91
Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 1 Powder X-ray Diffraction: Phase Analysis and Pattern Fitting Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase Analysis Phase iden8fica8on by search/match methods Part 2: Pa;ern Fi=ng Extrac8ng informa8on from powder pa;erns by various fit methods Powder Xray Diffrac8on: Phase Analysis and Pa;ern Fi=ng

Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

  • Upload
    dangnga

  • View
    227

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 1

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Phase  Analysis  and  Structure  Refinement  –  A  Tutorial  

Part  1:  Phase  Analysis  Phase  iden8fica8on  by  search/match  methods  

 Part  2:  Pa;ern  Fi=ng  Extrac8ng  informa8on  from  powder  pa;erns  by  various  fit  methods  

 

Powder  X-­‐ray  Diffrac8on:  Phase  Analysis  and  Pa;ern  Fi=ng    

Page 2: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 2

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Informa8on  obtainable  from  powder  diffrac8on:  

• Qualita8ve  analysis  (phase  iden8fica8on)  →  Part  1  

• Quan8ta8ve  analysis  (phase  mixtures)  →  Parts  1  &  2  

• La=ce  parameters  →  Part  2  

• Crystallite  sizes  &  defects  (microstructure)  →  Part  2  

• Crystal  structure)  →  Part  2  

 

Page 3: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 3

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

0  1000  2000  3000  4000  5000  6000  7000  8000  9000  

20   25   30   35   40   45   50   55   60   65   70  2theta [°]  

Inte

nsity

[cou

nts]  

Page 4: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 4

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

   Informa8on  content  of  an  idealized  diffrac8on  pa;ern  

peak area (integral intensity): real measure for peak intensity relative intensities... a) ...within one phase → crystal structure (contents of the unit cell, i.e. types and relative positions of atoms) b) ...between different phases (in a mixture) → phase quantification

0  

1000  

2000  

3000  

4000  

5000  

6000  

7000  

20   25   30   35   40   45   50   55   60   65   70  2theta [°]  

Inte

nsity

[cou

nts]  

peak position: d-spacing → lattice parameters (size & shape of the unit cell)

peak height (maximum intensity): approximation for peak intensity

peak width: a) full width at half maximum (FWHM, a.k.a. “half width”) depends on peak profile b) integral breadth (= integral intensity / maximum intensity) less dependent on peak profile → crystallite size, defects (strain, disorder)

peak shape (peak profile): → crystallite size, defects (strain, disorder)

n λ = 2 d sin(θ)

Page 5: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 5

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

   The  ideal  crystal  structure  

la=ce  →  unit  cell  parameters            (unit  cell  size  &  shape)            →  peak  posi8ons  

=   crystal  structure  +   basis  la=ce  

unit  cell  

basis  →  unit  cell  contents            (atom  types  &  posi8ons)            →  rela8ve  peak  intensi8es  

Page 6: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 6

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

   The  real  (crystal)  structure  

Ideal  crystals  are  infinite,  but  real  crystals  are  not:  •  crystallite/domain  size  effects  →  peak  shape,  peak  broadening  

 In  ideal  crystals,  all  unit  cells  are  iden8cal,  but  real  crystals  have  defects:  • missing/wrong/addi8onal  atoms,  thermal  mo8on  →  rela8ve  intensi8es  

•  stacking  faults,  twin  boundaries  →  peak  shape,  peak  broadening,  even  peak  shiYs  

•  local  la=ce  distor8ons  =  varia8on  of  d-­‐spacings  =  (micro)strain  →  peak  shape,  peak  broadening  

Page 7: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 7

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Phase  Iden8fica8on  (Search  &  Match)  

In  powder  XRD,  crystalline  phases  are  iden8fied  by  the  posi-ons  and  intensi-es  of  the  diffrac8on  peaks.  

Note:    The  diffrac8on  angle  2θ  (θ  =  Bragg  angle)  is  related  to  the  d-­‐spacing  via  the  Bragg  equa8on  n  λ  =  2  d  sin(θ).  Thus,  the  peak  posi8ons  on  the  angular  scale  are  wavelength  dependent!  

 To  iden8fy  phases  from  XRD,  you  need:  a)  experimental  diffrac8on  data,  b)  one  or  more  database(s)  of  reference  pa;erns,  c)  a  search/match  soYware.    Note:    The  soYware  performing  the  search  acts  as  an  interface  to  the  database,  thus  the  soYware  and  database  must  be  compa8ble  with  each  other.  

Page 8: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 8

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Phase  Iden8fica8on  (Search  &  Match)  

Depending  on  the  search/match  strategies  supported  by  your  soYware,  your  diffrac8on  data  may  (or  must)  have  one  of  the  following  formats:  

a)  raw  (i.e.  unprocessed)  diffrac8on  data  in  binary  or  ASCII  format,  

b)  processed  diffrac8on  data  (e.g.  background  subtrac8on,  α2  stripping),  

c)  a  peak  list  (posi8ons  &  intensi8es)  derived  from  the  measured  data          by  peak  search  (crude)  or  peak  fi=ng  (more  precise).  

Page 9: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 9

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Phase  Iden8fica8on  (Search  &  Match)  

Some  so3ware  examples:  

• WinXPow  (STOE  &  CIE):  automa8c  search  on  peak  list,  or  manual  matching  with  raw  data  (or  peak  list)  

•  DIFRAC  EVA  (Bruker  AXS),  older  version:  automa8c  search  on  background  subtracted  raw  data,  automa8c  search  on  peak  list  

•  DIFFRAC  EVA  (Bruker  AXS),  later  version,  and  •  HighScore  /  HighScore  Plus  (Panaly8cal):  automa8c  search  on  raw  data  (background  subtracted  automa8cally),  automa8c  search  on  peak  list  

Page 10: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 10

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Search  &  Match  with  WinXPow  

Page 11: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 11

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Search  &  Match  with  EVA  (older  version)  

Page 12: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 12

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Search  &  Match  with  EVA  (later  version)  

Page 13: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 13

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Phase  Iden8fica8on  (Search  &  Match)  

General  strategies:  

•  For  a  peak  list  search,  the  user  has  to  define  a  2θ  tolerance  interval  within  which  an  agreement  between  reference  and  data  is  considered  to  be  a  match.  

•  Raw  data  search  algorithms  use  the  digital  intensity  informa8on,  without  any  separate  peak  recogni8on.  Thus,  the  background  intensity  has  to  be  subtracted  (by  the  user  or  the  soYware)  before  the  search  is  executed.  

•  Note  that  α2-­‐stripping  is  recommended  in  the  older  EVA  manual,  but  it's  prac8cal  impact  is  usually  unimportant  or  even  nega8ve!  

Page 14: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 14

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Phase  Iden8fica8on  (Search  &  Match)  

Analysis  of  phase  mixtures:  

•  If  a  posi8ve  match  is  found,  but  some  experimental  peaks  remain  unexplained,  another  search  has  to  be  performed  on  the  unexplained  peaks  (residual).  

•  In  the  older  DIFFRAC  EVA  version,  a  scissors  tool  can  be  used  to  manually  exclude  explained  (or  unwanted)  regions  of  the  experimental  pa;ern  before  a  residual  search  is  conducted.  This  procedure  can  be  tedious,  but  gives  the  user  maximum  control.  

•  In  later  DIFFRAC  EVA  versions  and  HighScore,  a  residual  scan  can  be  prepared  by  omission  of  user  controlled  intervals  around  explained  peaks.  This  method  is  easier,  but  especially  in  EVA  the  "one  threshold  for  all  peaks"  approach  does  not  work  so  well.  

Page 15: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 15

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Phase  Iden8fica8on  (Search  &  Match)  Databases:  

We  have  to  dis8nguish  between  reference  pa;ern  databases  and  crystal  structure  databases.  

Pa;ern  databases  are  used  for  search/match  phase  iden8fica8on.  The  entries  contain  informa8on  about  peak  posi8ons  and  intensi8es,  but  tradi8onally  no  detailed  structure  informa8on  (e.g.  atomic  coordinates).  The  crystal  structures  of  the  respec8ve  phases  may  be  known  or  unknown,  the  pa;erns  may  be  indexed  or  not,  measured  or  calculated.  

Crystal  structure  databases  contain  structural  informa8on,  including  space  group,  unit  cell,  and  atomic  coordinates,  which  is  necessary  for  Rietveld  based  pa;ern  fi=ng.  They  usually  do  not  contain  diffrac8on  pa;ern  informa8on.  

Since  diffrac8on  pa;erns  can  be  calculated  from  crystal  structures,  pa;ern  databases  may  contain  calculated  pa;erns  derived  from  crystal  structure  database  entries.  

Page 16: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 16

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Phase  Iden8fica8on  (Search  &  Match)  Pa@ern  databases:  

The  most  commonly  used  commercial  pa;ern  databases  are  the  various  versions  of  the  PDF  (Powder  Diffrac8on  File)  maintained  by  the  ICDD  (Interna8onal  Centre  for  Diffrac8on  Data),  formerly  known  as  JCPDS  (Joint  Commi;ee  on  Powder  Diffrac8on  Standards).  

