16
Pembangkit Listrik Tenaga Gelombang Laut Politeknik Negeri Sriwijaya 4 Me B PEMBANGKIT LISTRIK TENAGA GELOMBANG LAUT DENGAN SISTEM BANDUL-PONTON DATAR Abstrak Indonesia memiliki potensi pengembangan sumber daya kelautan yang sangat besar karena Indonesia adalah negara kepulauan terbesar di dunia. Salah satu potensi tersebut adalah potensi energi dari gelombang laut. Salah satu pengembangan energi dari laut tersebut adalah studi pemodelan pembangkit listrik tenaga gelombang laut sistem pendulum ponton datar. Pada model ini, gelombang laut akan digunakan untuk merubah dari posisi ponton datar. Akibat dari perubahan posisi ini (miring), pendulum akan berputar dan pusat putaran dihubungkan dengan poros generator, sehingga generator akan berputar dan menghasilkan voltase. Simulator ini akan dimodelkan dengan gerakan jungkat-jungkit dimana inputan gerakan dihasilkan oleh gerakan rotasi motor DC yang dikonversi menjadi gerakan translasi.Sedangkn ponton sendiri dimodelkan sebagai balok dimana dua sisi balok yang saling berlawanan ditahan oleh poros untuk menghasilkan gerakan jungkat- jungkit .Didalam balok tertanam sebuah generator mini yang porosnya akan di hubungkan dengan lengan pendulum yang nantinya menyebabkan generator berputar. Hasil simulasi gerakan gelombang laut ini diharapkan bisa memutar pendulum yang nantinya akan memutar generator untuk menghasilkan energy listrik. Kata Kunci : PLTGL, Ponton datar, Generator 1.PENDAHULUAN A. Latar Belakang Indonesia memiliki potensi sumber daya kelautan yang sangat besar. Salah satu potensi tersebut adalah energi gelombang laut. Teknologi pengembangan energi dari laut tersebut dapat memecahkan masalah energi listrik sebagai negara kepulauan, apalagi masih banyak pulau-pulau atau daerah-daerah terpencil yang memerlukan penanganan khusus termasuk penyediaan energi listrik. Teknologi 1

Pembangkit Listrik Tenaga Gelombang Laut

Embed Size (px)

Citation preview

Page 1: Pembangkit Listrik Tenaga Gelombang Laut

Pembangkit Listrik Tenaga Gelombang LautPoliteknik Negeri Sriwijaya

4 Me B

PEMBANGKIT LISTRIK TENAGA GELOMBANG LAUT DENGAN SISTEMBANDUL-PONTON DATAR

Abstrak

Indonesia memiliki potensi pengembangan sumber daya kelautan yang sangat besar karena Indonesia adalah negara kepulauan terbesar di dunia. Salah satu potensi tersebut adalah potensi energi dari gelombang laut. Salah satu pengembangan energi dari laut tersebut adalah studi pemodelan pembangkit listrik tenaga gelombang laut sistem pendulum ponton datar. Pada model ini, gelombang laut akan digunakan untuk merubah dari posisi ponton datar. Akibat dari perubahan posisi ini (miring), pendulum akan berputar dan pusat putaran dihubungkan dengan poros generator, sehingga generator akan berputar dan menghasilkan voltase.

Simulator ini akan dimodelkan dengan gerakan jungkat-jungkit dimana inputan gerakan dihasilkan oleh gerakan rotasi motor DC yang dikonversi menjadi gerakan translasi.Sedangkn ponton sendiri dimodelkan sebagai balok dimana dua sisi balok yang saling berlawanan ditahan oleh poros untuk menghasilkan gerakan jungkat-jungkit .Didalam balok tertanam sebuah generator mini yang porosnya akan di hubungkan dengan lengan pendulum yang nantinya menyebabkan generator berputar.

Hasil simulasi gerakan gelombang laut ini diharapkan bisa memutar pendulum yang nantinya akan memutar generator untuk menghasilkan energy listrik. Kata Kunci : PLTGL, Ponton datar, Generator

1. PENDAHULUANA. Latar Belakang

Indonesia memiliki potensi sumber daya kelautan yang sangat besar. Salah satu potensi tersebut adalah energi gelombang laut. Teknologi pengembangan energi dari laut tersebut dapat memecahkan masalah energi listrik sebagai negara kepulauan, apalagi masih banyak pulau-pulau atau daerah-daerah terpencil yang memerlukan penanganan khusus termasuk penyediaan energi listrik. Teknologi ini dapat memperkuat nilai tawar bangsa Indonesia dalam hal teknologi energi baru dan terbarukan, dan menghadapi isu pemanasan global. Salah satunya dengan pengembangan teknologi Pembangkit Listrik Tenaga Gelombang Laut Model Pendulum-Ponton Datar.

