10

Click here to load reader

Partial Molar Volumes and Isentropic Compressibilities of Some Saccharides in Aqueous Solutions of Leucine at Different Temperatures

  • Upload
    kuldeep

  • View
    218

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Partial Molar Volumes and Isentropic Compressibilities of Some Saccharides in Aqueous Solutions of Leucine at Different Temperatures

Partial Molar Volumes and Isentropic Compressibilities of SomeSaccharides in Aqueous Solutions of Leucine at DifferentTemperaturesSuvarcha Chauhan* and Kuldeep Kumar

Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla-171005, India

*S Supporting Information

ABSTRACT: In the present study, densities, ρ, and velocitiesof sound, u, have been measured for mono-, di-, andtrisaccharides at molalities ranging from (0.0 50 to 0.100)mol·kg−1 in aqueous solutions of leucine (0.025, 0.050, and0.100) mol·kg−1 over a wide temperature range (293.15 to313.15) K. By using density and velocities of sound data thepartial molar volumes, ϕv

o, isentropic compressibilities, κs, andpartial molar isentropic compression, ϕk

o, for differentsaccharides have been evaluated. The trends of variation ofdifferent parameters have been interpreted in light of thesolute−solvent/cosolute and solute−solute interactions occur-ring in these systems. An attempt has also been made tocompare the results with the corresponding results in aqueouselectrolyte solutions.

■ INTRODUCTIONThe saccharide−protein interactions underlie many importantaspects of biological processes occurring in living organisms,such as cell differentiation, cell adhesion,1 viral and bacterialinfections,2,3 immune response,4 metastatic spread and growth,5

trafficking and tumor cell metastasis,6 and some enzymaticreactions,7 etc. Therefore, these interactions have been thesubject of intense investigations over recent years. Analysis ofthe literature4,7−11 shows that, in general, intermolecularinteractions between large organic molecules (saccharides andproteins) in aqueous medium are noncovalent and accom-panied by small energy changes. This is because saccharides andamino acids are highly hydrated, and their ability to interactintermolecularly must compete with that of water. This resultsin weak polar and nonpolar intermolecular forces which oftencompensate each other.Saccharides are typical non−electrolytes with several hydro-

philic hydroxyl groups, which are responsible for their peculiarhydration properties.12 Because of presence of these hydro-philic hydroxyl groups and their well-known stereochemistry,saccharides are logical choices in stereoselective reactions forthe synthesis of biologically active target molecules.13,14

Saccharides and polyols are well-known stabilizing agents ofproteins/enzymes.15 Some studies16,17 suggest that thermo-stabilization of proteins by these agents is due to theirhydration in aqueous solutions. The hydration of saccharidesdepends upon the number of hydroxyl groups the potentialhydrogen bonding sites and relative positions of the nextnearest neighbor hydroxyl groups within the carbohydratemolecules.18−20 Thus the data revealing the hydration behavior

are desirable for better understanding of the mechanisms ofprotein stabilization. Recently, researchers have studied thethermodynamic properties of saccharides in aqueous electro-lytic solutions.21−25 Further, there is relatively little informationavailable on these properties in aqueous amino acidssolutions.17,26,27

In view of this information, and in light of our previouswork28,29 for aqueous and mixed aqueous solutions, we reportin this paper the partial molar volumes, ϕv

o, isentropiccompressibilities, κs, and partial molar isentropic compression,ϕko, for mono-, di-, and trisaccharide. These parameters have

been interpreted in terms of the solute−solvent/cosolute andsolute−solute interactions. The results have been comparedwith the corresponding results in aqueous electrolytesolutions.17,21,22

■ EXPERIMENTAL SECTION

The deionized distilled water with a conductivity of 1·10−7 s·cm−1 to 2·10−7 s·cm−1 and pH 6.8 to pH 7.0 (at 298.15 K) wasobtained from a Millipore−Elix system. The specifications of allthe chemicals used are given in Table 1. All saccharides andamino acid leucine were recrystallized twice in distilled waterand dried in vacuum oven. After this they were kept in avacuum desiccator over anhydrous calcium chloride at roomtemperature for a minimum of 48 h. Stock solutions of leucine

Received: July 1, 2013Accepted: February 26, 2014Published: March 7, 2014

Article

pubs.acs.org/jced

© 2014 American Chemical Society 1375 dx.doi.org/10.1021/je400977r | J. Chem. Eng. Data 2014, 59, 1375−1384

Page 2: Partial Molar Volumes and Isentropic Compressibilities of Some Saccharides in Aqueous Solutions of Leucine at Different Temperatures

(0.025, 0.050, and 0.100) mol·kg−1 were prepared in distilledwater and were used as solvents for the preparation ofsaccharides solutions. These solutions were prepared by usingShimadzu balance with a precision of ± 0.0001 g. Densities andvelocities of sound of aqueous saccharides solutions with andwithout leucine were measured simultaneously using AntonPaar DSA 5000 instrument. The instrument was calibrated withdistilled water at (293.15, 298.15, 303.15, 308.15, and 313.15)K, and solvents 1,4-dioxane and dimethylsulfoxide (extra pureAR obtained from SISCO Res. Lab. Pvt. Ltd.) were used asreference materials to check the performance of the measuringdevice. The densities and velocities of sound values for differentsolvents as obtained from DSA 5000 instrument have beenlisted in Table S1 of Supporting Information. These valueswere found in compliance with that of literature values withinthe experimental uncertainties (Table S1). The reproducibilityin density and velocity of sound measurements were ± 2·10−3

kg·m−3 and ± 1 m·s−1, respectively.

■ RESULTS AND DISCUSSIONDensities and velocities of sound for ribose, maltose, andraffinose in water and aqueous leucine solutions (0.025, 0.050,and 0.100) mol·kg−1 as a function of molalities of saccharides(0.050 to 0.100) mol·kg−1 (per kilogram of leucine solutions)and temperature, are summarized in Table 2. The apparentmolar volumes, ϕv, of various saccharides have been calculatedfrom the equation:30

ϕρ

ρ ρρρ

= −−⎡

⎣⎢⎢

⎤⎦⎥⎥

Mm

( )v

o

o (1)

where m is the molality (mol·kg−1) of saccharides solutions(per kilogram of leucine solutions), M is the molar mass ofsaccharide (kg·mol−1), and ρo and ρ are the densities of thesolvent and solution (kg·m−3), respectively. The apparentmolar volumes data for various saccharides have beensummarized in Supporting Information, Table S2. Thecombined expended uncertainty, U, in the calculated ϕv valuesresulting from the experimentally measured quantities [u(ρ) =± 2·10−3 kg·m−3, u(m) = ± 3·10−3 mol·kg−1), u(T) = ± 0.01K] is estimated to be within ± 0.05·10−6 m3·mol−1 (level ofconfidence = 0.95, k = 2). Since, for all saccharides, theapparent molar volumes, ϕv, were found to be linear function ofthe molalities, m, (Figure 1) over the entire studied range, thepartial molar volumes, ϕv

o, were obtained by least-squares fittingof experimental data to the equation:31,32

ϕ ϕ= + S mv vo

v (2)

where Sv is the experimental slope. The partial molar volume,ϕvo, represents the solute−solvent interactions and Sv is

volumetric pairwise interaction coefficient.33,34 The evaluatedϕvo and Sv values with standard errors are reported in Table 3.