Note  that  the  JCPDS  was  renamed  to  ICDD  in  1978,  so  the  s8ll  ongoing  cita8on  of  "JCPDS"  in  the  literature  is  somewhat  outdated.  

The  PDF-­‐2  covers  inorganic  materials.  Since  2003,  calculated  pa;erns  based  on  ICSD  and  NIST  crystal  structures  are  included  on  a  larger  scale.  

The  PDF-­‐4/Organics  and  PDF-­‐4/Minerals  cover  organics/organometallics  and  minerals,  respec8vely.  PDF-­‐4+  covers  inorganic  materials.    All  PDF-­‐4  products  include  a  high  percentage  of  calculated  pa;erns  which  are  accompanied  by  corresponding  crystal  structure  data.  

Page 17: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 17

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Phase  Iden8fica8on  (Search  &  Match)  Pa@ern  databases  (con-nued):  

As  a  recent  development,  calculated  pa;erns  derived  from  the  non-­‐commercial  COD  (Crystallography  Open  Database)  are  supported  by  commercial  search/match  soYware  (e.g.  EVA  3  and  HighScore)  as  alterna8ve  to  the  commercial  PDF  products.  Note  that  a  simultaneous  search  over  both  databases  is  not  supported  due  to  license  restric8ons  from  the  ICDD.  

Page 18: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 18

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Phase  Iden8fica8on  (Search  &  Match)  PDF  quality  marks:  

•  *  (Star):  high  quality  measured  pa;ern;  chemical  composi8on  well  characterized,  intensi8es  measured  objec8vely,  no  serious  systema8c  errors,  average  delta  2θ  <  0.03°.    

•  I  (Indexed):  pa;ern  has  been  indexed  (thus  almost  certainly  single  phase);  reasonable  range  and  even  spread  in  intensi8es,  no  serious  systema8c  errors,  average  delta  2θ  <  0.06°.  

•  0  (Zero):  diffrac8on  data  of  poorly  characterized  material,  or  data  known  (or  suspected)  to  be  of  low  precision.  

•  B  (Blank):  pa;erns  which  do  not  meet  the  "*",  "I",  or  "0"  criteria.  

•  D  (Deleted):  pa;ern  which  was  subsequently  discredited,  or  was  superseded  by  a  later,  be;er  pa;ern  (check  comments  of  the  entry  for  details).    Remains  available  as  part  of  the  database  for  backward  reference  reasons.  

Page 19: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 19

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Phase  Iden8fica8on  (Search  &  Match)  PDF  quality  marks  (con-nued):  

•  R  (Rietveld):  pa;erns  with  d-­‐values  directly  from  Rietveld  refinement;  accepted  only  in  unusual  cases.  

•  C  (Calculated):  pa;ern  calculated  from  single  crystal  data;  very  precise    d-­‐values,  but  intensi8es  may  differ  somewhat  from  experimental  pa;ern.  C  pa;erns  contain  reference  to  crystal  structure  database  entry  used  for  calcula8on;  useful  for  later  Rietveld  refinement.      

•  A  (Alterna8ve):  used  to  mark  alterna8ve  C  pa;erns  if  mul8ple  entries  for  the  same  phase  exist;  useful  to  limit  the  number  of  choices.  

 

Note:  If  you  have  the  choice  between  several  alterna8ve  pa;erns  for  the  same  phase,  you  should  chose  a  "*"  or  "C"  pa;ern.  

Page 20: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 20

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Phase  Iden8fica8on  (Search  &  Match)  Pa@ern  matching  FAQ:  Q:  How  many  peaks  must  match  between  a  reference  and  measured  pa;ern?  A:  All  peaks  of  the  reference  pa;ern  should  be  present  in  the  measured  data,      otherwise  it  is  not  a  valid  match.  

obs

ref ý

obs

ref þ

obs

ref þ

Possible  excep8ons:  •  Small  peaks  are  below  detec8on  limit  (high  noise  level)  •  Missing  peaks  may  result  from  extreme  preferred  orienta8on  effects  or  extreme  anisotropic    peak  broadening  →  check  if  effect  is  hkl  dependent  

•  Bad  sta8s8cs  (few,  large  crystallites)  →  peaks  would  be  very  sharp;  try  grinding  the  sample  thoroughly  and  measure  again  

valid  match  (single  phase  pa;ern)  

valid  match  (mul8  phase  pa;ern)  

invalid  or  ques8onable  match  (some  reference  peaks  missing  in  experimental  pa;ern)  

Page 21: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 21

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Phase  Iden8fica8on  (Search  &  Match)  Pa@ern  matching  FAQ:  Q:  All  reference  peaks  occur  in  the  measured  pa;ern,  but  the  measurement  

contains  addi8onal  peaks.  What  does  this  mean?        A:  The  iden8fica8on  is  probably  correct,  but  the  measured  pa;ern  represents  a  

phase  mixture.    →  Keep  the  reference  pa;ern,  then  con8nue  searching  for  references    to  explain  the  addi8onal  peaks.  Proceed  un8l  all  peaks  are  explained.  

obs

ref ?

obs

ref1 þ ref2 þ

obs

ref þ

Page 22: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 22

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Phase  Iden8fica8on  (Search  &  Match)  Pa@ern  matching  FAQ:  Q:    All  measured  peaks  are  explained  with  a  reference,  except  for  some  very  

small  ones.  I  tried  to  iden8fy  them  as  an  impurity  phase,  but  failed.    What  could  this  mean?  

   A:  Possible  reasons  are:  •  The  peaks  are  ar8facts  resul8ng  from  spectral  impuri8es  (other  wavelengths,  

e.g.  Kβ,  W  L),  i.e.  weak  "duplicates"  of  very  strong  peaks.  •  The  peaks  are  real  and  belong  to  the  reference  compound.  Your  experimental  

pa;ern  might  be  be;er  (signal/noise  ra8o)  than  the  reference  pa;ern.    AYer  all,  diffractometer  technology  improves  with  8me.  →  Try  to  check  if  the  addi8onal  peaks  are  compa8ble  with  the  unit  cell  parameters  of  the  reference  compound.  

obs

ref ?

Page 23: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 23

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Phase  Iden8fica8on  (Search  &  Match)  Pa@ern  matching  FAQ:  Q:  There  is  a  match  between  all  measured  and  reference  peak  posi8ons,    

but  the  rela8ve  intensi8es  disagree.  What  does  this  mean?    A:  Possible  reasons  are:  •  The  iden8fica8on  is  correct,  but  there  are  preferred  orienta8on  effects  in  the  measured  

data.    →  The  intensity  devia8ons  should  correlate  systema8cally  with  hkl    →  Check  with  Rietveld  fit  including  a  preferred  orienta8on  model  

•  The  iden8fica8on  is  correct,  but  the  reference  intensi8es  have  a  low  level  of  precision.    →  Check  if  the  reference  intensi8es  have  only  discrete,              rounded  values  (e.g.  100%,  80%,  50%  etc.).                If  so,  the  reference  data  originated  from  visual  evalua8on                of  a  photographic  film  (i.e.  "very  strong",  "strong",  "medium"              etc.  translated  into  percentage  numbers).    

•  The  iden8fica8on  is  incorrect,  the  peak  posi8ons  coincide  only  by  chance  (not  very  likely,  but  possible).  

obs

ref ?

obs

ref þ

Page 24: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 24

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Phase  Iden8fica8on  (Search  &  Match)  Pa@ern  matching  FAQ:  Q:  The  measured  and  reference  pa;erns  look  very  similar,  but  the  peaks  seem  to  

be  shiYed.  What  does  this  mean?    A:  Check  if  the  individual  peak  shiYs  are  

(a)  constant  in  direc8on  and  magnitude,  (b)  constant  in  direc8on  but  with  increasing  magnitude  at  increasing  angle,  or  (c)  variable  in  their  direc8on.  

 (a)  A  constant  peaks  shiY  is  most  probably  a  measurement  ar8fact.  

If  the  defini8on  of  the  2θ  scale  of  the  diffractometer  is  off,  then  the  shiY  should  be  strictly  constant  (zero  shi+,  zero  error).  If  the  posi8on  of  the  sample  deviates  from  the  center  of  the  goniometer,  then  the  shiY  is  not  exactly,  but  close  to  constant  (sample  displacement,  height  error).  

Page 25: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 25

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Phase  Iden8fica8on  (Search  &  Match)  (b)  Increasing  peak  shiYs  with  increasing  angle  are  caused  by  differences  in  the  

la=ce  parameter(s).  (c)  The  same  is  true  for  shiYs  with  opposite  signs  (some  la=ce  parameters  

increase,  some  decrease).    Differences  in  la=ce  parameters  may  be  caused  by:  •  Temperature  differences  (thermal  expansion;  could  be  even  nega8ve  in  some  

cases!)  •  Chemical  differences:  instead  of  e.g.  AO2,  you  may  have  

 A1-­‐xBxO2  (doping/solid  solu8on),    AO2-­‐x  (variable  vacancies),      BO2  (isostructural  compound),  ...  