1

Page 2: Pembangkit Listrik Tenaga Gelombang Laut

B. Perumusan Masalah

Banyak pulau-pulau atau daerah-daerah terpencil yang memerlukan penanganan khusus termasuk penyediaan energi listrik. Tetapi kurangnya prasarana/ fasilitas penyediaan listrik masih terbilang kurang. Dan juga dalam pembuatan Pembangkit Listrik Tenaga Gelombang laut dengan sistem bandul kita harus mengetahui kekuatan poros dan bantalan Gerinding agar penggunaan Pembangkit listrik dapat berjalan dengan sempurna.

C. Tujuan Dan Manfaat

Adapun Tujuan dan manfaat dari Pembuatan Pembangkit Listrik Tenaga Gelombang laut dengan sistem bandul adalah:

1.Menghasilkan energi listrik yang bisa digunakan untuk kehidupan sehari-hari

2. mendapatkan data yang lebih detail dari voltase bangkitan listrik sistem Bandul poton datar

2. TINJAUAN PUSTAKATeori Gelombang Laut

Gelombang merupakan faktor penting di dalam perencanaan pelabuhan, rekayasa pantai dan lepas pantai. Gelombang di laut bisa dibangkitkan oleh angin, gaya tarik matahari dan bulan, letusan gunung berapi, atau gempa di laut, kapal yang bergerak dan sebagainya. Gelombang yang berada di laut sering nampak tidak beraturan karena puncak permukaan laut yang sering berubah-ubah, hal ini bisa diamati dari permukaan airnya yang diakibatkan oleh arah perambatan gelombang yang sangat bervariasi serta bentuk gelombang yang juga tidak beraturan terutama jika dipengaruhi angin. Arah perambatan gelombang dapat ditaksirkan sebagai arah rata-rata dari gelombang-gelombang individu. Permukaan laut sangat sulit diamati karena gelombang-gelombang individu tersebut. Gelombang yang merambat lebih cepat akan menyusul gelombang yang merambat lebih lambat. Interaksi antar gelombang-gelombang individu tersebut dapat saling menguatkan, saling menghilangkan, saling bertabrakan, berolak atau menjadi percikan.

Teori yang paling sederhana digunakan untuk menerangkan perambatan gelombang laut dikenal sebagai small amplitude wave theory atau linear wave theory. Teori ini dapat digunakan untuk menganalisa gerakan gelombang, gelombang-gelombang merambat tanpa terjadi deformasi dan profil permukaan maupun kecepatan pertikel air membentuk sinusoidal.

2

Page 3: Pembangkit Listrik Tenaga Gelombang Laut

Poros

Poros digunakan pada berbagai jenis perlengkapan permesinan, biasanya seperti poros daya, cam shaft, dsb. Secara definisi poros adalah bagian yang berputar untuk mentransmisikan

daya. Poros juga harus dianalisa kekuatannya karena poros juga menerima gaya dari torsi sebagai akibat putaran dan beban yang diberikan ataupun dihasilkan.

Roda gigi, pulley, roda gila (fly wheel), cam dan lain-lain merupakan komponen-komponen yang membebani poros dengan berbagai kombinasi baik secara posisi dan beban. Untuk itu penting direncanakan diameter poros berdasarkan dengan momen bending dan distribusi torsi sepanjang poros. Diameter dari poros ataupun diameter tiap bagian poros tergantung pada kombinasi tegangan sebagai akibat momen bending dan torsi yang ditimbulkan.

Berdasarkan hal tersebut, maka lokasi persis / tepat sepanjang poros dimana terjadi tegangan maksimum terjadi sering kali tidak pasti. Oleh karena itu penting sekali dilakukan penggambaran tegangan geser dan diagram momen untuk mengetahui titik pada sepanjang poros dimana terjadi momen maksimum. Setelah dilakukan hal tersebut di atas maka untuk menentukan besarnya diameter poros dapat dilakukan berdasarkan rumus-rumus berikut. Tegangan geser maksimum dari sebuah tabung solid dapat dinitung dengan :

τ max=√( σx

2 )2

+τ2

dimana :

σ x=32 M

πD3 dan τ=16 T

πD3

untuk poros berupa silinder yang berlubang maka :