The ϕvo values of different saccharides in water are in good

agreement with the corresponding literature values21 withinexperimental uncertainties (Table 3). However, no such data isavailable for comparison of ϕv

o values in aqueous leucinesolutions. A perusal of Table 3 reveals that ϕv

o values in waterare smaller than those in aqueous leucine solutions for allsaccharides at studied temperatures. These results can beinterpreted in terms of following different types of solute−solvent interactions that may occur in the present ternarysystem of saccharide−amino acid−water:35,36 (1) hydrophilic−ionic interactions between the OH groups of saccharide and thezwitterionic center of amino acid; (2) hydrophilic−hydrophilicinteractions between OH groups of saccharide and the OHgroups of amino acid through the hydrogen bond; (3)hydrophilic−hydrophobic interactions between OH groups ofsaccharide/amino acid and the nonpolar groups of amino acid/saccharide; (4) hydrophobic−hydrophobic interactions be-tween the nonpolar groups of saccharide and amino acid.These interactions increase with an increase in the mono-saccharide unit as well as leucine concentration; consequentlyϕvo values also increase (Table 3). The Sv values for different

saccharides in all the studied systems are found to be negative(Table 3), suggesting weak solute−solute interactions.The ϕv

o data in water and in aqueous leucine solutions havebeen used to calculate the partial molar volumes of transfer(Δtrϕv

o) of saccharide from water to aqueous leucine solutionsby the equation:

ϕ ϕ ϕΔ = −(aq leucine) (water)v v vtro o o

(3)

From the above equation, it is clear that Δtrϕvo values are free

from solute−solute interactions and therefore provideinformation regarding solute−solvent interactions. The Δtrϕv

o

values are given in Table S3 of Supporting Information andillustrated in Figure 2a,c. Δtrϕv

o values (Table S3) are positiveand increase with leucine concentration for all saccharides. Thiscan be rationalized by applying the cosphere model asdeveloped by Gurney.37 The interactions of the types (1)and (2) contribute positively to Δtrϕv

o values, whereas those ofthe types (3) and (4) contribute negatively. The observedpositive Δtrϕv

o values suggest that hydrophilic−ionic/hydro-philic−hydrophilic interactions dominate over hydrophilic−hydrophobic/hydrophobic−hydrophobic interactions.21 Fur-ther as the hydrophilic−hydrophilic interactions becomestronger with the concentration of leucine; consequentlyΔtrϕv

o values of saccharides increase. Similar trends of variationof Δtrϕv

o have been reported by Banipal et al.21 and Zhuo etal.18 It is also evident from Figure 2 panels a−c that Δtrϕv

o

values increase with an increase in temperature for all thestudied systems which may be regarded due to release of largewater molecules from secondary solvation layer around thehydroxyl groups of saccharides and zwitterions of leucine intothe bulk of the water which in turn leads to strongerinteractions of the types (1) and (2).The Δtrϕv

o values at all leucine concentrations follow theorder for various saccharides as ribose < maltose < raffinose.This increase in Δtrϕv

o values may be due to an increase in thenumber of hydroxyl groups in saccharides which maystrengthen different solute−solvent interactions and henceincrease the Δtrϕv

o values. Second, this trend can also beunderstood on the basis of the difference in the compatibility ofdifferent saccharides with the three-dimensional hydrogen-

Table 1. Specifications of Chemicals Used

chemical name MW/(kg·mol−1) suppliermole fraction

puritya

L-leucine 0.1312 s.d. Fine ChemLtd.

0.99

D(−)ribose 0.1501 LobachemiePVT. Ltd.

0.99

D(+)maltosemonohydrate

0.3603 LobachemiePVT. Ltd.

> 0.95

D(+)raffinosepentahydrate

0.5945 LobachemiePVT. Ltd.

0.99

apurity as provided by suppliers.

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je400977r | J. Chem. Eng. Data 2014, 59, 1375−13841376

Page 3: Partial Molar Volumes and Isentropic Compressibilities of Some Saccharides in Aqueous Solutions of Leucine at Different Temperatures

Table 2. Densities, ρ, and Velocities of Sound, u, for Saccharides in Aqueous Leucine Solutions at Different Temperatures (T/K) and Experimental Pressure, p = 0.1 MPa

ma ρ·10−3/(kg·m−3) u/(m·s−1)

(mol·kg−1) 293.15 298.15 303.15 308.15 313.15 293.15 298.15 303.15 308.15 313.15

Ribose in Leucine SolutionsmLeu/mol·kg−1 = 0.000b

0.000 0.998218 0.997055 0.995651 0.994247 0.992743 1482.96 1497.06 1509.39 1520.08 1529.190.050 1.001068 0.999887 0.998463 0.996819 0.994955 1485.21 1499.21 1511.34 1521.90 1530.870.055 1.001360 1.000174 0.998749 0.997103 0.995237 1485.39 1499.37 1511.49 1522.05 1531.010.060 1.001651 1.000465 0.999035 0.997383 0.995517 1485.58 1499.51 1511.63 1522.19 1531.150.065 1.001939 1.000749 0.999317 0.997667 0.995796 1485.75 1499.67 1511.77 1522.33 1531.290.070 1.002229 1.001040 0.999606 0.997954 0.996076 1485.92 1499.82 1511.89 1522.46 1531.430.075 1.002521 1.001330 0.999887 0.998237 0.996357 1486.07 1499.95 1512.03 1522.59 1531.570.080 1.002815 1.001615 1.000173 0.998519 0.996637 1486.22 1500.09 1512.15 1522.73 1531.700.085 1.003108 1.001911 1.000465 0.998806 0.996917 1486.37 1500.22 1512.25 1522.84 1531.830.090 1.003400 1.002206 1.000752 0.999089 0.997196 1486.50 1500.35 1512.36 1522.97 1531.970.100 1.003979 1.002786 1.001325 0.999652 0.997754 1486.80 1500.59 1512.57 1523.19 1532.23

mLeu/mol·kg−1 = 0.0250.000 0.998940 0.997765 0.996352 0.994719 0.992893 1486.25 1500.16 1512.29 1522.79 1531.730.050 1.001643 1.000438 0.999001 0.997343 0.995491 1488.81 1502.64 1514.60 1524.92 1533.670.055 1.001916 1.000714 0.999269 0.997611 0.995757 1489.07 1502.89 1514.84 1525.17 1533.900.060 1.002191 1.000988 0.999540 0.997879 0.996024 1489.33 1503.14 1515.08 1525.41 1534.140.065 1.002471 1.001266 0.999810 0.998149 0.996294 1489.58 1503.38 1515.33 1525.65 1534.380.070 1.002751 1.001541 1.000077 0.998419 0.996563 1489.84 1503.63 1515.59 1525.89 1534.630.075 1.003026 1.001815 1.000348 0.998688 0.996832 1490.11 1503.89 1515.84 1526.15 1534.880.080 1.003301 1.002095 1.000621 0.998959 0.997104 1490.37 1504.14 1516.09 1526.40 1535.130.085 1.003576 1.002370 1.000897 0.999229 0.997375 1490.63 1504.40 1516.33 1526.66 1535.390.090 1.003855 1.002643 1.001175 0.999503 0.997649 1490.89 1504.67 1516.57 1526.91 1535.640.100 1.004407 1.003201 1.001727 1.000048 0.998193 1491.41 1505.18 1517.05 1527.42 1536.15

