18
5 e Yvonne Verbist-Scieur Luc Nachtergaele Michel Vanderperren Emmanuel Walckiers Sciences de base 6 e Physique

Physique 5e/6e

Embed Size (px)

DESCRIPTION

manuel de physique sciences de base pour les 5e et 6e

Citation preview

Page 1: Physique 5e/6e

5e

Phys

ique

5e /

6e

ISBN : 978-2-8041-6355-6

PHY56

www.deboeck.com

PhysiqueSciences de base

Yvonne Verbist-ScieurLuc NachtergaeleMichel VanderperrenEmmanuel Walckiers

Sciences de base

6ePhysique5e

6e

Ce manuel s’adresse aux élèves de 5e et 6e

secondaire qui suivent le cours de sciences debase (3 périodes de sciences par semaine).

Il a pour objectifs d’amener l’élève à acquérir et structurerdes savoirs, exercer et maîtriser des savoir-faire, et développer un certain nombre de compétences.

Toutes les notions abordées sont mises en situation dans un contexte proche du quotidien des jeunes. Grâce à sa nouvelle mise en pages en couleur, ce manuel très completet richement illustré est jalonné de rubriques identifiablesimmédiatement telles que « Expérience », « Définition », « Tâche », « Questions et exercices » qui aident l’élève à « apprendre pour comprendre » et progressivement accéderà plus d’autonomie dans ses apprentissages. En outre, des extraits de « L’écho de la science » prolongent ses découvertes.

L’accent est mis sur la réalisation régulière de tâches, c’est-à-dire d‘activités placées dans un contexte, deman-dant la mobilisation de plusieurs ressources et présentantun caractère nouveau. Les nombreux exercices invitentl’élève à tester ses connaissances et exercer ses compétences.

L’apprentissage à travers ce manuel permettra aux jeunes dedécoder et de résoudre des situations auxquelles ils sontconfrontés. Ils se prépareront ainsi à trouver leur place decitoyens dans le monde technoscientifique de demain.

Des manuels précis et attrayants• Conformes aux nouveaux programmes

de sciences de l'enseignement libre

• Illustrés de nombreux dessins et photos d’expériences, en couleur

• Structurés, et clairement mis en pages

• Avec des expériences et des exercicesproches du vécu de l’élève

Scie

nces

de

bas

ePHY5_6_Mise en page 1 15/09/11 11:45 Page1

Page 2: Physique 5e/6e

© Groupe De Boeck s.a., 2011 2e édition Rue des Minimes 39, B-1000 Bruxelles

Même si la loi autorise, moyennant le paiement de redevances (via la société Reprobel, créée à cet effet), la photocopie de courts extraits dans certains contextes bien déterminés, il reste totalement interdit de reproduire, sous quelque forme que ce soit, en tout ou en partie, le présent ouvrage. (Loi du 30 juin 1994 relative au droit d'auteur et aux droits voisins, modifiée par la loi du 3 avril 1995, parue au Moniteur du 27 juillet 1994 et mise à jour au 30 août 2000.)

La reprographie sauvage cause un préjudice grave aux auteurs et aux éditeurs. Le «photocopillage» tue le livre !

Imprimé en Belgique

Dépôt légal : 2011/0074/129 ISBN 978-2-8041-6355-6

Pour toute information sur notre fonds, consultez notre site web: www.deboeck.com

Couverture : Primo & PrimoMise en pages : SoftwinMaquette : Scientech et SoftwinDessins : E. Walckiers, Softwin, C.S. Info et Eric Dutilleux

Dans la collection « Physique » Physique 3e – Sciences de base et Sciences générales (3 ou 5 périodes/semaine)

Physique 4e – Sciences de base et Sciences générales (3 ou 5 périodes/semaine)

Physique 5e – Sciences générales (6 périodes/semaine)

Physique 5e/6e – Sciences de base (3 périodes/semaine)

Physique 6e – Sciences générales (6 périodes/semaine)

Dans la collection « Chimie » Chimie 3e/4e – Sciences de base et Sciences générales (3 ou 5 périodes/semaine)

Chimie 5e – Sciences générales (6 périodes/semaine)

Chimie 5e/6e – Sciences de base (3 périodes/semaine)

Chimie 6e – Sciences générales (6 périodes/semaine)