Note:  ShiYs  to  lower  angles  mean  expansion,  shiYs  to  higher  angles  contrac8on  of    d-­‐spacings/la=ce  parameters.  

Page 26: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 26

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Phase  Iden8fica8on  (Search  &  Match)  Pa@ern  matching  FAQ:  Q:  I  explained  all  diffrac8on  peaks  of  my  measured  pa;ern  with  the  reference  

pa;ern  of  my  target  compound.  Both  peak  posi8ons  and  intensi8es  agree  very  well.  May  I  say  that  my  sample  is  phase  pure?  

 A:  No,  not  necessarily.    

Strictly  speaking,  XRD  will  never  be  able  to  prove  phase  purity.  There  may  be  impuri8es  which  are  invisible  to  XRD,  either  because  their  amount  is  below  the  detec8on  limit,  or  because  they  are  "XRD  amorphous".  However,  if  your  measured  pa;ern  has  a  very  low  noise  level  and  no  unexplained  features  (e.g.  broad  bumps)  in  the  background,  then  you  have  a  good  chance  that  your  sample  is  indeed  phase  pure.    

Page 27: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 27

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Phase  Iden8fica8on  (Search  &  Match)  Pa@ern  matching  FAQ:  Q:  What  do  you  mean  by  "XRD  amorphous"?    A:  With  "XRD  amorphous"  I  mean  absence  of  proper  Bragg  diffrac8on  peaks.  

The  material  might  be  truly  amorphous,  i.e.  lack  any  long  range  ordering  (crystal  la=ce).  However,  the  material  could  also  be  what  I  would  call  "nanocrystalline",    i.e.  crystalline  with  very  small  crystallite  sizes.    Remember  that  the  intensity  of  diffrac8on  peaks  is  given  by  their  area,  and  that  small  crystallites  lead  to  peak  broadening.  Hence,  if  the  crystallite  size  is  reduced,  the  peaks  will  not  only  become  broader,  but  also  lower.  Furthermore,  diffrac8on  peaks  have  no  abrupt  end,  thus  they  tend  to  merge  smoothly  with  the  background,  becoming  increasingly  indis8nct.  S8ll,  such  a  "nanocrystalline"  sample  without  recognizable  Bragg  peaks  will  show  la=ce  fringes  in  high  resolu8on  TEM.    

Page 28: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 28

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Phase  Iden8fica8on  (Search  &  Match)  

20 25 30 35 40 45 50 55 60 65 70

2θ [°]

Peak  broadening:        no  discrete  border  between  crystalline  and        "nanocrystalline  XRD  amorphous"  materials    

Page 29: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 29

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Phase  Iden8fica8on  (Search  &  Match)  Phase  quan-fica-on  by  the  RIR  (Reference  Intensity  Ra-o)  method  In  the  PDF  product  family,  many  experimental  and  all  calculated  reference  pa;erns  are  accompanied  by  I/Ic  values.  I/Ic  is  the  ra8o  between  the  intensi8es  of  the  strongest  peaks  of  the  respec8ve  phase  and  corundum  in  a  binary  50:50  wt.%  phase  mixture.  In  ideal  powder  XRD,  the  intensi8es  are  approximately  propor8onal  to  the  weight  frac8ons  of  the  corresponding  phases.  Thus,  if  all  components  of  a  mul8phase  mixture  have  been  iden8fied  with  suitable  reference  pa;erns  (with  I/Ic  values)  and  the  reference  pa;erns  are  scaled  to  match  the  intensi8es  of  the  experimental  pa;ern,  then  the  ra8os  of  the  I/Ic  values  weighted  by  the  individual  scaling  factors  yield  the  approximate  weight  frac8ons  of  the  phases  (Ic  contribu8ons  cancel  out).  

Page 30: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 30

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Phase  Iden8fica8on  (Search  &  Match)  

Phase  quan-fica-on  by  the  RIR  (Reference  Intensity  Ra-o)  method    Note:  •  This  method  requires  that  all  phases  are  accounted  for  (no  amorphous  or  uniden8fied  phases,  no  missing  I/Ic  values).  

•  Any  distor8ons  of  rela8ve  peak  intensi8es,  e.g.  by  preferred  orienta8on  effects  or  microabsorp8on,  will  lead  to  erroneous  results.  

•  In  the  RIR  method,  the  peak  height  (instead  of  area)  is  used  to  scale  the  reference  pa;erns  to  the  measured  data.  Thus,  stronger  varia8ons  in  the  peak  width  will  distort  the  results  (no  propor8onality  between  peak  height  and  area).  

Page 31: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 31

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Some  general  remarks  on  fiMng:  •  A  model  (empirical  or  physically  based)  is  used  to  calculate  a  theore8cal  data  set.  

•  The  variable  parameters  of  the  model  are  op8mized  (usually  by  least  squares  algorithms)  to  obtain  the  best  possible  agreement  (fit)  between  calculated  and  measured  data.  

•  The  aim  of  fi=ng  experimental  data  is  oYen  to  extract  physical  parameters  from  the  data.  

•  Only  with  a  physically  based,  appropriately  chosen  model,  the  refined  parameters  may  be  interpreted  as  physically  meaningful  quan88es.  

•  However,  even  if  a  physical  model  is  absent,  fi=ng  may  s8ll  be  useful  to  parameterize  the  measurement  data  (data  reduc8on).  

Page 32: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 32

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Some  general  remarks  on  fiMng:  •  An  increase  in  the  number  of  refined  parameters  usually  improves  the  fit  (agreement  between  measured  and  simulated  data)  because  the  model  becomes  more  flexible.  

•  If  the  number  of  refined  parameters  is  increased  too  much,  they  become  less  well  defined  (parameters  start  to  correlate  with  each  other).  

•  In  the  worst  case,  you  will  have  an  excellent  looking  fit  with  a  set  of  meaningless  parameters  ("overfi=ng").  →  The  number  of  refined  parameters  must  stay  small  compared  to  the  number  of  "observables".  

•  The  strategy  for  any  fit  should  be  to  obtain  the  best  possible  fit  with  as  few  fit  variables  as  possible  (which  is  in  most  cases  easier  said  than  done).  →  The  choice  of  a  fit  model  is  always  a  compromise  and  should  be  based  on  physical  reasoning.  

Page 33: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 33

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Types  of  fiMng  in  powder  diffrac-on:    WPPM  vs.  WPPF  

•  In  powder  diffrac8on,  a  dis8nc8on  is  usually  made  between  Whole  Powder  Pa;ern  Fi=ng  (WPPF)  and  Whole  Powder  Pa;ern  Modelling  (WPPM).  

•  In  WPPF,  the  peak  shape  func8ons  used  are  empirical,  with  the  focus  on  the  determina8on  of  crystal  structure  parameters  (Rietveld  method)  and/or  microstructural  parameters  (size/strain  analysis).  

•  In  WPPM,  the  peak  shapes  are  modelled  based  on  physical  assump8ons  in  order  to  analyze  the  microstructure  and  especially  the  defect  structure  (e.g.  stacking  faults)  of  the  material.  

Page 34: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 34

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Types  of  fiMng  in  powder  diffrac-on:    Rietveld  method  (crystal  structure  refinement)  

•  The  Rietveld  method  was  originally  invented  to  refine  crystal  structures  from  (neutron)  powder  diffrac8on  data.    

•  A  Rietveld  structure  refinement  primarily  aims  at  the  determina8on  of  the  crystal  structure  geometry  (atomic  coordinates  and  la=ce  parameters  →  bond  distances).  

•  Depending  on  the  context  and  the  data  quality,  site  occupancies  and  thermal  displacement  parameters  ("temperature  factors")  may  also  be  refined.    

•  The  refinement  of  further  parameters  (peak  profiles,  background  func8on,  zero  error  and  other  correc8ons)  only  serves  the  purpose  of  determining  the  peak  intensi8es  as  accurately  as  possible.  →  Preference  for  analy8cal  peak  shape  func8ons.    

Page 35: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 35

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Types  of  fiMng  in  powder  diffrac-on:    Rietveld  method  

•  Later,  it  was  realized  that  the  Rietveld  scale  factors  obtained  from  fi=ng  phase  mixtures  are  related  to  the  concentra8ons  of  the  respec8ve  phases  →  Rietveld  based  phase  quan8fica8on.    

•  For  quan8fica8on  and  "advanced  qualita8ve  analysis",  it  is  advisable  to  keep  the  atomic  parameters  of  the  reference  structures  fixed,  thus  reducing  the  number  of  refined  parameters.  

•  If  a  reference  structure  seems  doub~ul  or  inappropriate  for  the  samples  inves8gated,  one  may  a;empt  to  refine  the  structural  parameters  once  on  a  reference  measurement  (data  quality  and  phase  purity  as  good  as  possible)  to  obtain  a  modified  reference  structure,  then  keep  the  structural  parameters  fixed  again  during  further  analysis.    