mLeu/mol·kg−1 = 0.0500.000 0.999543 0.998360 0.996938 0.995302 0.993464 1489.25 1502.94 1515.01 1525.41 1534.210.050 1.002231 1.001015 0.999572 0.997915 0.996045 1491.83 1505.44 1517.32 1527.54 1536.170.055 1.002502 1.001287 0.999839 0.998183 0.996311 1492.09 1505.69 1517.56 1527.77 1536.390.060 1.002776 1.001557 1.000106 0.998451 0.996578 1492.35 1505.94 1517.80 1527.99 1536.610.065 1.003049 1.001831 1.000374 0.998717 0.996845 1492.61 1506.19 1518.04 1528.23 1536.840.070 1.003322 1.002103 1.000644 0.998985 0.997116 1492.87 1506.44 1518.28 1528.47 1537.070.075 1.003595 1.002377 1.000915 0.999255 0.997385 1493.13 1506.69 1518.52 1528.70 1537.310.080 1.003871 1.002651 1.001187 0.999525 0.997655 1493.38 1506.94 1518.76 1528.94 1537.550.085 1.004146 1.002927 1.001459 0.999797 0.997924 1493.64 1507.19 1519.00 1529.18 1537.790.090 1.004425 1.003203 1.001729 1.000067 0.998193 1493.89 1507.44 1519.24 1529.41 1538.050.100 1.004983 1.003751 1.002269 1.000607 0.998735 1494.39 1507.94 1519.72 1529.89 1538.56

mLeu/mol·kg−1 = 0.1000.000 1.000596 0.999369 0.997956 0.996293 0.994341 1495.22 1508.83 1520.59 1530.77 1539.370.050 1.003273 1.002019 1.000583 0.998901 0.996915 1497.91 1511.43 1522.98 1532.96 1541.340.055 1.003545 1.002291 1.000851 0.999167 0.997183 1498.18 1511.69 1523.22 1533.20 1541.550.060 1.003819 1.002567 1.001120 0.999438 0.997451 1498.45 1511.94 1523.46 1533.43 1541.770.065 1.004092 1.002841 1.001391 0.999709 0.997719 1498.72 1512.20 1523.70 1533.66 1541.990.070 1.004366 1.003115 1.001661 0.999978 0.997987 1498.99 1512.46 1523.94 1533.89 1542.220.075 1.004641 1.003391 1.001931 1.000247 0.998258 1499.26 1512.72 1524.18 1534.13 1542.440.080 1.004916 1.003665 1.002201 1.000520 0.998529 1499.53 1512.97 1524.43 1534.36 1542.670.085 1.005191 1.003941 1.002474 1.000791 0.998803 1499.80 1513.23 1524.67 1534.60 1542.900.090 1.005466 1.004217 1.002745 1.001065 0.999079 1500.07 1513.49 1524.91 1534.83 1543.130.100 1.006015 1.004767 1.003287 1.001611 0.999621 1500.62 1514.01 1525.39 1535.32 1543.60

Maltose in Leucine SolutionsmLeu/mol·kg−1 = 0.000

0.050 1.004991 1.003591 1.002072 1.000122 0.998275 1488.15 1502.13 1514.21 1524.77 1533.730.055 1.005688 1.004239 1.002707 1.000748 0.998854 1488.74 1502.67 1514.74 1525.27 1534.190.060 1.006385 1.004885 1.003340 1.001373 0.999414 1489.33 1503.21 1515.28 1525.81 1534.650.065 1.007082 1.005530 1.003972 1.001996 0.999995 1489.89 1503.71 1515.81 1526.28 1535.150.070 1.007779 1.006173 1.004602 1.002618 1.000565 1490.45 1504.25 1516.34 1526.79 1535.570.075 1.008476 1.006815 1.005231 1.003238 1.001157 1491.01 1504.79 1516.87 1527.33 1536.050.080 1.009173 1.007456 1.005858 1.003857 1.001724 1491.61 1505.43 1517.4 1527.87 1536.51

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je400977r | J. Chem. Eng. Data 2014, 59, 1375−13841377

Page 4: Partial Molar Volumes and Isentropic Compressibilities of Some Saccharides in Aqueous Solutions of Leucine at Different Temperatures

Table 2. continued

ma ρ·10−3/(kg·m−3) u/(m·s−1)

(mol·kg−1) 293.15 298.15 303.15 308.15 313.15 293.15 298.15 303.15 308.15 313.15

mLeu/mol·kg−1 = 0.0000.085 1.009870 1.008095 1.006484 1.004475 1.002290 1492.17 1505.95 1517.93 1528.31 1536.980.090 1.010567 1.008733 1.007109 1.005091 1.002835 1492.75 1506.53 1518.46 1528.85 1537.470.100 1.011954 1.010004 1.008354 1.006320 1.003907 1493.97 1507.65 1519.59 1530.02 1538.48

mLeu/mol·kg−1=0.0250.050 1.005451 1.004105 1.002495 1.000705 0.998727 1491.05 1505.04 1517.14 1527.66 1536.600.055 1.006125 1.004743 1.003115 1.001305 0.999307 1491.49 1505.52 1517.62 1528.17 1537.100.060 1.006795 1.005385 1.003735 1.001905 0.999887 1491.94 1506.00 1518.11 1528.68 1537.600.065 1.007475 1.006031 1.004355 1.002503 1.000465 1492.37 1506.47 1518.59 1529.19 1538.110.070 1.008151 1.006681 1.004971 1.003101 1.001043 1492.81 1506.93 1519.09 1529.70 1538.620.075 1.008832 1.007332 1.005588 1.003697 1.001621 1493.24 1507.39 1519.59 1530.22 1539.130.080 1.009517 1.007985 1.006203 1.004292 1.002198 1493.66 1507.85 1520.09 1530.74 1539.640.085 1.010194 1.008631 1.006815 1.004884 1.002775 1494.09 1508.32 1520.59 1531.27 1540.150.090 1.010872 1.009287 1.007429 1.005481 1.003352 1494.52 1508.77 1521.09 1531.79 1540.660.100 1.012223 1.010578 1.008647 1.006664 1.004501 1495.38 1509.71 1522.10 1532.84 1541.69

mLeu/mol·kg−1 = 0.0500.050 1.005917 1.004637 1.003102 1.001345 0.999369 1494.68 1508.26 1520.16 1530.41 1539.150.055 1.006565 1.005271 1.003725 1.001958 0.999973 1495.27 1508.84 1520.70 1530.95 1539.650.060 1.007211 1.005908 1.004353 1.002578 1.000581 1495.85 1509.41 1521.26 1531.49 1540.150.065 1.007857 1.006545 1.004977 1.003188 1.001191 1496.43 1509.97 1521.81 1532.05 1540.650.070 1.008501 1.007189 1.005601 1.003809 1.001806 1497.03 1510.54 1522.37 1532.59 1541.150.075 1.009145 1.007827 1.006232 1.004425 1.002423 1497.64 1511.10 1522.93 1533.15 1541.650.080 1.009795 1.008465 1.006869 1.005059 1.003032 1498.25 1511.69 1523.51 1533.67 1542.170.085 1.010441 1.009111 1.007507 1.005685 1.003647 1498.85 1512.29 1524.06 1534.20 1542.680.090 1.011087 1.009764 1.008149 1.006309 1.004257 1499.45 1512.85 1524.61 1534.72 1543.180.100 1.012377 1.011055 1.009437 1.007545 1.005469 1500.67 1513.98 1525.75 1535.80 1544.19

