all critical components to allow maximum error of 17µm (diameter of a cylinder) over 200

meters length of sliding window of assembled components

17µmNever done before. Needed for ~50km future colliders!

2 meter section of the Accelerator

Page 3: PACMAN Workshop OUTLINE Introduction ESR 3.1 Challenges - Stability budget and Precision Mechanical Design - Precision Assembly of MBQ and BPM - System

Steps AS structures and BPM

MBQ

Zero of components to fiducials [µm] 5 10Fiducials to sensor interface on support [µm] 5 5

Sensor interface to sensor zero [µm] 5 5Sensor measurement w.r.t straight reference [µm] 5 5

Stability knowledge of the straight reference [µm] 10 10

Total: Error fromperfect alignment (as uncorrelated uncertainties) U [µm] 14 17

The PACMAN system targets

3

Girders Alignment Budget CLIC

Physicists requirements for CLIC to operate

Pre-alignment PACMAN Uncertainty budget [µm] @BPM 6.78

@MBQ 11.8

Page 4: PACMAN Workshop OUTLINE Introduction ESR 3.1 Challenges - Stability budget and Precision Mechanical Design - Precision Assembly of MBQ and BPM - System

Mechanical Stability for PACMAN system

yX

Z

 +  

Where

Uncertainty Sphere with Diameter Uc(y) of 6.78µm for

BPM and 11.8µm for MBQ

y

X

Z

Real time RF or Magnetic Centre

Real time RF Centre

Real time Magnetic centreStretched wire

Coordinate centre of Reference System by 3x

ceramic balls

Page 5: PACMAN Workshop OUTLINE Introduction ESR 3.1 Challenges - Stability budget and Precision Mechanical Design - Precision Assembly of MBQ and BPM - System

5

Page 6: PACMAN Workshop OUTLINE Introduction ESR 3.1 Challenges - Stability budget and Precision Mechanical Design - Precision Assembly of MBQ and BPM - System

 +  

Mechanical Stability for PACMAN system

 = (vision sensor) + (CMM@L1)]    

=

¿𝟏

= (Head Change) +     

𝟎 .𝟐𝟓µ𝒎 @L=0.5m

@L=0.5m

= 43.4384

 = 6.59 µm

0.89

1.64 1

𝑼 𝟐 (𝑭𝒊𝒆𝒍𝒅 𝑴𝒆𝒂𝒔𝒖𝒓𝒆 )=𝑐𝑒𝑚2 𝑈 2 (𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 𝑠𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 )+𝒄𝒎𝒆𝟏

𝟐 𝑼 𝟐 (𝒎𝒆𝒄𝒉𝒂𝒏𝒊𝒄𝒂𝒍 𝑬𝒓𝒓𝒐𝒓𝒔 𝑫𝒓𝒊𝒇𝒕 )

[1] Stability of Optical Elements in the NIF Target Area Building [David J. Trummer, Richard J. Foley, Gene S. Shaw]

𝟔 .𝟕𝟖𝟐µ𝒎

Page 7: PACMAN Workshop OUTLINE Introduction ESR 3.1 Challenges - Stability budget and Precision Mechanical Design - Precision Assembly of MBQ and BPM - System

Mechanical Stability for PACMAN system

=

Uncertainty Input Only Rotation (Θz+αx) OROnly Translation ( + ) Σ = sqrt(Rot^2 + 

Translation^2)U(structural)  ? OR  ?  ?U(Thermal Transient)  ? OR  ?  ?U(Contingency)  ? OR  ?  ? TOTAL: U(Mechanical Errors Drift)  2.99µrad – 0.618 arcs OR  5-6µm 5-6µm

m

5-6µm

m

m

Translation or rotation on Y axis irrelevant for magnetic or RF field alignment

α

Page 8: PACMAN Workshop OUTLINE Introduction ESR 3.1 Challenges - Stability budget and Precision Mechanical Design - Precision Assembly of MBQ and BPM - System

Assembly of MBQ and BPM

8

DesignManufac

turing

Hard/expensive to optimise

Measurement + evaluation

Magnetic measurement

Assembly stage+ jig/tooling

The problem: Mechanical Uncertainties Correlated to Magnetic uncertainty

How the assembly cycle and correlated uncertainties can be deterministically controlled? - Integrate CAD,CAM, CMM, Magnetic measurement into one cycle? Use information real time at assembly?