Page 36: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 36

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

70686664626058565452504846444240383634323028262422201816141210

1,150

1,100

1,050

1,000950

900

850

800750

700

650

600550

500

450

400

350300

250

200

150100

50

0

-50-100

-150

-200

-250

t-ZrO2_refined 4.63 %m-ZrO2_ICSD-89426 95.37 %

Page 37: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 37

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

70686664626058565452504846444240383634323028262422201816141210

1,150

1,100

1,050

1,000

950

900

850

800

750

700

650

600

550

500

450

400

350

300

250

200

150

100

50

0

-50

-100

-150

t-ZrO2_refined 4.68 %m-ZrO2_refined 95.32 %

Page 38: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 38

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Types  of  fiMng  in  powder  diffrac-on:    Rietveld  method  

•  In  a  Rietveld  fit,  the  intensi8es  of  the  peaks  are  calculated  from  the  crystal  structure  model  (whether  the  model  itself  is  refined  or  not).  

•  Individual  peak  shapes  of  a  phase  are  usually  correlated  via  a  peak  shape  func8on  with  refinable  parameters.  →  May  be  used  for  microstructure  (size/strain)  analysis.  

•  Individual  peak  posi8ons  are  correlated  via  the  la=ce  parameters.  •  If  the  crystal  structure  model  itself  is  not  refined,  the  Rietveld  method  thus  provides  the  lowest  possible  number  of  refined  variables  for  WPPF.  

 Note:  The  correla8on  of  peak  posi8ons  and  shape  parameters  reduces  the  number  of  variables  and  improves  the  extrac8on  of  intensi8es  for  overlapping  peaks,  which  is  of  primary  importance  for  a  Rietveld  structure  refinement.  

Page 39: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 39

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Types  of  fiMng  in  powder  diffrac-on:    Pawley  and  Le  Bail  methods  

•  The  Pawley  and  Le  Bail  methods  have  been  developed  to  extract  the  reflec8on  intensi8es  from  powder  diffrac8on  pa;erns  for  the  purpose  of  structure  solu8on.    

•  Both  methods  may  also  be  conceived  as  (or  used  as)  structure-­‐less  methods  in  WPPF.  

•  In  the  Pawley  method,  the  individual  peak  intensi8es  are  refined  fit  variables.  •  In  the  Le  Bail  method,  the  intensi8es  are  not  refined  directly.  Instead,  the  par88oning  scheme  of  overlapping  reflec8ons  is  op8mized  itera8vely  in  analogy  to  the  Rietveld  algorithm,  but  without  the  structure  informa8on.      

Page 40: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 40

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Types  of  fiMng  in  powder  diffrac-on:    Pawley  and  Le  Bail  vs.  Rietveld  

•  The  Pawley  and  Le  Bail  methods  share  with  the  Rietveld  method  that  the  peak  shapes  and  peak  posi8ons  of  a  phase  are  correlated.  

•  The  lack  of  a  crystal  structure  model  (which  would  determine  the  peak  intensi8es)  leads  to  a  higher  number  of  refinable  parameters.  

•  If  a  good  Rietveld  fit  is  possible,  it  is  preferable  over  Pawley/Le  Bail  because  of  the  lower  number  of  fit  parameters  and  the  extra  informa8on  obtained  (phase  quan8fica8on).  

•  If  a  Rietveld  fit  doesn't  work  well,  a  Pawley/Le  Bail  fit  may  be  the  be;er  choice,  as  the  increased  flexibility  usually  leads  to  a  be;er  fit.  →  More  accurate  extrac8on  of  peak  profiles  (microstructure)  and  la=ce  parameters.  

•  However,  you  should  ask  yourself  why  the  Rietveld  approach  has  failed  to  produce  the  desired  fit...    

Page 41: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 41

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Types  of  fiMng  in  powder  diffrac-on:    Single  peak  fiMng  

•  Single  peak  fi=ng  usually  means  that  every  individual  peak  has  its  own  refined  peak  shape,  posi8on  and  intensity  parameters  →  very  high  number  of  variables  in  WPPF.  Note:  If  you  would  do  exclusively  single  peak  fi=ng,  this  could  barely  be  called  WPPF  at  all.  Never  refine  a  peak  shiY  correc8on  parameter  in  such  a  case!  

•  The  refinement  of  la=ce  parameters  (including  peak  shiY  correc8on),  microstructure  etc.  would  have  to  be  performed  secondarily.  

•  Single  peak  fi=ng  is  especially  troublesome  in  case  of  peak  overlap.  •  Thus,  single  peak  fi=ng  should  only  be  used  for  specific  reasons  or  if  there  is  no  other  alterna8ve.  

•  Examples:  extra  peaks  from  uniden8fied  impurity  phases  in  a  mixture,  sample  holder  signals  or  other  ar8facts,  ...    

Page 42: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 42

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Powder  pa@ern  fiMng  step  by  step:  an  overview  •  Before  you  can  fit  a  powder  pa;ern,  you  need  to  iden8fy  your  phase(s)  →  see  part  1  (phase  iden8fica8on).  

•  AYer  iden8fica8on  of  the  main  protagonists,  you  should  try  to  get  corresponding  crystal  structure  models  for  Rietveld  based  fi=ng.  →  Retrieve  crystal  structure  data  from  structure  databases  or  literature.  

•  If  the  phase  iden8fica8on  can  be  based  on  a  calculated  pa;ern,  it  should  give  you  a  reference  to  the  corresponding  structure  database  entry  (e.g.  PDF-­‐2  references  to  ICSD  and  NIST),  or  be  accompanied  by  structural  data  (e.g.  COD  or  PDF-­‐4+).  

•  If  you  cannot  get  crystal  structure  informa8on,  you  should  at  least  try  to  get  the  la=ce  parameters  and  space  group  (or  at  least  crystal  class)  of  that  phase  for  use  in  Pawley/Le  Bail  fi=ng.  

•  If  you  have  none  of  the  above  informa8on,  you  are  leY  with  single  peak  fi=ng  for  the  corresponding  phase.  

Page 43: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 43

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Powder  pa@ern  fiMng  step  by  step:  an  overview  •  Some8mes,  you  will  realize  during  the  pa;ern  fi=ng  that  there  are  previously  overlooked  addi8onal  phases  in  the  samples  (this  is  what  I  call  "advanced  qualita8ve  analysis").  →  Repeat  the  iden8fica8on  and  data  retrieval  procedure  for  the  addi8onal  phase(s).  

•  If  you  are  sa8sfied  with  the  fit  (i.e.  with  the  agreement  between  calculated  and  measured  data),  you  can  proceed  with  extrac8ng  physical  data  from  the  fit  variables.  

•  If  all  relevant  phases  were  treated  appropriately  with  Rietveld  fi=ng,  you  will  obtain  the  corresponding  quan8ta8ve  informa8on  (weight  percentages).  

•  Refined  la=ce  parameters  result  for  all  phases  represented  by  either  Rietveld  or  Pawley/Le  Bail  fi=ng.  

•  If  a  suitable  peak  shape  func8on  was  chosen,  Rietveld,  Pawley  and  Le  Bail  phases  will  provide  microstructural  (size  and/or  strain)  parameters.  

Page 44: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 44

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Powder  pa@ern  fiMng  step  by  step:  an  overview  •  In  the  case  of  single  peak  fi=ng,  quan88es  like  la=ce  and  microstructure  parameters  can  only  be  obtained  by  secondary  evalua8on,  usually  with  much  lower  precision  than  from  correlated  fi=ng.  

Page 45: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 45

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Crystal  structure  databases  •  ICSD  (Inorganic  Crystal  Structure  Database)  by  FIZ  Karlsruhe  is  the  world's  largest  database  for  inorganic  structures.  Original  defini8on:  crystal  structures  of  elements  (including  metals)  and  compounds  containing  at  least  one  non-­‐metal  and  no  C-­‐H  bonds.  As  a  recent  development,  the  ICSD  also  incorporates  some  simple  C-­‐H  containing  compounds  (especially  formates,  acetates  etc.)  and  some  intermetallic  compounds.  

•  CSD  (Cambridge  Structural  Database)  by  CCDC  (Cambridge  Crystallographic  Data  Centre)  covers  small-­‐molecule  organic  and  metal-­‐organic  crystal  structures  (compounds  with  C-­‐H  bonds).  

•  CRYSTMET  by  Toth  Informa8on  Systems  covers  metals,  alloys,  intermetallic  compounds  and  minerals  (cri8cally  reviewed,  physical  metadata).  

Page 46: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 46

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Crystal  structure  databases  •  NIST  Crystal  Data  Iden8fica8on  File  contains  inorganic  and  organic  structures  (hasn't  been  updated  for  several  years).  

•  Pearson's  Crystal  Data  by  ASM  Interna8onal  covers  inorganic  structures  (cri8cally  reviewed).  