mLeu/mol·kg−1 = 0.1000.050 1.006901 1.005583 1.004061 1.002311 1.000233 1501.05 1514.32 1525.89 1535.83 1544.400.055 1.007535 1.006209 1.004680 1.002927 1.000844 1501.71 1514.95 1526.43 1536.36 1544.890.060 1.008167 1.006838 1.005311 1.003542 1.001467 1502.32 1515.57 1526.97 1536.88 1545.360.065 1.008799 1.007463 1.005935 1.004161 1.002081 1502.95 1516.17 1527.54 1537.40 1545.840.070 1.009437 1.008091 1.006557 1.004781 1.002708 1503.62 1516.79 1528.11 1537.92 1546.300.075 1.010073 1.008723 1.007187 1.005405 1.003326 1504.29 1517.37 1528.67 1538.45 1546.790.080 1.010708 1.009358 1.007815 1.006039 1.003951 1504.95 1517.95 1529.23 1538.97 1547.280.085 1.011345 1.009995 1.008456 1.006673 1.004588 1505.62 1518.55 1529.77 1539.50 1547.750.090 1.011982 1.010631 1.009095 1.007305 1.005208 1506.35 1519.13 1530.33 1540.03 1548.240.100 1.013257 1.011925 1.010357 1.008571 1.006445 1507.80 1520.23 1531.45 1541.15 1549.25

Raffinose in Leucine SolutionsmLeu/mol·kg−1 = 0.000

0.050 1.007768 1.00650 1.004907 1.003047 1.001021 1491.78 1505.69 1517.80 1528.28 1537.290.055 1.008681 1.007404 1.005809 1.003925 1.001992 1492.62 1506.51 1518.59 1529.06 1538.070.060 1.009587 1.008295 1.006724 1.004792 1.002854 1493.46 1507.33 1519.39 1529.83 1538.840.065 1.010491 1.009182 1.007609 1.005691 1.003715 1494.30 1508.15 1520.18 1530.60 1539.610.070 1.011478 1.010161 1.008561 1.006608 1.004621 1495.14 1508.98 1520.99 1531.37 1540.380.075 1.012359 1.011103 1.009458 1.007554 1.005584 1495.98 1509.79 1521.79 1532.14 1541.130.080 1.013300 1.011984 1.010341 1.008425 1.006457 1496.82 1510.61 1522.59 1532.90 1541.890.085 1.014207 1.012929 1.011226 1.009292 1.007354 1497.65 1511.43 1523.39 1533.67 1542.650.090 1.015177 1.013881 1.012185 1.010255 1.008325 1498.48 1512.25 1524.19 1534.42 1543.400.100 1.016991 1.015701 1.014075 1.011991 1.010225 1500.14 1513.90 1525.81 1535.95 1544.91

mLeu/mol·kg−1 = 0.0250.050 1.008339 1.007065 1.005525 1.003771 1.001847 1496.25 1509.85 1521.66 1531.88 1540.650.055 1.009279 1.008005 1.006449 1.004681 1.002743 1497.33 1510.86 1522.63 1532.79 1541.530.060 1.010221 1.008947 1.007375 1.005597 1.003645 1498.41 1511.87 1523.60 1533.68 1542.400.065 1.011159 1.009887 1.008293 1.006515 1.004547 1499.50 1512.87 1524.57 1534.58 1543.270.070 1.012103 1.010831 1.009215 1.007432 1.005453 1500.58 1513.89 1525.55 1535.48 1544.130.075 1.013045 1.011773 1.010141 1.008341 1.006358 1501.69 1514.92 1526.52 1536.41 1544.990.080 1.013991 1.012712 1.011057 1.009245 1.007271 1502.77 1515.97 1527.50 1537.34 1545.840.085 1.014938 1.013655 1.011975 1.010151 1.008178 1503.88 1517.01 1528.49 1538.25 1546.690.090 1.015891 1.014593 1.012911 1.011061 1.009089 1504.98 1518.05 1529.47 1539.17 1547.54

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je400977r | J. Chem. Eng. Data 2014, 59, 1375−13841378

Page 5: Partial Molar Volumes and Isentropic Compressibilities of Some Saccharides in Aqueous Solutions of Leucine at Different Temperatures

bonded structure of water. Ribose with an equatorial 4-OHgroup is highly compatible38 and fits well into the structure ofwater; hence it has fewer interactions with the co-solute. On theother hand, both maltose and raffinose having two and threemonosaccharide units, respectably, have poor compatibilitywith the three-dimensional hydrogen-bonded structure ofwater, so they interact strongly with the co-solute. However,the larger Δtrϕv

o values for raffinose than maltose may be due to

the presence of more flexible α-(1→4) glycosidic bonds inmaltose than the α-(1→6) (galactose−glucose) and β-(1→2)(glucose−fructose) glycosidic bonds in raffinose, which makesmaltose compatible to some extent with the water structure ascompared to raffinose.According to Shahidi’s equation39 the partial molar volumes,

ϕvo of a saccharide molecule can be represented as follows:

ϕ = + −V V Vvo

vw void shrinkage (4)

where Vvw is van der Waal’s volume, Vvoid is the associated voidor empty volume, and Vshrinkage is the shrinkage in volumecaused by different solute−solvent interactions. If we assumedthat Vvw and Vvoid have the same magnitudes in water as well asin aqueous leucine solutions; than the positive Δtrϕv

o values canbe attributed to the decrease in the volume of shrinkage inaqueous leucine solutions.The isentropic compressibility, κs, values computed by using

the following equation,40 have been listed in Table S5 ofSupporting Information.

κρ

=u1

s 2 (5)

The combined expended uncertainty, U, in the calculated κsvalues resulting from the experimentally measured quantities[u(ρ) = ± 2·10−3 kg·m−3, u(u) = ± 1 m·s−1, u(m) = ± 3·10−3

mol·kg−1), u(T) = ± 0.01 K] is estimated to be within ± 0.15TPa−1 (level of confidence = 0.95, k = 2). Figure 3 is therepresentative plot for isentropic compressibility, κs, values as afunction of molalities of ribose in 0.100 mol·kg−1 aqueousleucine solution at different temperatures. The κs values werefound to decrease with molal concentration of saccharides,

Table 2. continued

ma ρ·10−3/(kg·m−3) u/(m·s−1)

(mol·kg−1) 293.15 298.15 303.15 308.15 313.15 293.15 298.15 303.15 308.15 313.15

mLeu/mol·kg−1 = 0.0250.100 1.017801 1.016459 1.014769 1.012875 1.010913 1507.18 1520.19 1531.52 1540.99 1549.22

mLeu/mol·kg−1 = 0.0500.050 1.008986 1.007593 1.005982 1.004205 1.002217 1499.27 1512.87 1524.88 1535.25 1544.070.055 1.009969 1.008547 1.006923 1.005109 1.003109 1500.28 1513.89 1525.89 1536.27 1545.100.060 1.010951 1.009501 1.007867 1.006015 1.003997 1501.30 1514.92 1526.90 1537.31 1546.130.065 1.011938 1.010455 1.008815 1.006927 1.004885 1502.32 1515.97 1527.89 1538.34 1547.190.070 1.012943 1.011415 1.009765 1.007857 1.005787 1503.31 1516.99 1528.92 1539.33 1548.210.075 1.013947 1.012387 1.010712 1.008796 1.006698 1504.32 1517.98 1529.93 1540.34 1549.230.080 1.014965 1.013372 1.011671 1.009735 1.007601 1505.29 1518.97 1530.93 1541.35 1550.280.085 1.015976 1.014356 1.012629 1.010673 1.008514 1506.31 1519.98 1531.96 1542.39 1551.310.090 1.016991 1.015348 1.013595 1.011617 1.009449 1507.31 1520.96 1532.95 1543.41 1552.310.100 1.018999 1.017314 1.015533 1.013485 1.011313 1509.40 1522.98 1534.96 1545.46 1554.35

