21
Physics 42200 Waves & Oscillations Spring 2013 Semester Matthew Jones Lecture 32 – Geometric Optics

Physics 42200 Waves & Oscillationsphysics.purdue.edu/~jones105/phys42200_Spring2013/... · Physics 42200 Waves & Oscillations ... focal point – For a thin lens, ... Second focal

Embed Size (px)

Citation preview

Page 1: Physics 42200 Waves & Oscillationsphysics.purdue.edu/~jones105/phys42200_Spring2013/... · Physics 42200 Waves & Oscillations ... focal point – For a thin lens, ... Second focal

Physics 42200

Waves & Oscillations

Spring 2013 SemesterMatthew Jones

Lecture 32 – Geometric Optics

Page 2: Physics 42200 Waves & Oscillationsphysics.purdue.edu/~jones105/phys42200_Spring2013/... · Physics 42200 Waves & Oscillations ... focal point – For a thin lens, ... Second focal

Thin Lens Equation

Add these equations and simplify using �� � 1 and � → 0:

1

�1

��� �� 1

1

�� 1

��

(Thin lens equation)

First surface:��

����

������ ��

��Second surface:

��

��� ���

������ ��

��

Page 3: Physics 42200 Waves & Oscillationsphysics.purdue.edu/~jones105/phys42200_Spring2013/... · Physics 42200 Waves & Oscillations ... focal point – For a thin lens, ... Second focal

Thick Lenses

• Eliminate the intermediate image distance, ���

• Focal points:

– Rays passing through the focal point are refracted parallel

to the optical axis by both surfaces of the lens

– Rays parallel to the optical axis are refracted through the

focal point

– For a thin lens, we can draw the point where refraction

occurs in a common plane

– For a thick lens, refraction for the two types of rays can

occur at different planes

Page 4: Physics 42200 Waves & Oscillationsphysics.purdue.edu/~jones105/phys42200_Spring2013/... · Physics 42200 Waves & Oscillations ... focal point – For a thin lens, ... Second focal

First focal point (f.f.l.)

Second focal point (b.f.l.)

Primary principal plane

Secondary principal plane

First principal point

Second principal point

Thick Lens: definitions

Nodal points

If media on both sides

has the same n, then:

N1=H1 and N2=H2

Fo Fi H1 H2 N1 N2 - cardinal points

Page 5: Physics 42200 Waves & Oscillationsphysics.purdue.edu/~jones105/phys42200_Spring2013/... · Physics 42200 Waves & Oscillations ... focal point – For a thin lens, ... Second focal

Thick Lens: Principal Planes

Principal planes can lie outside the lens:

Page 6: Physics 42200 Waves & Oscillationsphysics.purdue.edu/~jones105/phys42200_Spring2013/... · Physics 42200 Waves & Oscillations ... focal point – For a thin lens, ... Second focal

Thick Lens: equations

fss io

111 =+

Note: in air (n=1)

2fxx io = effective

focal length:( ) ( )

−+−−=2121

1111

1

RRn

dn

RRn

f l

lll

( )2

1

1

Rn

dnfh

l

ll −−= ( )1

2

1

Rn

dnfh

l

ll −−=Principal planes:

o

i

o

i

o

iT x

f

f

x

s

s

y

yM −=−=−=≡Magnification:

Page 7: Physics 42200 Waves & Oscillationsphysics.purdue.edu/~jones105/phys42200_Spring2013/... · Physics 42200 Waves & Oscillations ... focal point – For a thin lens, ... Second focal

Thick Lens Calculations

1. Calculate focal length1

�� � 1

1

�� 1

��

� 1 �

�����

2. Calculate positions of principal planes

ℎ� � � � 1 �

���

ℎ� � � � 1 �

���

3. Calculate object distance, �, measured from principal plane

4. Calculate image distance:1

�1

���1

5. Calculate magnification, �� � ��/�

Page 8: Physics 42200 Waves & Oscillationsphysics.purdue.edu/~jones105/phys42200_Spring2013/... · Physics 42200 Waves & Oscillations ... focal point – For a thin lens, ... Second focal