Dans la collection « Bio »Biologie 3e – Sciences de base et Sciences générales (3 ou 5 périodes/semaine)

Biologie 4e – Sciences de base et Sciences générales (3 ou 5 périodes/semaine)

Biologie 5e – Sciences générales (6 périodes/semaine)

Biologie 6e – Sciences générales (6 périodes/semaine)

Dans la collection « Sciences » Sciences 3e – Biologie, chimie, physique (3 périodes/semaine)

Sciences 4e – Biologie, chimie, physique (3 périodes/semaine)

L’éditeur remercie tous ceux qui ont accepté de lui accorder l’autorisation de publier dans le présent ouvrage les extraits dont ils détiennent les droits de reproduction.

En dépit de ses recherches et sollicitations, l’éditeur n’a pas réussi à joindre certains ayants droit.

Qu’ils soient avertis ici qu’il reste à leur disposition pour satisfaire, le cas échéant, à la législation sur le droit d’auteur.

PHY56-PGTITRE.indd 2 15/09/11 14:45

Page 3: Physique 5e/6e

Avant-propos

Avant-propos

« À l’âge de 4 ou 5 ans, je fus émerveillé quand mon père me fit voir une boussole. Je me souviens encore que cette expérience me fit

une impression profonde et durable. Quelque chose de profondément caché devait exister derrière les choses. »

Albert Einstein (1879-1955)

Ce manuel Physique 5e/6e, qui s’inscrit résolument dans la perspective des nouveaux programmes de Sciences, s’adresse aux élèves de 5e et 6e années qui suivent 3 périodes de sciences par semaine (Sciences de base).

Les méthodes et les contenus préconisés dans ce manuel devraient permettre de rencontrer les recommandations émises par le Conseil de l’Éducation et de la Formation quand il indique : « L’Enseignement devrait assurer à tous les jeunes, dès le début de la scolarité et tout au long de l’enseignement obligatoire, une éducation scientifique citoyenne qui les rende capables de questionner le monde, d’essayer de le comprendre, de s’engager dans sa sauvegarde et de s’impliquer dans la gestion. »

À la lumière de ces recommandations, ce manuel a pour objectifs d’amener l’élève à acquérir et structurer des savoirs, exer-cer et maîtriser des savoir-faire, et développer un certain nombre de compétences de manière à :

•  « se représenter le monde conformément aux modèles scientifiques, en s’appropriant un bagage suffisant pour transformer ses conceptions et ses représentations ;

•  maîtriser suffisamment  les notions apprises pour  les mobiliser dans des situations, en  identifiant  les outils scientifiques pertinents et en les mettant en œuvre pour mener à bien une tâche ;

•  exercer son esprit critique vis-à-vis des développements scientifiques, c’est-à-dire les analyser dans leur contexte et consi-dérer qu’ils sont une réponse partielle aux problèmes posés ;

• développer sa curiosité, le goût pour les sciences et l’intérêt pour le monde qui l’entoure. »

Dans ce cadre, nous proposons, après des mises en situation porteuses de sens, la réalisation régulière de tâches, c’est-à-dire d’activités placées dans un contexte, demandant la mobilisation de plusieurs ressources et présentant un caractère nouveau. Ces tâches sont regroupées en quatre familles (détaillées plus loin) :

• décrire, expliquer un phénomène ou le fonctionnement d’un objet, prévoir l’évolution d’un phénomène ;

• mener à bien une recherche expérimentale (famille non certifiée dans le cadre de ce cours) ;

• résoudre une application concrète (se limiter à l’identification des relations pertinentes à utiliser) ;

• présenter sous une autre forme une information, un concept, un processus ou un phénomène naturel. 

Présenté en quadrichromie, ce manuel richement illustré est jalonné de rubriques colorées telles que « Expérience », « Définition », « Tâche », « Questions et exercices » qui devraient aider l’élève à « apprendre pour comprendre » et progressi-vement accéder à plus d’autonomie dans ses apprentissages.

L’apprentissage à travers ce manuel permettra aux jeunes de décoder et de résoudre des situations auxquelles ils sont confrontés. Ils se prépareront ainsi à trouver leur place de citoyens dans le monde technoscientifique de demain.