•  Furthermore,  there  are  several  databases  for  large  organic  molecules  (mainly  proteins).  

Page 47: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 47

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Crystal  structure  data  •  Depending  on  the  database  source  and  the  Rietveld  soYware  you  are  using,  you  may  have  to  convert  the  crystal  structure  data  format.  

•  The  most  common  format,  however,  is  the  CIF  (Crystallographic  Informa8on  File)  format,  which  is  supported  by  most  contemporary  crystallographic  soYware.  

•  Note  that  the  CIF  is  an  "open  format",  i.e.  it  may  always  happen  that  some  keywords  are  not  understood  by  your  soYware.  Depending  on  the  soYware,  such  keywords  are  simply  ignored,  or  may  lead  to  incorrect  data  import  or  even  program  crashes.  In  the  worst  case,  you  have  to  iden8fy  the  problem  and  edit  the  CIF  file  accordingly.  

Page 48: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 48

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Crystal  structure  data:  possible  piWalls  •  Many  space  groups  have  alterna8ve  se=ngs.    In  some  cases,  this  involves  different  choices  of  crystallographic  axes.    In  others,  it  is  simply  a  difference  in  the  choice  of  the  coordinate  origin.  

•  Some8mes,  the  se=ng  informa8on  is  coded  in  the  space  group  symbol  (different  cell  choices  in  monoclinic  or  orthorhombic  space  groups),  but  will  be  absent  if  the  space  group  is  iden8fied  only  via  the  space  group  number.    

•  Alterna8ve  origin  choices  can  op8onally  be  coded  by  extending  the  Hermann-­‐Mauguin  symbol  with  the  le;ers  "Z"  and  "S".  

•  Some  space  groups  occur  in  different  nota8ons.  For  example,  space  group    No.  225  (Fm3m)  is  usually  wri;en  as  Fm-­‐3m,  but    some  soYware  or  databases  may  use  the  nota8on  Fm3-­‐m  or  Fm3m  instead.  

•  The  safest  way  to  unambiguously  describe  the  space  group  se=ng  is  to  explicitly  include  the  symmetry  opera8ons  in  the  CIF  file,  in  addi8on  to  the  space  group  symbol  or  number.  

3

Page 49: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 49

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Crystal  structure  data:  possible  piWalls  •  Crystallographic  soYware  differs  in  how  a  space  group  is  recognized  from  the  data  given  in  a  CIF  file.  

•  Always  check  your  crystal  structures  for  plausibility  aYer  import.  Erroneous  interpreta8on  of  crystal  structures  by  the  soYware  will  lead  to  wrong  intensity  distribu8ons.  

•  In  the  worst  case,  you  may  have  to  find  out  the  correct  se=ng  by  trial  and  error.  

•  Some8mes,  soYware  may  be  offended  by  some  forma=ng  of  the  CIF  file  (e.g.  non-­‐integer  oxida8on  states).  In  this  case,  you  may  have  to  edit  the  CIF  file  accordingly.  

•  Another  possible  source  of  error  can  be  the  end-­‐of-­‐line  character  problem  between  unix/linux  and  windows  systems.    →  demonstra8on  

Page 50: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 50

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Some  commonly  used  Rietveld  so3ware  (non-­‐exhaus-ve  list):  •  Fullprof:  freely  available  •  GSAS:  freely  available  •  RIETAN:  freely  available  •  TOPAS  (Bruker  AXS)  and  TOPAS  Academic:  commercial,  differ  in  license  fee  and  user  interface  

•  HighScore  Plus  (Panaly8cal):  commercial,  contains  func8onality  of  HighScore  with  addi8onal  Rietveld  capabili8es  

•  DDM:  freely  available,  contains  conven8onal  Rietveld  approach  in  addi8on  to  the  Difference  Deriva8ve  Minimiza8on.  

Page 51: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 51

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Peak  profiles  •  The  peak  shapes  of  diffrac8on  pa;ern  result  from  a  convolu8on  of  instrumental  and  sample  contribu8ons.  

•  For  microstructural  analysis,  the  instrument  contribu8on  must  be  separated  from  the  sample  contribu8on  (not  trivial,  various  approaches).  

•  Instrumental  profiles  may  be  determined  experimentally  (using  reference  samples  with  negligible  sample  related  peak  broadening),  or  be  calculated  from  known  instrument  geometries  (e.g.  Fundamental  Parameters  Approach,  ray  tracing  methods).  

•  Note  that  peak  asymmetries  from  the  instrumental  profile  will  cause  shiYs  in  the  peak  posi8ons.  Thus,  this  effect  needs  to  be  accounted  for  to  get  reliable  la=ce  parameters.    

•  For  Rietveld  refinement  in  the  strict  sense,  empirical  peak  shape  func8ons  are  commonly  used.  

Page 52: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 52

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Peak  profiles  Commonly  used  peak  profile  func8ons  are:  •  Gaussian  •  Lorentzian  •  Voigt  (a  convolu8on  of  a  Gaussian  and  a  Lorentzian  contribu8on)  •  pseudo-­‐Voigt  (a  linear  combina8on  of  a  Gaussian  and  a  Lorentzian  func8on;  approaches  the  Voigt  func8on  very  well)  

•  Pearson  VII  (popular  during  the  1980s  and  1990s,  now  superceded  in  popularity  by  the  pseudo-­‐Voigt)  

 Note:  All  above  listed  func8ons  are  symmetric.  Some8mes,  asymmetric  versions  (so-­‐called  "split"  func8ons)  are  used  to  model  peak  asymmetry.  Split  func8ons  have  separate  width  an  shape  parameters  for  the  parts  leY  and  right  of  the  maximum.  

Page 53: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 53

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Peak  profiles  Voigt  func8ons  with  different  Gaussian  and  Lorentzian  contribu8ons:  black:  pure  Gaussian  red:  pure  Lorentzian                The  Gaussian  has  a  narrower  base  and  more  rounded  8p,  while  the  Lorentzian  has  a  more  pointed  8p  and  much  more  extending  "feet".  

Page 54: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 54

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Correla-on  of  peak  profiles  •  In  order  to  reduce  the  number  of  refined  parameters  and  to  be;er  resolve  peak  overlap,  the  width/shape  parameters  of  peaks  belonging  to  a  phase  are  usually  correlated  in  WPPF  via  a  func8on  with  refinable  coefficients.  

•  The  most  common  way  is  to  describe  the  peak  shapes  as  func8ons  of  the  diffrac8on  angle  θ.  

•  Depending  on  the  profile  fi=ng  approach  implemented,  the  refined  angular  dependence  will  be  either  that  of  the  total  profile,  or  the  sample  contribu8on  to  the  profile.  

•  In  X-­‐ray  diffrac8on,  the  peaks  usually  get  broader  with  increasing  angle.  •  If  the  peak  widths  are  more  properly  described  as  a  func8on  of  the  Miller  indices  hkl  rather  than  the  angle  θ  (so-­‐called  anisotropic  peak  broadening),  then  the  microstructural  parameters  vary  with  the  direc8on  in  the  crystallites.  

Page 55: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 55

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Correla-on  of  peak  profiles  Commonly  used  correla8on  func8ons  are:  •  The  Caglio=  formula  ΓG2  =  U  tan2(θ)  +  V  tan(θ)  +  W  was  introduced  for  fi=ng  neutron  diffrac8on  data  (pure  Gaussian  profiles).  

•  The  Thompson-­‐Cox-­‐Has8ngs  formula  is  an  extension  of  the  Caglio=  formula  to  account  for  the  different  profile  behavior  in  synchrotron  XRD  with  pseudo-­‐Voigt  profiles:  ΓG2  =  U  tan2(θ)  +  V  tan(θ)  +  W  +  P/cos(θ)  ΓL  =  X/cos(θ)  +  Y  tan(θ)  

•  In  the  Double-­‐Voigt  approach,  a  Voigt  func8on  with  1/cos(θ)  dependence  (represen8ng  crystallite  size  broadening)  is  convoluted  with  a  tan(θ)  dependent  Voigt  func8on  (strain  broadening)  for  the  sample  related  peak  broadening,  while  the  instrumental  contribu8on  can  be  represented  by    the  Fundamental  Parameters  Approach  (convolu8onal  fi=ng).    

Page 56: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 56

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Peak  posi-on  correc-ons  Common  correc8ons  for  peak  posi8ons  include  •  Zero  error  or  zero  shi+:  offset  in  the  defini8on  of  the  2θ  scale  of  the  diffractometer;  all  peaks  are  shiYed  by  a  constant  value  (i.e.  θ  independent).  

•  Sample  displacement  or  height  error:  sample  is  posi8oned  off  the  diffractometer  center;  peak  shiYs  are  a  func8on  of  cos(θ).  

•  Specimen  transparency:  incident  beam  penetrates  into  deeper  layers  of  the  sample  (diffracted  beam,  on  average,  will  come  from  a  lower  height);  indis8nguishable  from  a  real  sample  displacement,  thus  not  handled  separately.  