Page 9: PACMAN Workshop OUTLINE Introduction ESR 3.1 Challenges - Stability budget and Precision Mechanical Design - Precision Assembly of MBQ and BPM - System

9

Page 10: PACMAN Workshop OUTLINE Introduction ESR 3.1 Challenges - Stability budget and Precision Mechanical Design - Precision Assembly of MBQ and BPM - System

PACMAN ESR 3.1 Assembly of MBQ and BPM

10

BPM mechanical Centre

Magnet mechanical centre

Volumetric assembly tolerance zone cylinder

Match the real-time RF and Magnetic centres to required accuracy for error compensation

[2] 0.3mm Distance from the centre [mm]

[2] Design of the 15GHz BPM Test Bench for the CLIC Test Facility to perform precise stretched wire RF measurements: Silvia Zorzettiy, Luca Fanucciy, Natalia Galindo Mu~noz and Manfred Wendt

Assembly accuracy desired = Linear_region_size - [(Magnetic measurement uncertainty) +(RF measurement uncertainty)] = 0.54mm

Vacuum enabling enabling interface to butterfly vessel!Electrical connectors feed-troughConfined spaceHigh assembly repeatability,Mechanical and thermal transient stability (critical assembly!)

Page 11: PACMAN Workshop OUTLINE Introduction ESR 3.1 Challenges - Stability budget and Precision Mechanical Design - Precision Assembly of MBQ and BPM - System

PACMAN ESR 3.1 Sub-System Integration to Final system

ESR 3.1

Other PhD

Researchers

Monitoring sub-systems specification and their development for any

integration issues!

Magnetic Measurement

None-Contact CMM Head/Micro

triangulation - Wire Localization

BPM Measurement

RF Cavity Measurement

Need Requirements Need Requirements

‘Cli

en

ts’

Integrated system requirements

Need Requirements

Page 12: PACMAN Workshop OUTLINE Introduction ESR 3.1 Challenges - Stability budget and Precision Mechanical Design - Precision Assembly of MBQ and BPM - System

Activities done so far and undergoing:

12

Technical trainings (metrology, tolerancing, CATIA, ANSYS, etc.)

System Integration studies

Magnet assembly studies (on existing MBQ prototypes)

Mechanical error budget studies

Initial Literature survey

Industrial survey and relations (GD&T analysis software's) 3dcs, sigmetrix, KOTEM

Link with QVI/KOTEM technologies and Metrosage on possible future collaboration

BPM/MBQ connector 1st conceptual design

Planning for first Integration Thermal vs Vibrations VS Magnetic Issues experiment

Page 13: PACMAN Workshop OUTLINE Introduction ESR 3.1 Challenges - Stability budget and Precision Mechanical Design - Precision Assembly of MBQ and BPM - System

Future plans

13

Complete literature survey for 1 year Review at Cranfield University

DMP secondment?

Thermal vs. Vibrations vs. Magnet centre shift issues experiments

BPM/MBQ precision connector design/manufacture + evaluation

Further magnet assembly test

Further uncertainty estimation investigation

Further system integration investigation

More development in: Investigation relationship between real component shape and corelated magnetic

errors. (possible collaboration with KOTEM)- Further specific literature survey in the area

- assembly method including GD&T software and real-time data- assembly jig design

Page 14: PACMAN Workshop OUTLINE Introduction ESR 3.1 Challenges - Stability budget and Precision Mechanical Design - Precision Assembly of MBQ and BPM - System

Thank you for your attention,

Any questions?

14

“Errors, like straws, upon the surface flow; He who would search for pearls, must dive

below.”

― John Dryden, All for Love

Page 15: PACMAN Workshop OUTLINE Introduction ESR 3.1 Challenges - Stability budget and Precision Mechanical Design - Precision Assembly of MBQ and BPM - System

BPM Concept

15