Chaque thème a été conçu comme un outil de travail que chaque professeur enrichira de sa personnalité et de son expé-rience et dont il adaptera librement l’usage à la spécificité de chacune de ses classes, de l’intérêt et la curiosité des élèves ou de l’actualité.

Les auteurs

III

Page 4: Physique 5e/6e

IV

Dans L’écho de la science : voir avec ses oreilles ? C’est inouï ! présenté au début du thème, il est affirmé que « les sons de basse fréquence se prêtent mal à une navigation précise ».

De fait, les ondes émises par les animaux pour se guider grâce aux échos sont de haute fréquence. C’est aussi le cas du sonar (ultrasons) et du radar (ondes radio de fréquence élevée). Ce sont aussi des ultra-sons qui sont utilisés en échographie.

Justifier clairement pourquoi ce procédé serait peu efficace dans le cas d’ondes de fréquence faible ; quel serait l’inconvénient ?

Tâche (FT1) Justifier un procédé technologique (l’écholocation)

Le MRUD est un mouvement caractérisé par :

– une trajectoire rectiligne ;

– une décélération constante ;

– une valeur négative de l’accélération.

Définition

Avant-propos

Un manuel pratique et coloré

Deux corps ponctuels s’attirent mutuellement avec une force dont la direction est celle de la droite joi-gnant les deux corps et dont l’intensité est propor-tionnelle au produit des masses des deux corps et inversement proportionnelle au carré de la distance qui les sépare (fig. 3.10).

Fm m

d== ⋅ ⋅1 2

2

avec � = 6,67 · 10 – 11 N ·m2 ·kg– 2

d

m1 m2

F2, 1 F1, 2

Figure 3.10

Énoncé

Pour qu’il y ait un courant induit dans un circuit, il faut qu’il y ait une variation de flux magnétique F à travers le circuit.

Loi de Faraday

Le dispositif expérimental que nous utilisons est un rail incliné sur lequel progresse une roue à axe conique 2.8 et 2.9).

départ 5

départ 4 départ 3départ 2

départ 1

x3

x2

x1

d

Figure 2.8

Figure 2.9

Expérience

Ces textes repris en pavés bleus sont des points de repères essentiels : énoncés des lois, défi nitions, règles pratiques et synthèses.

Les expériences inscrites dans les pavés de couleur sau-mon sont réalisées soit par le professeur, soit par les élèves. Elles peuvent illustrer les différents concepts qui seront abordés dans la suite du chapitre, ou bien faire découvrir des règles ou des lois.

Chaque tâche s’inscrit dans l’une des quatre familles de tâches (FT) du programme.

Elle permet l’acquisition de compétences à travers la compréhension d’un texte, la construction simple d’appareils de physique, l’analyse et l’interprétation de résultats expérimentaux.

Ci-après (p. VI), se trouve une description détaillée de chacune des familles de tâches et, en annexe (p. 217), la liste des tâches proposées dans le manuel.

Page 5: Physique 5e/6e

VAvant-propos

Les questions et exercices permettent à l’élève de tester sa compréhension de la matière, de s’entraîner, d’intégrer ses acquis dans des situa-tions courantes et de se préparer à une évalua-tion certifi cative.

Pour représenter un noyau de numéro atomique Z et de nombre de masse A, on accole au symbole chimique des notations numériques :

22688Ra soit Z

AX

– X est le symbole chimique du noyau (par exemple Ra) ;

– A est le nombre de masse, soit le total des protons et neutrons (par exemple 226) ;

– Z est le numéro atomique, soit le nombre total de pro-tons (par exemple 88).

Notons que (A – Z) permet de calculer le nombre de neu-trons. Et que proton et neutron sont appelés nucléons.

Ainsi l’écriture 614C représente un noyau de carbone conte-

nant 14 nucléons dont 6 protons et 8 neutrons.

On se contente parfois d’écrire 14C puisque le symbole chimique permet de retrouver le numéro atomique.

En toutes lettres dans un texte, on écrit souvent « car-bone 14 ».

Par extension, l’électron est noté –10e puisqu’il est por-

teur d’une charge négative. Son nombre de masse est zéro puisque sa masse est très petite en regard de la masse d’un nucléon.

Le neutron, qui ne porte pas de charge électrique, est noté : 0

1n.

La notation nucléaireLLes pavé mauves fournissent des rappels de certaines notions ou permettent aux lecteurs curieux de découvrir certains détails concernant le chapitre abordé.