mLeu/mol·kg−1 = 0.1000.050 1.009785 1.008423 1.006872 1.005061 1.003019 1505.60 1519.11 1530.69 1540.79 1549.360.055 1.010739 1.009357 1.007806 1.005957 1.003912 1506.63 1520.15 1531.70 1541.82 1550.370.060 1.011699 1.010292 1.008732 1.006855 1.004797 1507.67 1521.19 1532.72 1542.84 1551.400.065 1.012661 1.011229 1.009664 1.007759 1.005682 1508.70 1522.24 1533.74 1543.85 1552.430.070 1.013615 1.012155 1.010585 1.008657 1.006579 1509.73 1523.29 1534.77 1544.90 1553.440.075 1.014578 1.013097 1.011513 1.009568 1.007484 1510.76 1524.32 1535.79 1545.91 1554.460.080 1.015536 1.014045 1.012447 1.010481 1.008405 1511.83 1525.38 1536.80 1546.93 1555.440.085 1.016492 1.014987 1.013376 1.011407 1.009322 1512.86 1526.42 1537.85 1547.92 1556.440.090 1.017441 1.015943 1.014321 1.012325 1.010254 1513.92 1527.47 1538.87 1548.93 1557.420.100 1.019365 1.017854 1.016178 1.014149 1.012125 1515.98 1529.56 1540.97 1550.98 1559.36

am is the molality of saccharide in water and water+leucine. bmLeu is the molality of leucine in water. Standard uncertainties, u, are u(T) = ± 0.01 K,u(m) = ± 3·10−3 mol·kg−1, u(p) = ± 2·10−3 kg·m−3, and u(u) = ± 1 m·s−1. The combined expanded uncertainties, U, are U(ρ) = ± 4·10−3 kg·m−3,and U(u) = ± 2 m·s−1 (level of confidence = 0.95, k = 2).

Figure 1. Representative plot of apparent molar volumes, ϕv, versusmolalities, m, of D(−)ribose in 0.100 mol·kg−1 aqueous leucinesolution at ■, T = 293.15 K; ●, T = 298.15 K; ▲, T = 303.15 K; ▼, T= 308.15 K; ◀, T = 313.15 K.

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je400977r | J. Chem. Eng. Data 2014, 59, 1375−13841379

Page 6: Partial Molar Volumes and Isentropic Compressibilities of Some Saccharides in Aqueous Solutions of Leucine at Different Temperatures

Table 3. Partial Molar Volumes, ϕvo, Slopes, Sv, Partial Molar Isentropic Compression, ϕk

o, and Slopes, Sk, for Saccharides inAqueous Leucine Solutions at Different Temperatures

T ϕvo·106 Sv·10

6 ϕκo·103 Sk·10

3

K m3·mol−1 m3·mol−2·kg m3·mol−1·TPa−1 m3·mol−2·TPa−1·kg

Ribose in Leucine SolutionsmLeu/mol·kg−1 = 0.000b

293.15 93.75 ± 0.1 −17.77 ± 0.8 −14.90 ± 0.1 68.74 ± 1.0298.15 94.26 ± 0.1 (95.09 ± 0.04)c −18.88 ± 0.7 −13.11 ± 0.2 75.98 ± 3.0303.15 94.51 ± 0.1 −15.11 ± 0.6 −10.15 ± 0.1 72.89 ± 1.0308.15 95.01 ± 0.1 (96.62 ± 0.01)c −14.86 ± 0.9 −6.95 ± 0.1 49.19 ± 1.0313.15 95.81 ± 0.1 −14.74 ± 0.9 −3.37 ± 0.1 24.40 ± 1.0

mLeu/mol·kg−1 = 0.025293.15 96.72 ± 0.1 −18.17 ± 1.0 −11.44 ± 0.1 −19.87 ± 1.0298.15 97.56 ± 0.1 −22.77 ± 1.0 −9.20 ± 0.1 −25.91 ± 1.0303.15 98.09 ± 0.1 −20.39 ± 0.8 −6.08 ± 0.1 −34.95 ± 1.0308.15 98.67 ± 0.1 −21.43 ± 0.4 −2.33 ± 0.1 −58.91 ± 2.0313.15 99.55 ± 0.1 −26.71 ± 0.5 1.61 ± 0.2 −83.76 ± 3.0

mLeu/mol·kg−1 = 0.050293.15 97.02 ± 0.1 −17.63 ± 0.4 −11.66 ± 0.1 −12.11 ± 0.8298.15 97.90 ± 0.1 −21.77 ± 0.5 −9.42 ± 0.1 −17.65 ± 0.5303.15 98.27 ± 0.1 −18.78 ± 0.5 −6.21 ± 0.1 −25.21 ± 1.0308.15 98.84 ± 0.1 −21.18 ± 0.5 −2.77 ± 0.1 −42.64 ± 1.5313.15 99.87 ± 0.1 −27.56 ± 1.0 1.21 ± 0.1 −70.48 ± 0.7

mLeu/mol·kg−1 = 0.10293.15 97.19 ± 0.1 −18.53 ± 0.6 −12.23 ± 0.1 −16.61 ± 0.4298.15 98.07 ± 0.1 −25.03 ± 1.0 −10.24 ± 0.1 −17.72 ± 0.7303.15 98.43 ± 0.1 −20.93 ± 0.7 −7.05 ± 0.1 −19.49 ± 0.8308.15 99.14 ± 0.1 −25.91 ± 0.7 −3.45 ± 0.1 −38.13 ± 1.1313.15 100.20 ± 0.1 −32.08 ± 0.9 0.74 ± 0.1 −58.77 ± 1.3

Maltose in Leucine SolutionsmLeu/mol·kg−1 = 0.000

293.15 226.68 ± 0.1 −68.42 ± 3.1 −18.88 ± 0.5 −119.91 ± 7.0298.15 227.69 ± 0.2 (228.12 ± 0.01)c −68.74 ± 2.3 −15.99 ± 0.3 −106.20 ± 4.5303.15 229.55 ± 0.3 −79.32 ± 4.0 −11.04 ± 0.5 −120.69 ± 6.9308.15 231.26 ± 0.1 (229.73 ± 0.01)c −87.52 ± 1.4 −7.81 ± 0.3 −123.32 ± 4.4313.15 233.40 ± 0.2 −98.44 ± 2.9 −5.85 ± 0.3 −95.38 ± 4.2

mLeu/mol·kg−1 = 0.025293.15 232.71 ± 0.2 −84.02 ± 3.3 −13.95 ± 0.1 −8.94 ± 0.5298.15 235.28 ± 0.1 −59.32 ± 1.5 −10.81 ± 0.1 −17.27 ± 0.4303.15 237.79 ± 0.2 −30.67 ± 2.1 −5.66 ± 0.1 −34.85 ± 1.0308.15 240.84 ± 0.1 −22.72 ± 1.1 −2.26 ± 0.1 −49.61 ± 1.5313.15 243.91 ± 0.1 −15.99 ± 0.1 −0.12 ± 0.1 −34.44 ± 0.8