Thick Lens: exampleFind the image distance for an object positioned 30 cm from the

vertex of a double convex lens having radii 20 cm and 40 cm, a

thickness of 1 cm and nl=1.5

cm 30.22cm22.0cm30 =+=os

so si

30 cm

fss io

111 =+

( ) ( )cm

1

40205.1

15.0

40

1

20

15.0

1111

1

2121

⋅⋅⋅+

−−=

−+−−=RRn

dn

RRn

f l

lll

cm 8.26=f

cm22.0cm5.140

15.08.261 =

⋅−⋅⋅−=h

f

cm44.0cm5.120

15.08.262 −=

⋅⋅⋅−=h

f

cm8.26

11

cm22.30

1 =+is

cm 238=is

Page 9: Physics 42200 Waves & Oscillationsphysics.purdue.edu/~jones105/phys42200_Spring2013/... · Physics 42200 Waves & Oscillations ... focal point – For a thin lens, ... Second focal

Compound Thick Lens

Can use two principal points (planes) and effective focal length f

to describe propagation of rays through any compound system

Note: any ray passing through the first principal plane will emerge

at the same height at the second principal plane

For 2 lenses (above):

2121

111

ff

d

fff−+=

1222

2111

ffdHH

ffdHH

=

=

Example: page 246

Page 10: Physics 42200 Waves & Oscillationsphysics.purdue.edu/~jones105/phys42200_Spring2013/... · Physics 42200 Waves & Oscillations ... focal point – For a thin lens, ... Second focal

Ray Tracing

• Even the thick lens equation makes approximations and

assumptions

– Spherical lens surfaces

– Paraxial approximation

– Alignment with optical axis

• The only physical concepts we applied were

– Snell’s law: �� sin �� � �� sin ��

– Law of reflection: �� � �� (in the case of mirrors)

• Can we do better? Can we solve for the paths of the rays

exactly?

– Sure, no problem! But it is a lot of work.

– Computers are good at doing lots of work (without complaining)

Page 11: Physics 42200 Waves & Oscillationsphysics.purdue.edu/~jones105/phys42200_Spring2013/... · Physics 42200 Waves & Oscillations ... focal point – For a thin lens, ... Second focal

Ray Tracing

• We will still make the assumptions of

– Paraxial rays

– Lenses aligned along optical axis

• We will make no assumptions about the lens thickness

or positions.

• Geometry:

Page 12: Physics 42200 Waves & Oscillationsphysics.purdue.edu/~jones105/phys42200_Spring2013/... · Physics 42200 Waves & Oscillations ... focal point – For a thin lens, ... Second focal

Ray Tracing

• At a given point along the optical axis, each ray can

be uniquely represented by two numbers:

– Distance from optical axis, ��

– Angle with respect to optical axis, ��

• If the ray does not encounter an optical element its

distance from the optical axis changes according to

the transfer equation:

�� � �� ����

– This assumes the paraxial approximation sin �� ≈ ��

����

��

Page 13: Physics 42200 Waves & Oscillationsphysics.purdue.edu/~jones105/phys42200_Spring2013/... · Physics 42200 Waves & Oscillations ... focal point – For a thin lens, ... Second focal

Ray Tracing

• At a given point along the optical axis, each ray can

be uniquely represented by two numbers:

– Distance from optical axis, ��

– Angle with respect to optical axis, ��

• When the ray encounters a surface of a material with

a different index of refraction, its angle will change

according to the refraction equation:������ � ������ ����

�� ���� ���

��

– Also assumes the paraxial approximation

Page 14: Physics 42200 Waves & Oscillationsphysics.purdue.edu/~jones105/phys42200_Spring2013/... · Physics 42200 Waves & Oscillations ... focal point – For a thin lens, ... Second focal

Ray Tracing

• Geometry used for the refraction equation:

sin � ���

�≈ �

�� � �� � � �� ��/�

�� � �� � � �� ��/�

���� � ����

���� ����

�� ����

����

���� � ���� �� ��

���

��

��

���

Page 15: Physics 42200 Waves & Oscillationsphysics.purdue.edu/~jones105/phys42200_Spring2013/... · Physics 42200 Waves & Oscillations ... focal point – For a thin lens, ... Second focal

Matrix Treatment: Refraction

note: paraxial approximation

At any point of space need 2 parameters to fully specify ray:

distance from axis (y) and inclination angle (α) with respect to

the optical axis. Optical element changes these ray parameters.