1. Pour chacun des solénoïdes parcourus par un cou-rant électrique et décrits à la figure 1.36, trouver le sens du champ magnétique et identifier les pô-les nord et sud de ces électroaimants.

a c

db

Figure 1.36

2. Déterminer dans quel sens passe le courant dans les solénoïdes (figures 1.37 a et b).

A B

a

A B

NS

b

Figure 1.37

Questions et exercices

L’écho de la science Voir avec ses oreilles ? C’est inouï !

93L’écho de la science

Au cours du xxe siècle, le développement de la guerre sous-marine a obligé l’homme à trouver des méthodes nouvelles de dé-tection des cibles sous-marines. Pendant

deux générations, chercheurs et ingénieurs ont travaillé avec acharnement à la création d’instru-ments utilisant les ondes sonores afin de « voir » des objets qui étaient invisibles. Sous leur forme définitive, ces instruments produisent une onde sonore, puis en analysent les échos afin de donner une indication sur ce qui se trouve sur le parcours.

À ce moment-là, les savants se sont rendu compte que les chau-ves-souris, les dauphins, et d’autres animaux avaient fait la même chose pendant des millions d’années, et le faisaient avec encore plus d’efficacité.

Ces animaux ne sont pas aveugles, et cependant ils utilisent l’ouïe comme les hommes utilisent la vue, c’est-à-dire comme source principale d’information détaillée sur le monde qui les entoure. Ce sont des ondes sonores réfléchies (au lieu d’ondes lumineuses) qui guident leurs mouvements, les avertissent des obstacles et les aident à localiser leur nourriture.

Cette capacité mystérieuse des chauves-souris avait été obser-vée et étudiée pour la première fois avant la fin du xviiie siècle. Le biologiste italien Lazzaro Spallanzani remarqua en 1793 qu’un hi-bou qu’il avait capturé, et dont la vue était intacte, voltigeait cu-rieusement dans son laboratoire, cognant murs et meubles, lors-que la chandelle s’était éteinte accidentellement. Or ces oiseaux avaient la réputation de voir dans l’obscurité ! Spallanzani décida de contrôler chez d’autres espèces nocturnes leur capacité de se déplacer dans l’obscurité. Il libéra une chauve-souris dans la même pièce obscure et constata avec étonnement qu’elle volait comme si elle voyait les obstacles.

Soupçonnant que les chauves-souris « voient » par un moyen autre que la vision il creva les yeux de quelques unes, et observa que « la chauve-souris aveugle peut voler librement dans une pièce fermée, de jour comme de nuit… Avant d’arriver au mur opposé, elle tourne avec adresse, évite les obstacles tels que les murs, une tige placée sur son passage, le plafond, les gens pré-sents dans la pièce… ».

Pour expliquer ce comportement, Spallanzani pensa qu’un autre sens a remplacé la vision. « Je suis enclin à croire que, devant l’absence de vision, un nouvel organe, que nous ne pos-sédons pas et dont nous n’avons aucune idée, lui a été substi-tué ». Le chirurgien et entomologiste Louis Jurine répéta les ex-périences de Spallanzani et en réalisa de nouvelles. Il annonça, en 1794, que si les oreilles des chauves-souris étaient bouchées avec de la cire, l’animal entrait en collision avec les obstacles. « L’organe de l’ouïe semble remplacer la vue dans la découverte des corps et fournir aux animaux différentes sensations qui per-mettent de diriger leur vol et les rendent capables d’éviter les obstacles ».

Les affirmations de ces deux biologistes laissèrent les scientifi-ques incrédules, et provoquèrent moqueries et haussements d’épaules. (« Si les chauves-souris voient avec leurs oreilles, en-tendent-elles avec leurs yeux ? ») Les choses en restèrent là pen-dant plus d’un siècle.

En 1912, quelqu’un suggéra que les chauves-souris produi-saient et ressentaient les échos d’ondes sonores de très basse fréquence, de fréquence trop grave pour l’oreille humaine. Mais d’autres objectèrent que les sons de basse fréquence se prê-tent mal à une navigation précise. Puis, en 1920, un physiolo-giste anglais suggéra que ces animaux se dirigeaient grâce à leurs cris de haute fréquence. Dans son esprit, il s’agissait des cris audibles, et non pas d’ultrasons, qui sont des vibrations sonores de fréquence trop élevée pour être entendues par l’homme.