σ x=32 M

π Do3 (1−( Di / Do )4 ) dan τ=

16T

π Do3 (1−( Di / Do )4 )

maka dengan menggunakan teori kegagalan tegangan geser maksimum dan mengganti σx dan τ

maka dari persamaan di atas kita peroleh :

τ max=0,55 S yp

N= 16

π Do3 (1−( D i/D o )4 )

√ M 2+T 2

Dimana :τ max : Tegangan geser maksimum (dari lingkaran Mohr’s)Syp : Tegangan luluh dari material

3

Page 4: Pembangkit Listrik Tenaga Gelombang Laut

N : factor keamananDo : Diameter luar porosDi : Diameter dalam porosM : momen bending yang adaT : Torsi poros

Berdasarkan dari Persamaan-persamaan diatas maka dapat direncanakan besarnya poros diameter minimal yang harus digunakan agar syarat keamanan terpenuhi.

Bantalan Gelinding (Rolling Bearing)

Gambar 1 Radial Ball Bearing

Dengan diciptakannya automobil, mesin-mesin berkecepatan tinggi dan mesin produksi otomatis mendorong lebih ekstensifnya penelitian dan pengembangan bantalan gelinding (juga dikenal dengan anti friction bearing). Sebagai hasilnya, AFBMA (Anti Friction Bearing Manufacturers Association) membuat standart dimensi bantalan gelinding dan dasar-dasar dalam pemilihannya. Untuk itu dimungkinkan bagi para perancang untuk memilih bearing dari katalog dari salah satu produsen dan menggantinya dengan bantalan yang memiliki dimensi yang sesuai dari produsen yang berbeda. Bantalan gelinding diklasifikasikan dalam tiga kategori yaitu radial ball bearing, angular contact ball bearings dan thrust ball bearing. Dalam pokok bahasan ini bantalan gelinding yang digunakan yaitu radial ball bearings.

Pada gambar 1 ditunjukan sebuah radial ball bearing beserta istilah-istilah di dalamnya. Radial ball bearings didesain untuk mensupport beban radial, mempunyai kedalaman lintasan bola yang kontinyu sepanjang keliling dari ring. Jenis ini juga dapat mensuport beban aksial pada poros untuk semua arah. Pada kenyataannya kapsitas beban aksial yang dapat diterima oleh radial ball bearings yaitu sampai dengan 70% dari beban radial yang ada.

4

Page 5: Pembangkit Listrik Tenaga Gelombang Laut

Pengujian secara ekstensif pada bantalan gelinding dan sesuai dengan analisa statistik diperoleh bahwa beban dan umur bantalan relative tetap. Dari hal tersebut maka didapatkan persamaan :

L10=(CP )

b

dimana :L10 : Tingkat umur dalam jutaan kali putaran dimana terjadi 10% kerusakanC : beban dasarP : beban ekivalenb : 3.0 untuk ball bearings, 21/3 dan 10/3 untuk roller bearings

dan untuk penentuan umur bantalan dalam satuan jam, maka persamaan di atas menjadi :

L10=106

60 n (CP )

b

Dimana :n : kecepatan putaran dalam rpm dan besarnya beban ekuivalen (P) sendiri adalah :

P = XVFr + YFa

dimana:

Fr :gaya kea rah radial (melintang poros)Fa : gaya kearah aksial (sepanjang poros)V : factor rotasi 1.0 untuk inner ring rotation, 1.2 untuk outer ring rotation dan self-aligning ball bearing digunakan 1 untuk inner dan outer ring rotation.X : factor beban radialY : factor beban aksial (poros)

Dan jika kompoenen aksial jauh lebih kecil dari komponen radial persamaan di atas menjadi :

P = VFr

Dari persamaan-persamaan di atas maka dapat dianalisa ketahanan bantalan yang digunakan dalam perencanaan.

Pemodelan sederhana dari PLTGL sistem pendulum-ponton datar

Prototipe Pembangkit Listrik Tenaga Gelombang Laut sistem pendulum-ponton datar yang sebenarnya mempunyai bentuk yang lebih komplek. Sedang dalam kasus ini gerakan gelombang laut di simulasikan dengan gerakan mekanisme yang menyerupai gerakan ponton datar yang dipengaruhi gelombang laut, yang mana penggerak mekanisme menggunakan motor

5

Page 6: Pembangkit Listrik Tenaga Gelombang Laut

DC, sedangkan ponon datar dimodelkan sebagai benda berupa box yang berbentuk persegi berukuran 40 x 40 x 6 cm, dimana di dalam box terdapat generator. Pendulum bergerak rotasi bebas terhadap pontondimana pusat putaran dihubungkan ke generator yang ada di dalam box ponton. Berikut visualisasi model sederhana dari PLTGL sistem pendulum-ponton datar.