111111 iiitt ynn D−= αα

1 1 1 10t i i iy n yα= ⋅ +

Refraction:

yt1=yi1

=

1

111

1

11

10

1

i

ii

t

tt

y

n

y

n αα D-Equivalent matrix

representation:

Reminder:

++

DyC

ByA

yDC

BA

ααα

≡ rt1 - output ray

≡ ri1 - input ray

≡ R1 - refraction matrix111 it rRr =

Page 16: Physics 42200 Waves & Oscillationsphysics.purdue.edu/~jones105/phys42200_Spring2013/... · Physics 42200 Waves & Oscillations ... focal point – For a thin lens, ... Second focal

Matrix: Transfer Through Space

11122 0 tttii ynn ⋅+= αα

11212 tti ydy +⋅= α

=

1

11

1212

22

1

01

t

tt

ti

ii

y

n

ndy

n ααEquivalent matrix

presentation:

≡ ri2 - output ray

≡ rt1 - input ray

≡ T21 - transfer matrix

1212 ti rTr =

Transfer:

yt1

yi2

Page 17: Physics 42200 Waves & Oscillationsphysics.purdue.edu/~jones105/phys42200_Spring2013/... · Physics 42200 Waves & Oscillations ... focal point – For a thin lens, ... Second focal

112122 it rRTRr =

System Matrix

yt1yi1

yi2 yi2

ri1 rt1 ri2 rt2

R1 T21

ri3 rt3

R3T32

111 it rRr = 11211212 iti rRTrTr ==

Thick lens ray transfer:

1212 RTR=ASystem matrix:12 it rr A=

Can treat any system with single system matrix

Page 18: Physics 42200 Waves & Oscillationsphysics.purdue.edu/~jones105/phys42200_Spring2013/... · Physics 42200 Waves & Oscillations ... focal point – For a thin lens, ... Second focal

1212 RTR=A

=10

1 D-R

=1

01

ndTReminder:

++++

DdCbDcCa

BdAbBcAa

dc

ba

DC

BA

=10

1

1

01

10

1 12 D-D-

ll ndA

yt1yi1

yi2 yi2

nl

dThick Lens Matrix

+−=

l

l

l

l

l

l

l

l

n

d

n

dn

d

n

d

1

2121

2

1

1

D

DD-D-D-

D

A

system matrix of thick lens

For thin lens dl=0

=10

/11 f-A

1

�� �� 1

1

�� 1

��

Page 19: Physics 42200 Waves & Oscillationsphysics.purdue.edu/~jones105/phys42200_Spring2013/... · Physics 42200 Waves & Oscillations ... focal point – For a thin lens, ... Second focal

Thick Lens Matrix and Cardinal Points

=

+−=

2221

1211

1

2121

2

1

1

aa

aa

n

d

n

dn

d

n

d

l

l

l

l

l

l

l

l

D

DD-D-D-

D

A

i

t

o

i

f

n

f

na 21

12 −=−= in air

fa

112 −= effective focal length

( )12

11111

1

a

anHV i

−−=

( )12

22222

1

a

anHV i

−−=

Page 20: Physics 42200 Waves & Oscillationsphysics.purdue.edu/~jones105/phys42200_Spring2013/... · Physics 42200 Waves & Oscillations ... focal point – For a thin lens, ... Second focal

Matrix Treatment: example

rI

rO

OlI rTTr 21A=

=

O

OO

OOIII

II

y

n

ndaa

aa

ndy

n αα1

01

1

01

12221

1211

2

(Detailed example with thick lenses and numbers: page 250)

Page 21: Physics 42200 Waves & Oscillationsphysics.purdue.edu/~jones105/phys42200_Spring2013/... · Physics 42200 Waves & Oscillations ... focal point – For a thin lens, ... Second focal

−−=

10

/21 RnM

Mirror Matrix

=

i

i

r

r

y

n

y

n ααM

ir yy =

Rnynn iir /2−−= αα

note: R<0

Ryiir /2−−= αα