mLeu/mol·kg−1 = 0.050293.15 233.59 ± 0.1 −46.06 ± 1.4 −14.48 ± 0.3 −100.75 ± 3.4298.15 236.40 ± 0.1 −57.87 ± 0.8 −11.24 ± 0.2 −90.09 ± 3.3303.15 239.15 ± 0.1 −62.86 ± 1.8 −6.12 ± 0.1 −99.25 ± 1.6308.15 241.70 ± 0.1 −63.01 ± 1.7 −2.70 ± 0.4 −91.46 ± 5.8313.15 245.02 ± 0.2 −71.28 ± 3.1 −0.43 ± 0.2 −66.95 ± 2.8

mLeu/mol·kg−1 = 0.10293.15 234.67 ± 0.1 −39.47 ± 0.4 −15.71 ± 0.3 −130.09 ± 4.0298.15 237.39 ± 0.1 −53.24 ± 1.7 −12.31 ± 0.7 −86.02 ± 8.8303.15 240.40 ± 0.1 −68.36 ± 1.3 −7.14 ± 0.2 −83.90 ± 2.5308.15 242.93 ± 0.1 −78.84 ± 1.0 −3.65 ± 0.2 −77.94 ± 2.0313.15 246.38 ± 0.3 −96.57 ± 3.7 −1.48 ± 0.1 −52.76 ± 1.2

Raffinose in Leucine SolutionsmLeu/mol·kg−1 = 0.000

293.15 394.93 ± 0.2 −92.31 ± 2.7 −22.64 ± 0.1 −9.98 ± 0.4298.15 396.99 ± 0.3 (397.09 ± 0.01)c −96.16 ± 4.5 −17.31 ± 0.1 −18.08 ± 0.4303.15 398.97 ± 0.4 −96.61 ± 4.9 −12.13 ± 0.1 −22.88 ± 0.5308.15 400.84 ± 0.3 (398.96 ± 0.01)c −103.58 ± 3.3 −8.81 ± 0.1 −12.98 ± 0.3313.15 401.81 ± 0.1 −99.26 ± 1.8 −6.71 ± 0.1 −14.65 ± 0.3

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je400977r | J. Chem. Eng. Data 2014, 59, 1375−13841380

Page 7: Partial Molar Volumes and Isentropic Compressibilities of Some Saccharides in Aqueous Solutions of Leucine at Different Temperatures

leucine concentration, and temperature as well. This decreasein κs values indicates that the addition of saccharides to thesolutions increases the hydrophilic−ionic interactions, whichreduce the cavities in the solutions, and system becomes lesscompressible. The decrease in isentropic compressibility valueswith temperature may be due to thermal rupture of waterstructure around the zwitterions of leucine and hydrophilic OHgroups of saccharides which in turn increase the hydrophilic−ionic interactions.41 Because of the increase in number of OHgroups in saccharides the κs values decrease in the followingorder: ribose > maltose > raffinose at all concentrations ofleucine.The apparent molar isentropic compression values for

various mono-, di-, and trisaccharides in water as well as inaqueous leucine solutions have been calculated by using therelation:

ϕκ κ

ρκ ϕ=

−+

⎪ ⎪

⎪ ⎪⎧⎨⎩

⎫⎬⎭m

( )k v

s o

os

(6)

where κs and κo are the isentropic compressibilities of thesolution and solvent, respectively. The apparent molarisentropic compression values for ribose, maltose, and raffinoseare listed in Supporting Information, Table S2. The combinedexpended uncertainty, U, in the calculated ϕκ values resultingfrom the experimentally measured quantities [u(ρ) = ± 2·10−3

kg·m−3, u(u) = ± 1 m·s−1, u(m) = ± 3·10−3 mol·kg−1), u(T) =± 0.01 K] is ± 0.30·10−3 m3·mol−1·TPa−1 (level of confidence= 0.95, k = 2). The variation of ϕκ values with molalconcentration of maltose is found to be linear (Figure 4) for allstudied saccharides at all temperature and leucine concen-trations. Therefore, the partial molar isentropic compressionvalues, ϕκ

o, and experimental slopes, Sk, have been calculated byleast-squares fitting of the following equation to thecorresponding data as

ϕ ϕ= + S mk ko

k (7)

where ϕκo measures the solute−solvent interactions and Sk

provides information regarding solute−solute interaction. The

values of ϕκo and Sk at different temperature and leucine

concentrations along with their standard errors have beensummarized in Table 3. In literature, no compressibilities dataof these saccharides in aqueous amino acid solutions is availablefor comparison purposes. The perusal of Table 3 reveals that ϕκ

o

values are negative in general, for all the studied systems withsome exceptions indicating strong solute−solvent interac-tions,36 which results in less compressible solutions. Theincrease in ϕκ

o values with temperature for all the saccharides isdue to release of large water molecules from secondarysolvation layer of hydroxyl groups of saccharides andzwitterions of leucine into the bulk of water, which make thesolutions more compressible.41

However, a decrease in ϕκo values with leucine concentration

for all the studied systems may be due to increase in magnitudeof different types of solute−solvent interactions pertaining inthe solutions. As a result hydrated water molecules become lesscompressible than bulk of water and hence ϕκ

o values decreasewith leucine concentration. In addition, a sharp decrease in ϕκ

o

values with type of saccharides in water as well as in aqueousleucine solutions may be considered to show the increasingorder of hydration for studied saccharides. The Sk values ofstudied saccharides (Table 3) have been found to be found tobe negative (with exception of ribose in water) at alltemperature and leucine concentrations, thereby suggestingvery weak solute−solute interactions. These results are in goodagreements with that of results obtained from partial molarvolume studies.

■ CONCLUSIONS

The positive ϕvo values have been obtained for all saccharides in

aqueous leucine solutions, and their magnitudes increase withleucine concentration as well as with temperature, indicatingthat hydration effects in solutions are sensitive to temperature.The ϕv

o values are also affected by nature of saccharides andfollow the order ribose < maltose < raffinose, which isattributed due to increased hydrophilic−ionic interactions anddecrease in compatibility of saccharides with water structure.The negative ϕκ

o values in all cases are the results of disruption

Table 3. continued

T ϕvo·106 Sv·10

6 ϕκo·103 Sk·10

3

K m3·mol−1 m3·mol−2·kg m3·mol−1·TPa−1 m3·mol−2·TPa−1·kg

mLeu/mol·kg−1 = 0.025293.15 407.39 ± 0.1 −86.19 ± 1.9 −17.56 ± 0.3 −172.11 ± 4.3298.15 409.82 ± 0.2 −94.94 ± 2.6 −12.05 ± 0.1 −143.29 ± 1.8303.15 412.36 ± 0.1 −85.89 ± 1.4 −6.65 ± 0.2 −114.11 ± 2.7308.15 415.01 ± 0.2 −84.26 ± 3.0 −3.06 ± 0.1 −65.70 ± 1.6313.15 418.38 ± 0.1 97.91 ± 1.0 −0.74 ± 0.1 −32.93 ± 0.3