Designing, Building, Checking

Designing atau mendesain dengan menggunakan software autocad, dimana pontoon sendiri berbentuk box dengan ukuran 40 x 40 x 6 cm, dengan ditengah tengah atau perpotongan diagonalnya akan ditanam generator. Ponton sendiri akan dibuat sebagai gerakan jungkat jungkit domana pusat putaran jungkat-jungkit tepat di tengah-tengah ponton, mekanisme jungkat jungkit inilah yang dianggap sebagai simulasi gerakan gelombang air laut, dimana sesuai riset gelombang air laut memiliki perioda berkisar 3 s, 6 s, dan 9 s. mekanisme tersebut akan digerakan oleh motor DC yang dihubungkan dengan mekanisme yang mengubah gerakan rotasi menjadi translasi dimana motor memiliki variasi rpm sesuai dengan kisaran perioda, sehingga sesuai rumus 𝑇𝑇=1f; ῳ=2πf dan 1 rad = 2πῳ maka motor DC di variasikan 20 rpm, 10 rpm, dan 6 rpm. Kemudian dengan adanya gerakan jungkat-jungkit tersebut akan mengakibatkan pendulum yang ada diatas ponton berputar, karena ujung pangkal pendulum dihubungkan dengan poros generator yang menjadi pusat putaran pendulum maka generator juga ikut berputar dan dapat menghasilkan voltase

Building atau membangun mekanisme. Ponton akan disusun dari material acrillic, dengan 2 poros berada disamping dengan bantalan untuk poros jungkat-jungkit menggunakan bearing yang kemudian di sangga dengan penyangga poros. Input gerakan menggunakan motor yang d sambung ke pulley yang kemudian antara pulley dengan tepi ponton dihubungkan dengan connecting rood.

Perhitungan Kekuatan Poros

Pada perhitungan poros, kita menganalisa setiap gaya yang ada pada poros. Untuk memudahkan perhitungan gaya-gaya yang ada pada poros dibagi menjadi dua bagian, yaitu gaya arah horisontal dan gaya arah vertikal seperti gambar dibawah :

6

Page 7: Pembangkit Listrik Tenaga Gelombang Laut

Pada perancangan roda gigi didapat berat roda gigi, lebar roda gigi, gaya tangensial dan gaya radial pada roda gigi. Dari perancangan ini dapat dicari momen bending terbesar pada poros dengan rumus ΣM= 0, ΣFx = 0, ΣFy = 0. Setelah mengetahui material yang dipilih maka langkah selanjutnya menentukan working endurance limit dengan rumus :

Se= 1Kf

xS nx {C} rsub {R} x {C} rsub {S} x {C} rsub {F} x {C} rsub {W

Setelah menentukan Working endurance limit maka dapat dicari syarat diameter minimal poros agar aman sesuai dengan rumus :

Do3≥32 NπSyp

⌊( SypSe

M ¿)2

+T¿2 ⌋1 /2

M* : Ks Kf MrT* :Ks Kf T max

Perhitungan Umur Bearing

Didalam perhitungan umur bearing, pertama-tama harus mengetahui jenis bearing dan dimensi dari bearing meliputi diameter dalam, diameter luar, dan beban dinamisnya, Setelah itu menentukan pula gaya radial resultan dengan rumus:

F r=√F y2+F z

2

gaya aksial resultan, dan beban ekivalen (P) dengan rumus:

P = Fs ( X.V.Fr + Fa )

Di mana: Fr : Gaya radial.

Fa : Gaya Aksial.

FS : Faktor kerja bearing,

V : Faktor putaran = 1,0 untuk inner ring rotation dan =1,2 untuk outer ring rotation X : Faktor beban radial, Y = Faktor beban thrust,

Setelah itu barulah itu dapat dihitung umur bearing dengan rumus:

L10=(CP )

3

×106

Dengan satuan putaran, atau

7

Page 8: Pembangkit Listrik Tenaga Gelombang Laut

L10=(CP )

3

×106

60.n

Dengan satuan jam kerja.