•  Correc8ons  connected  with  instrumental  peak  asymmetry  (usually  handled  by  the  soYware).  

Page 57: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 57

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

X-ray tube

detector

sample holder with sample

sample  displacement    

specimen  transparency    

Page 58: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 58

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Peak  posi-on  correc-ons  •  In  WPPF,  you  usually  need  to  refine  a  peak  posi8on  correc8on  parameter.  •  However,  the  effects  of  zero  shi+  and  sample  displacement  are  so  similar  that  you  should  never  refine  both  parameters  together!  

•  You  need  to  decide  which  of  the  two  parameters  you  want  to  refine.  •  In  reality,  probably  both  will  affect  your  peak  posi8ons.  •  However,  as  both  are  very  similar,  the  choice  between  one  or  the  other  will  have  very  li;le  impact  on  your  results.  

•  Personally,  I  chose  displacement  for  reflec8on  (Bragg-­‐Brentano)  and  zero  shi+  for  transmission  geometry.  

Page 59: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 59

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Intensity  devia-ons  Some8mes,  the  calculated  rela8ve  intensi8es  of  a  phase  do  not  match  the  observed  intensi8es.  Possible  reasons  can  be:  •  Incorrect  crystal  structure  model  (se=ng  and  origin  choice,  handling  of  special  posi8ons)  →  calculated  intensi8es  are  wrong.  

•  Bad  sampling  sta8s8cs  due  to  very  large  (thus  comparably  few)  crystallites      →  peaks  are  extremely  sharp.  

•  Preferred  orienta:on  effects  →  crystallites  have  strongly  anisotropic  shape  (platelets,  needles);  intensity  devia8ons  are  func8on  of  hkl;  direc8on  of  effect  will  be  reversed  for  change  between  reflec8on  and  transmission  geometry.  

Page 60: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 60

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

2Theta20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.00

500

1000

1500

2000

2500

3000

3500

4000

4500

5000Ab

solu

te In

tens

ity

Example  for  very  bad  sta8s8cs  (few,  very  large  crystallites)  

Page 61: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 61

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Preferred  orienta-on  effect  •  One  of  the  basic  assump8ons  of  powder  diffrac8on  is  that  you  have  a  very  large  number  of  crystallites  in  random  orienta8on.  

•  Random  orienta8on  means  that  all  possible  orienta8ons  of  crystallites  within  the  sample  occur  with  the  same  probability.    

•  Thus,  for  any  possible  orienta8on  of  the  sample  rela8ve  to  the  primary  beam  and  the  detector,  a  sufficiently  large  and  representa8ve  frac8on  of  crystallites  would  be  in  the  correct  orienta8on  to  fulfill  the  Bragg  equa8on.  [Note  that  this  implies  that  every  observed  reflec8on  in  a  powder  pa;ern  (except  higher  orders)  results  from  a  different  sub-­‐set  of  crystallites  in  your  sample!]  

•  If  anisotropic  crystallite  shapes  are  combined  with  a  direc8ng  mechanical  force  (sample  prepara8on),  then  some  crystallite  orienta8ons  will  occur  more  oYen  that  others  →  assump8on  of  random  orienta8on  of  crystallites  in  the  powder  is  not  valid  anymore.  

Page 62: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 62

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Preferred  orienta-on  effect  

Transmission  geometry:  

Reflec8on  geometry:  

Page 63: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 63

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Preferred  orienta-on  effect  •  In  the  case  of  a  preferred  orienta8on  effect,  some  reflec8ons  will  be  stronger,  and  some  weaker  than  calculated.  

•  OYen,  you  may  no8ce  that  there  is  a  trend  with  the  Miller  indices  hkl:  try  to  check  if  the  effect  is  most  pronounced  for  certain  families  of  low-­‐index  reflec8ons,  like  h00,  0k0,  00l,  hk0  etc.  

•  If  you  suspect  preferred  orienta8on,  you  may  want  to  check  this  hypothesis  against  independent  evidence:  -­‐  Crystal  morphology  from  electron  microscopy  -­‐  Typical  crystal  habit  or  cleavage  from  literature,  especially  for  minerals  -­‐  The  crystal  structure  itself  (maybe  2D  structure,  e.g.  MoO3?)  -­‐  Second  XRD  measurement  with  alternate  measurement  geometry  -­‐  Second  XRD  measurement  with  different  sample  prepara8on  

Page 64: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 64

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Preferred  orienta-on  effect  •  Most  Rietveld  programs  contain  one  or  more  op8ons  for  the  modeling  of  preferred  orienta8on.  

•  The  most  popular  is  the  March-­‐Dollase  model.    •  It  requires  that  you  explicitly  chose  the  crystal  direc8on  of  the  preferred  orienta8on  and  refines  a  parameter  represen8ng  the  magnitude  of  this  effect.  

•  Chose  a  direc8on  which  either  seems  to  be  most  enhanced  or  suppressed  in  your  pa;ern,  or  base  your  choice  on  independent  evidence  as  listed  above.  

•  Note  that  higher  order  reflec8ons  (e.g.  001,  002,  003)  represent  the  same  direc8on  in  the  crystal.  Thus,  if  e.g.  the  002  reflec8on  is  most  pronounced  and  your  crystal  structure  does  not  allow  the  presence  of  a  001  reflec8on  due  to  the  systema8c  absences  of  its  space  group,  the  direc-on  is  s8ll  called  001.  

Page 65: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 65

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Preferred  orienta-on  effect  •  Another  popular  approach  is  the  refinement  of  a  spherical  harmonics  func8on.  •  You  may  chose  the  "order"  of  the  func8on,  which  is  an  even  integer  number.    •  The  higher  the  order,  the  more  flexible  the  model  (higher  number  of  refined  parameters).    

•  Note  that  the  actual  number  of  variables  also  depends  on  the  crystal  symmetry  (higher  symmetry  =  fever  variables).  

•  Advantage  and  disadvantage  in  comparison  to  March-­‐Dollase:  -­‐  higher  number  of  refinable  parameters  -­‐  model  free  (you  do  not  need  to  chose  the  preferred  direc8on,  but  you  also        will  learn  less  about  it).  

•  Depending  on  how  your  Rietveld  soYware  handles  it,  you  may  run  into  physically  unreasonable  results  (nega8ve  intensi8es)!  

Page 66: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 66

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Preferred  orienta-on  effect  •  The  preferred  orienta8on  effect  modulates  the  intensi-es  (i.e.  areas)  of  the  peaks  as  a  func8on  of  hkl.    

•  Thus,  you  may  some8mes  be  mislead  by  anisotropic  peak  broadening,  which  modulates  the  widths  of  the  peaks  as  a  func8on  of  hkl.  

•  If  the  areas  of  the  peaks  stay  constant  but  their  widths  vary,  then  their  heights  will  vary,  too.  

•  Thus,  you  should  check  if  the  observed  mismatch  is  really  caused  by  the  peak  areas,  or  maybe  by  their  widths.  →  Try  switching  from  a  Rietveld  fit  to  a  structure-­‐less  (Pawley  or  Le  Bail)  fit.  If  there  is  s8ll  a  profile  mismatch,  although  you  allowed  the  intensi8es  to  be  refined,  then  you  have  a  problem  with  the  peak  widths  or  profiles.  

Page 67: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 67

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Other  effects  influencing  peak  intensi-es  •  There  are  several  other  effects  which  may  distort  the  rela8ve  intensi8es,  usually  as  a  func8on  of  2θ:  -­‐  details  of  the  instrument  geometry  -­‐  beam  spill  (beam  cross-­‐sec8on  at  low  angles  is  larger  than  sample  area)  -­‐  surface  roughness  etc.  

•  These  effects  are  to  numerous  to  be  detailed  here,  please  refer  to  you  Rietveld  soYware  manual  to  see  what  op8onal  correc8ons  may  be  implemented.  

•  The  corresponding  correc8ons  are  usually  global,  i.e.  the  intensi8es  of  all  phases  in  a  mixture  will  be  affected  the  same  way.  

•  If  you  decide  to  use  one  of  these  intensity  correc8on  op8ons  because  it  improves  the  fit,  you  should  s8ll  consider  whether  this  choice  is  physically  reasonable:  For  example,  a  surface  roughness  correc8on  may  be  reasonable  if  your  sample  is  coarse  grained  or  highly  absorbing,  but  not  if  your  sample  has  a  low  absorp8on,  very  fine  grain  size  and  was  carefully  prepared.  

Page 68: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 68

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Peak  broadening  •  Peak  broadening  may  be  sample  or  instrument  related,  symmetric  or  asymmetric.  

Page 69: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 69

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Asymmetric  peak  broadening  •  Peaks  at  lower  angles  are  usually  asymmetrically  broadened  towards  the  leY,  which  is  an  instrumental  effect  caused  by  axial  beam  divergence.  