mLeu/mol·kg−1 = 0.050293.15 411.63 ± 0.3 −196.00 ± 3.9 −18.52 ± 0.2 −161.36 ± 2.8298.15 415.26 ± 0.2 −175.42 ± 2.0 −13.02 ± 0.3 −154.79 ± 5.9303.15 419.21 ± 0.2 −176.01 ± 2.6 −7.64 ± 0.3 −161.87 ± 4.5308.15 421.94 ± 0.3 −157.10 ± 3.3 −4.14 ± 0.2 −159.02 ± 2.8313.15 424.65 ± 0.3 −141.50 ± 3.8 −1.61 ± 0.2 −155.40 ± 2.9

mLeu/mol·kg−1 = 0.10293.15 414.05 ± 0.3 −152.33 ± 6.0 −19.52 ± 0.3 −119.66 ± 4.4298.15 417.11 ± 0.1 −147.71 ± 1.7 −13.98 ± 0.2 −133.20 ± 0.2303.15 420.09 ± 0.4 −150.53 ± 4.8 −8.62 ± 0.1 −134.78 ± 3.2308.15 423.40 ± 0.1 −140.28 ± 1.7 −5.07 ± 0.3 −123.72 ± 3.3313.15 426.82 ± 0.3 −158.51 ± 4.1 −2.71 ± 0.1 −124.63 ± 2.9

bmLeu is the molality of leucine in water. cReference 21.

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je400977r | J. Chem. Eng. Data 2014, 59, 1375−13841381

Page 8: Partial Molar Volumes and Isentropic Compressibilities of Some Saccharides in Aqueous Solutions of Leucine at Different Temperatures

of hydration spheres around charge centers. The increase in ϕκo

values with temperature indicates the release of large water

molecules from secondary solvation layer around the chargedcenters into the bulk of water. The compressibilities results arein good agreements with the results obtained from partial molarvolume studies. The hydrophilic−ionic/hydrophilic−hydro-philic interactions have been found to dominate overhydrophilic−hydrophobic/hydrophobic−hydrophobic interac-tions.

■ ASSOCIATED CONTENT*S Supporting InformationDensities and velocities of sound of pure liquids with literaturevalues, apparent molar volume, apparent molar isentropiccompression, transfer partial molar volumes, transfer partialmolar isentropic compression, values of coefficients, a, b, and c,

Figure 2. Transfer partial molar volumes, Δtrϕvo, versus molalities,

mLeu, of leucine of (a) D(−)ribose, (b) D(+)maltose monohydrate,and (c) D(+)raffinose pentahydrate at ■, T = 293.15 K; ●, T = 298.15K; ▲, T = 303.15 K; ▼, T = 308.15 K; ◀, T = 313.15 K.

Figure 3. Representative plot of isentropic compressibilities, κs, versusmolalities, m, of D(−)ribose in 0.100 mol·kg−1 aqueous leucinesolution at ■, T = 293.15 K; ●, T = 298.15 K; ▲, T = 303.15 K; ▼, T= 308.15 K; ◀, T = 313.15 K.

Figure 4. Representative plot of apparent molar isentropiccompression, ϕκ, versus molalities, m, of D(−)ribose in 0.100 mol·kg−1 aqueous leucine solution at ■, T = 293.15 K; ●, T = 298.15 K;▲, T = 303.15 K; ▼, T = 308.15 K; ◀, T = 313.15 K.

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je400977r | J. Chem. Eng. Data 2014, 59, 1375−13841382

Page 9: Partial Molar Volumes and Isentropic Compressibilities of Some Saccharides in Aqueous Solutions of Leucine at Different Temperatures

of the equation (S1), partial molar expansion coefficients andsecond derivatives for saccharides in aqueous leucine solutionsat different temperatures. This material is available free ofcharge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author*E-mail: [email protected]. Tel.: +91 1772830803. Fax: +91 177 2830775.

FundingKuldeep Kumar thanks UGC for the award of UGC−BSRresearch fellowship Vide UGC Letter No. F.7−75/2007 (BSR).NotesThe authors declare no competing financial interest.

■ REFERENCES(1) Bertozzi, C. R.; Kiessling, L. L. Chemical Glycobiology. Science2001, 291, 2357−2364.(2) Chang, L. C.; Bewley, C. A. Potent Inhibition of HIV-1 Fusion byCyanovirin-N Requires a Single High Affinity Carbohydrate BindingSite: Characterization of Low Affinity Carbohydrate Binding siteKnockout Mutants. J. Mol. Biol. 2002, 318, 1−8.(3) Westerlund, B.; Korhonen, T. K. Bacterial Proteins Binding to theMammalian Extracellular Matrix. Mol. Microbiol. 1993, 9, 687−694.(4) Lemieux, R. U. The Origin of the Specificity in the Recognitionof Oligosaccharides by Proteins. Chem. Soc. Rev. 1989, 18, 347−374.(5) Gorelic, E.; Galili, U.; Raz, A. On the Role of Cell SurfaceCarbohydrates and Their Binding Proteins (Lectins) in TumorMetastasis. Cancer Metastasis Rev. 2001, 20, 245−277.(6) Smith, E. A.; Thomas, W. D.; Kiessling, L. L.; Corn, R. M. SurfacePlasmon Resonance Imaging Studies of Protein−CarbohydrateInteractions. J. Am. Chem. Soc. 2003, 125, 6140−6148.(7) Nidetzky, B.; Eis, C.; Albert, M. Role of Non-Covalent Enzyme-Substrate Interactions in the Reaction Catalysed by CellobiosePhosphorylase from Cellulomonas Uda. Biochem. J. 2000, 351, 649−659.(8) Toone, E. J. Structure and Energies of Protein−CarbohydrateComplexes. Curr. Opin. Struc. Biol. 1994, 4, 719−728.(9) Weis, W. I.; Drickamer, K. Structural Basis of Lectin−Carbohydrate Recognition. Annu. Rev. Biochem. 1996, 65, 441−473.(10) Ambrosi, M.; Cameron, N. R.; Davis, B. G. Lectins: Tools forthe Molecular Understanding of the Glycocode. Org. Biomol. Chem.2005, 3, 1593−15608.(11) Cheng, Y.; Shim, G.; Kang, D.; Kim, Y. Carbohydrate BindingSpecificity of Pea Lectin Studied by NMR Spectroscopy and MolecularDynamics Simulations. J. Mol. Struct. 1999, 475, 219−232.(12) Banipal, P. K.; Banipal, T. S.; Ahluwalia, J. C. Partial Molar HeatCapacities and Volumes of Transfer of Some Saccharides from Waterto Aqueous Sodium Chloride Solutions at T = 298:15 K. J. Chem.Thermodyn. 2002, 34, 1825−1846.(13) Ivarorka, I.; Carver, J. P. Ab Initio Molecular Orbital Calculationof Carbohydrate Model Compounds. 3. Effect of the Electric Field onConformations about the Glycosidic Linkage. J. Phys. Chem. 1995, 99,6234−6241.(14) Woods, R. J.; Dwek, R. A.; Edge, C. J.; Reid, B. F. MolecularMechanical and Molecular Dynamic Simulations of Glycoproteins andOligosaccharides. 1. GLYCAM_93 Parameter Development. J. Phys.Chem. 1995, 99, 3832−3846.(15) Taravati, A.; Shokrzadeh, M.; Ebadi, A. G.; Valipour, P.; Hassan,A. T. M.; Farrokhi, F. Various Effects of Sugar and Polyols on theProtein Structure and Function: Role as Osmolyte on Protein Stability.World Appl. Sci. J. 2007, 2, 353−362.(16) Banipal, P. K.; Hundal, A. K. Viscometric Studies on Saccharidesin Aqueous Magnesium Chloride Solutions at T = (288.15 to 318.15)K. J. Chem. Thermodyn. 2012, 51, 70−76.