Dimana: C = Beban dinamis P = Beban Ekivalen L10= Umur bearing

Penentuan Daya Motor

Dalam menentukan daya motor yang dibutuhkan untuk menggerakan box ponton terlebih dahulu harus ditentukan gaya tangensial, yang tidak lain adalah akibat pengaruh massa box ponton dan pengaruh percepatan gravitasi bumi dengan rumusan:

Ft = mg

dimana: Ft = Gaya tangensial m = massa terhitung yang digerakan pulley motor g = Percepatan grafitasi

Setelah itu dihitung pula torsi akibat gaya tangensial tersebut dengan rumus:T = Ft x r

dimana: T = torsi r = jarak titik gaya tangensial deng pusat pulley (jari- jari)

maka setelah torsi ditemukan baru dihitung daya yang dibutuhkan dengan rumus:

hp= Tn63000

dimana: hp = daya dalam horse power T = Torsi n = putaran

Pengujian

Untuk mendapatkan data yang lebih detail dari voltase bangkitan generator maka digunakan oscilloscope, dengan tetap menggunakan frekuensi maksimum dan memvariasikan massa dan lengan pendulum. Dimana selang waktu tiap variasi diambil 30 detik, maka dengan menggunakan osiloscop maka akan terlihat dengan jelas voltase bangkitan yang dihasilkan tiap detik dari selang waktu 0 sampai 30 detik.

Adapun salah satu hasil dari pengukuran menggunakan osiloscope adalah sebagai berikut:

8

Page 9: Pembangkit Listrik Tenaga Gelombang Laut

Gambar 3 Grafik untuk L 13 cm dan m 100 gr

Penentuan kecepatan sudut dari gerakan pendulum.

Dengan mengetahui hubungan putaran dengan voltase (Y=0,003X-0,119) dari pengujian generator dan mengetahui voltase bangkitan disetiap detik melalui pengujian dengan oscilloscope, maka bisa di dapatkan grafik yang menyatakan hubungan antara waktu dengan putaran sebagai berikut :

Dari ketiga grafik pada saat panjang lengan 13 cm, dapat dilihat bahwa pada saat massa 300 gram, memiliki nilai rpm positif lebih lebih dominan dibanding pada saat massa 200 gram maupun 100 gram, hal ini berarti pada saat massa 300 gram memiliki arah putaran yang lebih konstan, meski kecepatanya tidak stabil

9

Page 10: Pembangkit Listrik Tenaga Gelombang Laut

Dari ketiga grafik pada saat panjang lengan 15 cm, dapat dilihat bahwa pada saat massa 100 gram justru memiliki nilai rpm positif lebih lebih dominan dibanding pada saat massa 200 gram maupun 300 gram, hal ini berarti pada saat massa 100 gram memiliki arah putaran yang lebih konstan, meski kecepatanya tidak stabil

Dari ketiga grafik pada saat panjang lengan 20 cm, dapat dilihat bahwa pada saat massa 100 gram juga memiliki nilai rpm positif lebih lebih dominan dibanding pada saat massa 200 gram maupun 300 gram, hal ini berarti pada saat massa 100 gram memiliki arah putaran yang lebih konstan, meski kecepatanya tidak stabil. Untuk selanjutnya akan dibandingkan 3 grafik yang memiliki nilai rpm positif lebih dominan dari ketiga lengan yang berbeda, yaitu saat L = 13 cm dengan m = 300 gr, L = 15 cm dengan m = 100 gr, dan L = 20 cm dengan m = 100 gr.

10

Page 11: Pembangkit Listrik Tenaga Gelombang Laut

Dengan membandingkan 3 kondisi putaran paling dominan di atas, dapat dilihat bahwa kondisi L 20 m 100 memiliki putaran positif lebih dominan, akan tetapi untuk kecepatan putaran yang relative besar adalah kondisi L 15 m 100, sedangkan untuk L 13 m 300, kecepatan yang dimiliki memang paling besar, tapi kondisinya sangat tidak stabil antara putaran positif dan negatif. Kecepatan putaran yang relative tinggi ini berarti voltase yang dihasilkan relative lebih besar.

Gambar. Pembangkit listrik Tenaga Gelombang Sistem Bandul

11

Page 12: Pembangkit Listrik Tenaga Gelombang Laut

Kesimpulan

1. Dari hasil percobaan yang dihasilkan pendulum tidak tentu bisa menghasilkan putaran penuh, akan tetapi pada keadaan frekuensi konstan gerakan pendulum membentuk sebuah pola.

2. Dari grafik hasil pengujian didapat bahawa pada kondisi lengan 20 cm dengan massa 100 gram memiliki arah putaran lebih dominan, akan tetapi pada kondisi lengan 15 massa 100 memiliki kecepatan putaran yang relative lebih besar, hal ini berarti voltase bangkitan juga lebih besar.

12