•  Axial  divergence  can  be  reduced  by  using  axial  sollers  (on  the  tube  and/or  detector  side).  

•  Theore8cally,  asymmetric  broadening  on  the  right  flank  would  occur  for  peaks  at  very  high  angles  (approaching  180°  2θ),  while  peaks  around  90°  2θ  should  be  symmetric.  

•  If  the  measurement  was  done  with  Kα1+2  radia8on,  the  peaks  may  look  increasingly  asymmetric  (shoulder  on  the  right)  for  increasing  angle    (depends  on  the  rela8on  between  peak  width  and  angle).  

Page 70: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 70

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Asymmetric  peak  broadening  •  Asymmetries  which  cannot  be  explained  as  above  may  be  sample  related.  •  If  the  asymmetry  affects  all  peaks  of  a  phase  and  increases  with  the  diffrac8on  angle,  then  it  may  be  caused  by  inhomogeneity  of  that  phase.    

•  For  example,  the  d-­‐spacings/la=ce  parameters  may  have  a  non-­‐symmetric  distribu8on  (in  contrast  to  microstrain,  which  is  symmetric)  due  to  chemical  varia8on  between  different  crystallites,  or  even  within  crystallites  (chemical  gradient).  

•  You  should  consider  whether  chemical  varia8on  is  likely  for  your  type  of  phase  (solid  solu8on,  doping,  variable  stoichiometry).  

•  A  plausibility  test  may  be  made  by  inser8ng  the  same  phase  a  second  8me  into  the  (preferably  Rietveld-­‐)  refinement  with  slightly  different  star8ng  parameters.  If  the  fit  looks  significantly  be;er,  this  may  be  taken  as  evidence  suppor8ng  the  inhomogeneity  hypothesis.  

Page 71: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 71

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Asymmetric  peak  broadening  •  If  only  some  peaks  are  affected,  maybe  even  in  different  direc8ons,  the  reason  could  be  a  symmetry  reduc8on  of  your  crystal  structure.  →  Try  to  fit  with  structurally  closely  related,  lower  symmetry  version  of  the  crystal  structure  you  are  currently  using  (i.e.  t-­‐ZrO2  instead  of  c-­‐ZrO2,  MoO2  type  instead  of  ru8le  type).  

•  If  only  few  peaks  are  affected,  it  might  be  that  an  unrecognized  impurity  phase  accidentally  overlaps  with  the  main  phase  peaks.  →  Try  find  a  reference  phase  which  has  its  main  peaks  in  the  posi8ons  of  the  apparent  "shoulders"  of  your  main  phase  peaks.  

Page 72: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 72

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Symmetric  peak  broadening  /  microstructure  •  Symmetric,  sample  related  peak  broadening  is  usually  caused  by  the  microstructural  proper8es  crystallite  size  and  microstrain  (short:  size  &  strain).  

•  Size  broadening  has  been  recognized  and  described  by  Paul  Scherrer  almost  a  century  ago  (1918).  →  Scherrer  equa8on.  

•  Smaller  crystallites  yield  broader  reflec8ons.  •  XRD  is  a  volume  effect,  hence  crystallite  sizes  determined  from  XRD  peak  broadening  ale  volume  weighted  averages.  

•  Size  broadening  can  be  best  analyzed  in  the  range  of  roughly  10  -­‐  1000  Å.  For  larger  sizes,  the  effect  becomes  comparable  to  instrumental  broadening.  For  smaller  sizes,  the  peaks  become  so  indis8nct  that  they  merge  with  the  background.  

Page 73: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 73

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Symmetric  peak  broadening  /  microstructure  •  With  XRD,  you  get  either  crystallite  or  domain  sizes,  but  not  par8cle  sizes!  •  If  you  do  not  know  the  exact  microstructure  of  your  material,  you  will  not  know  whether  it  is  crystallite  or  domain  size.  Hence,  both  terms  are  mostly  used  synonymously.    

•  A  very  precise  term  would  be  "size  of  the  coherently  diffrac8ng  domain".    

Page 74: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 74

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Symmetric  peak  broadening  /  microstructure  

par8cle   crystal   crystallite   domain  ≥   ≥   ≥  

[  illustra8on  taken  from  TOPAS  Users  Manual,  Bruker  AXS  ]  

Page 75: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 75

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Symmetric  peak  broadening  /  microstructure  •  Many  people  s8ll  use  the  Scherrer  formula  to  extract  size  informa8on  from  the  width  of  a  single  diffrac8on  peak.    This  is  not  state  of  the  art  and  not  recommended!  

 My  favorite  quote  from  the  Rietveld  mailing  list  ([email protected])  Ma;eo  Leoni  (in  reply  to  a  newbie  ques8on  concerning  how  to  chose  a  peak  for  Scherrer  analysis):  "I  think  you  can  use  the  same  criterion  you  use  to  select  numbers  to  play  bingo.    As  (I  hope!)    you  are  going  to  use  Scherrer  formula  on  one  peak  just  to  get  a  number  (and  not  to  get  any  physically  meaningful  informa8on),  just  select  the  most  isolated,  most  intense  one.  At  least  you  play  with  a  be;er  sta8s8cs..."  

Page 76: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 76

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Symmetric  peak  broadening  /  microstructure  •  Scherrer  realized  that  the  peak  broadening  from  XRD  yields  only  "apparent"  crystallite  sizes,  which  need  to  be  converted  by  means  of  a  shape  factor  if  "true"  crystallite  sizes  should  be  obtained:    D  =  K  λ  /  {FWHM  cos(θ)}    D:  crystallite/domain  size    K:  shape  factor  (close  to  unity,  on  average  around  0.9)  

 •  Shape  factors  have  been  calculated  for  several  regular  geometries  (sphere,  cube,  octahedron,  tetrahedron).  

•  The  differ  even  for  different  miller  indices  (except  for  spheres).  

Page 77: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 77

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Symmetric  peak  broadening  /  microstructure  •  Most  people  don't  know  (or  care  about?)  their  crystallite  shapes,  so  they  use  something  like  an  "overall  average"  shape  factor.  

•  In  most  cases,  the  details  of  the  Scherrer  analysis  are  not  reported.  →  Different  people  would  get  different  results  from  the  same  data  set!  

•  What  is  the  point  of  using  a  shape  factor  to  convert  an  apparent  into  a  "true"  size,  if  the  true  shape  is  not  known???  

•  Even  if  done  correctly,  the  Scherrer  approach  will  only  result  in  reasonable  values  if  no  other  sources  of  peak  broadening  (instrumental,  strain  etc.)  are  present.  

•  You  should  be;er:  1)  Use  WPPF  instead  of  single  peak  analysis  2)  Use  integral  breadth  instead  of  FWHM  3)  Report  apparent  instead  of  "true"  crystallite  sizes  (e.g.  LVol-­‐IB)  4)  Consider  instrumental  broadening  and  the  possibility  of  strain  

Page 78: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 78

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Symmetric  peak  broadening  /  microstructure  •  LVol-­‐IB  is  a  measure  for  crystallize  size  which  can  be  calculated  directly  from  WPPF  without  using  a  shape  factor:  LVol-­‐IB  =  λ  /  {IB  cos(θ)}  IB:  Integral  Breadth  

•  "L"  stands  for  a  length  (or  height)  of  a  column  of  stacked  unit  cells,  while  the  index  "Vol"  points  at  the  fact  that  the  value  represents  a  volume  weighted  mean.  

[  illustra8on  taken  from  TOPAS  Users  Manual,  Bruker  AXS  ]  

Page 79: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 79

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Symmetric  peak  broadening  /  microstructure  •  Microstrain  means  that  not  all  d-­‐spacings  in  a  crystallite  are  exactly  equal,  but  show  a  certain  distribu8on.  

•  This  can  be  envisioned  as  local,  sta8c  displacements  of  atoms  out  of  their  ideal  average  posi8on.  

•  Both  compression  and  expansion  of  la=ce  planes  from  the  op8mum  distance  consume  energy.  As  both  forces  need  to  be  in  balance,  the  distribu8on  is  symmetric,  i.e.  the  peak  is  broadened,  but  not  shiYed.  

•  Stokes  and  Wilson  (1944)  described  strain  broadening  as  follows:  ε0  =  IB  /  {4  tan(θ)}  

•  The  different  angular  dependence  of  the  broadening  can  be  used  to  separate  size  and  strain  effects  (size  broadening  propor8onal  to  1/cos(θ),  strain  broadening  propor8onal  to  tan(θ))  

Page 80: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 80

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Symmetric  peak  broadening  /  microstructure  •  In  the  Williamson-­‐Hall  analysis,  the  widths  of  all  peaks  of  a  phase  (corrected  for  instrumental  broadening)  are  extracted  separately  (uncorrelated,  i.e.  single  peak  fit).  

•  The  term  widthcorr.  cos(θ)  (in  radians)  is  plo;ed  on  the  y-­‐axis,  while  4  sin(θ)  is  plo;ed  on  the  x-­‐axis  for  all  reflec8ons.  