(17) Zhuo, K.; Liu, Q.; Wang, Y.; Ren, Q.; Wang, J. Volumetric andViscometric Properties of Monosaccharides in Aqueous Amino AcidSolutions at 298.15 K. J. Chem. Eng. Data 2006, 51, 919−927.(18) Hernandez-Segura, G. O.; Campos, M.; Costas, M.; Torres, L.A. Temperature Dependence of the Heat Capacities in the Solid Stateof 18 Mono-, Di-, and Polysaccharides. J. Chem. Thermodyn. 2009, 41,17−20.(19) Galema, S. A.; Howard, E.; Engberts, J. B. F. N.; Grigera, J. R.The Effect of Stereochemistry upon Carbohydrate Hydration. AMolecular Dynamics Simulation of β-D-Galactopyranose and (α, β)-D-Talopyranose. Carb. Res. 1994, 265, 215−225.(20) Banipal, P. K.; Banipal, T. S.; Lark, B. S.; Ahluwalia, J. C. PartialMolar Heat Capacities and Volumes of Some Mono-, Di- andTrisaccharides in Water at 298.15, 308.15 and 318.15 K. J. Chem. Soc.,Faraday Trans. 1997, 93, 81−87.(21) Banipal, P. K.; Hundal, A. K. C.; Banipal, T. S. Effect ofMagnesium Chloride (2:1 Electrolyte) on the Aqueous SolutionBehavior of Some Saccharides over the Temperature Range of288.15−318.15 K: A Volumetric Approach. Carb. Res. 2010, 345,2262−2271.(22) Banipal, P. K.; Chahal, A. K.; Banipal, T. S. Studies onVolumetric Properties of Some Saccharides in Aqueous PotassiumChloride Solutions over Temperature Range (288.15 to 318.15) K. J.Chem. Thermodyn. 2009, 41, 452−483.(23) Zhuo, K.; Wang, J.; Yue, Y.; Wang, H. Volumetric Properties forthe Monosaccharide (D-Xylose, D-Arabinose, D-Glucose, D-Galac-tose)−NaCl−Water Systems at 298.15 K. Carb. Res. 2000, 328, 383−391.(24) Zhuo, K.; Wang, J.; Zheng, H.; Xuan, X.; Zhao, Y. VolumetricParameters of Interaction of Monosaccharides (D-Xylose, D-Arabinose, D-Glucose, D-Galactose) with NaI in Water at 298.15 K.J. Solution Chem. 2005, 34, 155−170.(25) Samanta, T.; Saharay, S. K. Volumetric and Viscometric Studiesof Glucose in Binary Aqueous Solutions of Urea at DifferentTemperatures. J. Chem. Thermodyn. 2010, 42, 1131−1135.(26) Ali, A.; Hyder, S.; Sabir, S.; Chand, D.; Nain, A. K. Volumetric,Viscometric, and Refractive Index Behaviour of α-Amino Acids andTheir Groups Contribution in Aqueous D-Glucose Solution atDifferent Temperatures. J. Chem. Thermodyn. 2006, 38, 136−143.(27) Chen, Y.; Liu, H.; Lin, R.; Zhang, H. The Heterotactic EnthalpicInteraction Coefficients of α-Amino Acids with Maltose in AqueousSolution at T = 298.15 K. J. Solution Chem. 2007, 36, 1321−1330.(28) Chauhan, S.; Kumar, K.; Singh, K.; Jyoti, J. Volumetric,Compressibility, and Surface Tension Studies on MicellizationBehavior of SDS in Aqueous Medium: Effect of Sugars. J. Surfact.Deterg. 2013, 17, 169−175.(29) Chauhan, S.; Sharma, V.; Sharma, K. Maltodextrin−SDSInteractions: Volumetric, Viscometric and Surface tension Study.Fluid Phase Equilib. 2013, 354, 236−244.(30) Chauhan, S.; Sharma, K.; Kumar, K.; Kumar, G. A ComparativeStudy of Micellization Behavior of an Ethoxylated Alkylphenol inAqueous Solutions of Glycine and Leucine. J. Surfact. Deterg. 2013, 17,161−168.(31) Hedwig, G. R. Thermodynamics Properties of PeptideSolutions. 3. Partial Molar Volumes and Partial Molar Heat-Capacitiesof Some Tripeptides in Aqueous-Solution. J. Solution Chem. 1988, 17,383−397.(32) Zielenkiewicz, W.; Perlovich, G. L.; Nikitina, G. E.; Semeykin, A.S. Volumetric Properties of Tetraphenylporphine, Their Metallo-Complexes and Some Substituted Tetraphenylporphines in BenzeneSolution. J. Solution Chem. 1996, 25, 135−153.(33) Hedwig, G. R.; Reading, J. F.; Lilley, T. H. Aqueous SolutionsContaining Amino Acids and Peptides. Part 2. Partial Molar HeatCapacities and Partial Molar Volumes of Some N-Acetyl Amino AcidAmides, Some N-Acetyl Peptide Amides and Two Peptides at 25 °C. J.Chem. Soc., Faraday Trans. 1991, 87, 1751−1758.(34) Desnoyers, J. E. Structural Effects in Aqueous Solutions: AThermodynamic Approach. Pure Appl. Chem. 1982, 54, 1469−1478.

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je400977r | J. Chem. Eng. Data 2014, 59, 1375−13841383

Page 10: Partial Molar Volumes and Isentropic Compressibilities of Some Saccharides in Aqueous Solutions of Leucine at Different Temperatures

(35) Nain, A. K.; Lather, M.; Sharma, R. K. Volumetric, Ultrasonicand Viscometric Behavior of l-Methionine in Aqueous-GlucoseSolutions at Different Temperatures. J. Mol. Liq. 2011, 159, 180−188.(36) Pal, A.; Chauhan, N. Volumetric, Viscometric, and AcousticBehaviour of Diglycine in Aqueous Saccharide Solutions at DifferentTemperatures. J. Mol. Liq. 2009, 149, 29−36.(37) Gurney, R. W. Ionic Processes in Solution; McGraw Hill: NewYork, 1953.(38) Galema, S. A.; Hailand, H. Stereochemical Aspects of Hydrationof Carbohydrates in Aqueous Solutions. 3. Density and UltrasoundMeasurements. J. Phys. Chem. 1991, 95, 5321−5326.(39) Shahidi, F.; Farrell, P. G.; Edward, J. T. Partial Molar Volumesof Organic Compounds in Water. III. Carbohydrates. J. Solution Chem.1976, 5, 807−816.(40) Chauhan, S.; Sharma, K.; Rana, D. S.; Kumar, G.; Umar, A.Conductance, Apparent Molar Volume and Compressibility Studies ofCetyltrimethylammonium Bromide in Aqueous Solution of Leucine. J.Mol. Liq. 2012, 175, 103−110.(41) Riyazuddeen; Usmani, M. A. Densities, Speeds of Sound, andViscosities of (L-Proline + Aqueous Glucose) and (L-Proline +Aqueous Sucrose) Solutions in the Temperature Range (298.15 to323.15) K. J. Chem. Eng. Data 2011, 56, 3504−3509.

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je400977r | J. Chem. Eng. Data 2014, 59, 1375−13841384