4
COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 3, Solution 136. First reduce the given force-couple system to an equivalent force-couple system ( ) , B RM at point B. ( ) ( ) ( ) 2 2 2 480 mm 560 mm 480 mm BD d = + + 880 mm = ( ) 132 N 480 560 480 880 BD BD BD F λ = = + F i j k ( ) ( ) 12 N 6 7 6 = + i j k ( ) ( ) ( ) 2 2 2 240 mm 220 mm 480 mm EB d = + + 580 mm = ( ) 145 N 240 220 480 580 EB EB EB F λ = = + F i j k ( ) ( ) 5N 12 11 24 = + i j k : BD EB Σ = + F R F F ( ) ( ) ( ) 12 N 6 7 6 5 N 12 11 24 = + + + i j k i j k ( ) ( ) ( ) 12 N 29 N 48 N =− + + i j k ( ) ( ) ( ) 2 2 2 340 mm 240 mm 60 mm BF d = + + 20 442 mm = Then ( ) 20 N m 340 240 60 20 442 B = + M i j k ( ) 20 N m 17 12 3 442 = + i j k

Páginas DesdeCap 03-2

Embed Size (px)

Citation preview

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 3, Solution 136.

First reduce the given force-couple system to an equivalent force-couple system ( ), BR M at point B.

( ) ( ) ( )2 2 2480 mm 560 mm 480 mmBDd = − + + −

880 mm=

( )132 N 480 560 480880BD BD BDF λ= = − + −F i j k

( )( )12 N 6 7 6= − + −i j k

( ) ( ) ( )2 2 2240 mm 220 mm 480 mmEBd = + − +

580 mm=

( )145 N 240 220 480580EB EB EBF λ= = − +F i j k

( )( )5 N 12 11 24= − +i j k

: BD EBΣ = +F R F F

( )( ) ( )12 N 6 7 6 5 N 12 11 24= − + − + − +i j k i j k

( ) ( ) ( )12 N 29 N 48 N= − + +i j k

( ) ( ) ( )2 2 2340 mm 240 mm 60 mmBFd = + + −

20 442 mm=

Then ( )20 N m 340 240 6020 442B

⋅= + −M i j k

( )20 N m 17 12 3442⋅

= + −i j k

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Now determine whether R and BM are perpendicular

( ) ( )2012 29 48 17 12 3442B⋅ = − + + ⋅ + −R j j k i j kM

( )20 12 17 29 12 48 3442

= − × + × − ×

0=

∴R and BM are perpendicular so that ( ), BR M can be reduced to the single equivalent force

( ) ( ) ( )12.00 N 29.0 N 48.0 NR = − + +i j k

Now require /B B P= ×M r R

or ( ) ( )20 N m 17 12 3 0.480 0.480 N m442

12 29 48y z⋅

+ − = − − ⋅−

i j ki j k

( ) ( )20 12: 12 0.480 0.480 48442

z×= − − +j

or 1.449 mz =

( )20 3: 0.480 29 12442

y− ×= − +k

or 0.922 my =

∴ The point of intersection is defined by

0.922 my =

1.449 mz =

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

Chapter 3, Solution 137.

First, reduce the given force system to a force-couple at the origin.

Have : A GΣ + =F F F R

( ) ( ) ( ) ( ) ( ) ( ) ( )4 in. 6 in. 12 in. 10 lb 14 lb 4 lb 6 lb 2 lb

14 in. + −

∴ = + = + −

i j kR k i j k

and 56 lbR =

Have ( ): RO O C OΣ ∑ + ∑ =M r F M M×

( ) ( ) ( ) ( ) ( ) ( ){ }12 in. 10 lb 16 in. 4 lb 6 lb 12 lbRO = + + − M j k i i j k× ×

( ) ( ) ( ) ( ) ( ) ( ) ( )16 in. 12 in. 4 in. 12 in. 6 in.84 lb in. 120 lb in.

20 in. 14 in. − − +

+ ⋅ + ⋅

i j i j k

( ) ( ) ( )0 221.49 lb in. 38.743 lb in. 147.429 lb in.R∴ = ⋅ + ⋅ + ⋅M i j k

( ) ( ) ( )18.4572 lb ft 3.2286 lb ft 12.2858 lb ft= ⋅ + ⋅ + ⋅i j k

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.

The force-couple at O can be replaced by a single force if the direction of R is perpendicular to .ROM

To be perpendicular 0RO =R M⋅

Have ( ) ( )4 6 2 18.4572 3.2286 12.2858 0?RO = + − + + =R M i j k i j k⋅ ⋅

73.829 19.3716 24.572= + −

0≠

∴ System cannot be reduced to a single equivalent force.

To reduce to an equivalent wrench, the moment component along the line of action of P is found.

1 RR O RM

R= =

RMλ ⋅ λ

( ) ( )4 6 218.4572 3.2286 12.2858

56 + −

= + +

i j ki j k⋅

9.1709 lb ft= ⋅

and ( )( )1 1 9.1709 lb ft 0.53452 0.80178 0.26726RM= = ⋅ + −M i j kλ

And pitch 1 9.1709 lb ft 1.22551 ft56 lb

MpR

⋅= = =

or 1.226 ftp =

Have

( ) ( )( )2 1 18.4572 3.2286 12.2858 9.1709 0.53452 0.80178 0.26726RO= − = + + − + −M M M i j k i j k

( ) ( ) ( )13.5552 lb ft 4.1244 lb ft 14.7368 lb ft= ⋅ − ⋅ + ⋅i j k

Require 2 /Q O=M r R×

( ) ( ) ( )13.5552 4.1244 14.7368 4 6 2y z− + = + + −i j k j k i j k×

( ) ( ) ( )2 6 4 4y z z y= − + + −i j k

From j: 4.1244 4z− = or 1.0311 ftz = −

From k: 14.7368 4 or 3.6842 fty y= − = −

∴ line of action of the wrench intersects the yz plane at

3.68 ft, 1.031 fty z= − =