•  If  size  and  strain  are  isotropic  (independent  of  the  direc8on  in  the  crystallite),  then  the  data  points  should  fall  on  a  straight  line.  

•  The  slope  of  the  line  represents  the  microstain,  while  the  y-­‐axis  intercept  at    4  sin(θ)  =  0  represents  the  crystallite  size.  

•  As  the  Williamson-­‐Hall  approach  requires  extrac8on  of  single  peak  widths,  it  will  work  properly  only  in  absence  of  significant  peak  overlap.  

Page 81: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 81

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Symmetric  peak  broadening  /  microstructure  •  The  Double-­‐Voigt  approach  (Balzar,  1992)  uses  two  convoluted  Voigt  func8ons  to  describe  the  sample  related  peak  broadening  of  a  phase  over  the  whole  angular  range.  

•  The  width  of  one  Voigt  func8on  is  propor8onal  to  1/cos(θ),  while  the  other  is  propor8onal  to  tan(θ).  

•  Thus,  the  peak  width  correla8on  used  in  this  WPPF  approach  can  be  interpreted  as  implying  that  a  perfect  isotropic  Williamson-­‐Hall  type  correla8on  exists.  

•  This  way,  the  problems  of  separa8ng  overlapping  peaks  is  overcome.  •  If  the  fit  yielded  by  this  method  is  good,  we  may  assume  a  Williamson-­‐Hall  type  correla8on  and  thus  directly  extract  size  and  strain  from  the  fit.  

Page 82: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 82

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Symmetric  peak  broadening  /  microstructure  •  If  the  Double-­‐Voigt  fit  is  not  good,  then  we  have  probably  a  case  of  anisotropic  peak  broadening.  

•  Anisotropic  peak  broadening  means  that  the  distribu8on  of  peak  widths  follows  not  so  much  the  diffrac8on  angle  but  depends  more  on  the  direc8on  in  the  crystallite.  

•  As  size  and  strain  are  separated  based  on  their  angular  dependence,  the  anisotropic  case  leaves  us  with  a  phenomenological  fit  of  the  pa;ern  (no  extrac8on  of  size  and  strain).  

•  In  reality,  the  peak  widths  will  probably  depend  on  both  θ  and  hkl  with  varying  weight.  

•  However,  the  simultaneous  refinement  of  a  θ  and  hkl  dependence  is  usually  not  recommended  because  of  the  risk  of  overfi=ng.  →  In  an  intermediate  case,  you  need  to  decide  which  model  suits  your  case  be;er.  

Page 83: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 83

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Symmetric  peak  broadening  /  microstructure  •  If  you  fit  anisotropic  peak  broadening  with  an  isotropic  model,  the  misfit  will  usually  leave  characteris8c  symmetric  signatures  in  the  residual  (difference  between  measured  and  calculated  data).  

•  Because  the  misfit  is  symmetric,  you  may  s8ll  extract  reasonable  la=ce  parameters  (peak  posi8ons  not  affected,  only  error  bars  slightly  increased).  

•  The  physical  reason  for  anisotropic  size  broadening  lies  in  anisotropic  crystallite  shapes  with  high  aspect  ra8os.  Thus,  it  may  occur  together  with  preferred  orienta8on.  

Page 84: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 84

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

45444342414039383736353433323130292827262524232221201918171615

26,000

25,000

24,000

23,000

22,000

21,000

20,000

19,000

18,000

17,000

16,000

15,000

14,000

13,000

12,000

11,000

10,000

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0

-1,000

m-TaON_ICSD-1032 100.00 %

monoclinic  TaON  with  isotropic  peak  broadening  

Page 85: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 85

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

45444342414039383736353433323130292827262524232221201918171615

13,50013,00012,50012,00011,50011,00010,50010,0009,5009,0008,5008,0007,5007,0006,5006,0005,5005,0004,5004,0003,5003,0002,5002,0001,5001,000

5000

-500-1,000-1,500-2,000-2,500-3,000-3,500-4,000-4,500

m-TaON_ICSD-1032 100.00 %

monoclinic  TaON  with  anisotropic  peak  broadening,  isotropic  fit  

Page 86: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 86

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

45444342414039383736353433323130292827262524232221201918171615

13,500

13,000

12,50012,000

11,500

11,000

10,500

10,0009,500

9,000

8,500

8,0007,500

7,000

6,500

6,0005,500

5,000

4,500

4,0003,500

3,000

2,500

2,0001,500

1,000

500

0

-500

m-TaON_ICSD-1032 100.00 %

monoclinic  TaON  with  anisotropic  peak  broadening,  anisotropic  fit  

Page 87: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 87

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Symmetric  peak  broadening  /  microstructure  •  Many  people  compare  their  XRD  crystallite  sizes  with  electron  microscopy  results.  

•  It  should  be  emphasized  that  this  is  by  no  means  straight  forward!  •  XRD  is  an  integral  method,  EM  is  local.  •  Even  if  the  EM  operator  is  measuring  a  large  number  of  crystallites  to  obtain  a  histogram  (size  distribu8on),  you  may  see  two  different  things  (like  e.g.  crystallite  vs.  domain  sizes).  

•  A  size  distribu8on  from  EM  can  be  used  to  produce  various  mean  values,  while  XRD  will  always  yield  the  volume  weighted  mean.  →  Request  specifically  the  volume  weighted  mean  size  from  your  electron  microscopist!  

Page 88: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 88

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Symmetric  peak  broadening  /  microstructure  

[  illustra8on  taken  from  TOPAS  Users  Manual,  Bruker  AXS  ]  

Page 89: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 89

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

Structure  refinement  (Rietveld  refinement  in  the  original  sense)  This  topic  is  too  complex  to  be  covered  here  in  detail.    Some  brief  general  guidelines  would  be:  •  Refinement  of  (individual)  thermal  displacement  parameters  ("temperature  factors")  or  hydrogen  posi8ons  from  powder  XRD  is  very  tricky  and  should  be  leY  to  the  experts.  Beware  if  you  come  across  publica8ons  in  which  this  seems  rou8ne.  

•  Temperature  factors  are  something  like  a  waste  bin  in  which  many  kinds  of  ar8facts  may  accumulate.  

•  Thermal  parameters  and  site  occupancy  factors  correlate  strongly  with  each  other.  →  Don't  refine  them  together  without  reasonable  restrains.  

•  Judge  the  quality  of  a  fit  not  by  R  values,  but  by  the  look  of  the  fit  (e.g.  the  shape  of  the  residual)  and  the  plausibility  of  the  resul8ng  structure  (reasonable  bond  distances,  small  e.s.d.s  (es8mated  standard  devia8ons).  

Page 90: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 90

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

R  values  in  Rietveld  refinement  •  In  single  crystal  structure  refinement  R  values  provide  a  rela8vely  sound  basis  to  judge  the  quality  of  a  refined  crystal  structure  model  on  an  objec8ve  scale.  

•  In  Rietveld  refinement,  this  is  not  the  case.  •  Originally,  R  factors  were  defined  for  refinements  in  which  the  background  had  been  subtracted  previously.  

•  Nowadays,  the  background  is  usually  not  subtracted,  but  refined  with  the  other  parameters  (less  bias).  →  Two  kinds  of  R  values,  including  or  excluding  the  contribu8on  of  the  background.  

•  If  you  have  a  measurement  with  a  high  background  and  small  diffrac8on  peaks  on  top,  than  you  can  get  excellent  R  factors  with  a  lousy  structure  model,  as  long  as  you  fit  your  background  properly.  

•  On  the  other  hand,  a  perfect  structure  model  may  give  bad  R  values  if  you  e.g.  cannot  fit  the  peak  profiles  perfectly.  

Page 91: Phase Analysis and Structure Refinement – A Tutorial Part 1: Phase

Dr. Frank Girgsdies, Nanostructures Group, Dept. of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 91

Powder X-ray Diffraction: Phase Analysis and Pattern Fitting

Pa;ern  Fi=ng  

R  values  in  Rietveld  refinement  •  There  are  no  good  or  bad  R  values  in  Rietveld  refinement  on  an  absolute  scale.  •  However,  the  R  values  have  a  meaning  for  a  given  measurement  (be;er  R  value,  be;er  fit).  

•  Many  Rietveld  programs  will  report  an  Rexp  value.  This  is  an  es8mate  by  the  soYware  how  good  an  ideal  fit  would  be  if  only  the  experimental  noise  was  leY  as  residual.  

•  Another  op8on  is  to  switch  from  a  Rietveld  to  a  Pawley  or  Le  Bail  fit  with  otherwise  the  same  set  of  parameters.  The  R  value  you  obtain  then  is  the  op8mum  you  could  theore8cally  reach  with  a  perfect  Rietveld  fit.  

•  Suggested  reading:  Brian  H.  Toby:  "R  factors  in  Rietveld  analysis:  How  good  is  good  enough?"  Powder  Diffrac8on  21(1),  2006,  67-­‐70.