Les progrès décisifs furent accomplis à partir de 1938, grâce à un appareil du professeur américain G.W. pierce qui convertissait des ultrasons en sons audibles. Un étudiant, D. Griffin, apporta une cage de chauves-souris devant cet appareil ; un chœur de clics, de crachements, de claquements secs, sortit du haut-parleur. Mais lorsque les animaux furent lâchés hors de la cage, le détecteur devint presque muet, à l’étonnement du professeur et de l’étudiant. Il fallut un an de recherches pour établir que les émissions ultrasonores des chauves-souris sont directionnel-les : elles forment un faisceau dirigé vers l’avant de la tête des chauves-souris. Les signaux ne peuvent donc être détectés que si l’animal vole vers le microphone. On comprend alors pourquoi le détecteur était presque muet lorsque les animaux étaient hors de la cage.

leS ondeS mécaniqueS et électromaGnétiqueS

De plus, le manuel est parsemé de pages « L’écho de la science » où les élèves pourront approfondir certaines notions.

Ces documents, liés à l’actualité et aux domaines scienti-fi que, historique, technologique, etc. étoffent les chapi-tres et invitent les élèves à développer leur curiosité pour « en savoir plus ».

Page 6: Physique 5e/6e

VI Avant-propos

Description des familles de tâches (FT)1

Les tâches peuvent être regroupées en quatre familles.

Famille 1 – Décrire, expliquer un phénomène ou le fonctionnement d’un objet

Décrire consiste à répondre à la question : « De quoi s’agit-il ? » Il s’agit de raconter une suite de faits avec l’objectif princi-pal d’informer. Le destinataire, supposé d’un niveau de connaissances équivalent à l’auteur, peut alors aisément identifier l’objet ou le phénomène, ou reproduire l’expérience décrite.

Expliquer consiste à se poser la question : « Pourquoi tel phénomène ou tel fonctionnement se produit-il dans telles condi-tions ? » L’explication a pour objectif principal de faire comprendre.

Une tâche de cette famille peut ne faire appel qu’à une des deux actions (décrire, expliquer).

Famille 2 – Mener à bien une recherche expérimentale

Cette famille de tâches n’est pas à certifier dans le cadre de ce cours.

Famille 3 – Résoudre une application concrète

Les tâches concernées sont placées dans un contexte concret et sont résolues en ayant recours à l’outil mathématique.

En sciences de base, on ne demande pas à l’élève de concevoir une stratégie de résolution mais uniquement d’identifier les relations pertinentes à utiliser. On lui demande néanmoins de porter un regard critique sur le résultat obtenu.

Famille 4 – Présenter sous une autre forme une information, un concept, un processus ou un phénomène naturel

Cette famille de tâches regroupe des activités qui consistent à traduire un message (information, concept, processus, phénomène...) d’une forme (texte, schéma, tableau...) dans une autre forme de communication plus adéquate.

1 Programme : D/2011/7362/3/09 Sciences de base.

Page 7: Physique 5e/6e

SommaireAvant-propos IIIThème 1 • Cinématique 2

Chapitre 1 • Déplacement et vitesse 5

Chapitre 2 • Les mouvements accélérés 13

Thème 2 • Dynamique 28Chapitre 1 • Les actions réciproques ou principe d’action-réaction 31

Chapitre 2 • Le principe d’inertie 36

Chapitre 3 • Le principe fondamental de la dynamique 39

Chapitre 4 • Sécurité des automobilistes lors de collisions 47

Chapitre 5 • Dynamique du mouvement circulaire uniforme 52

Chapitre 6 • Sécurité des véhicules dans les virages 57

Thème 3 • Électromagnétisme 60Chapitre 1 • Le champ magnétique 63

Chapitre 2 • La force électromagnétique 74

Chapitre 3 • Les courants induits 81

Thème 4 • Les ondes mécaniques et électromagnétiques 90Chapitre 1 • Généralités 95

Chapitre 2 • L’onde sonore 101

Chapitre 3 • Propriétés des ondes 111

Chapitre 4 • Les différentes ondes électromagnétiques 122

Thème 5 • Gestion de l’énergie et énergie nucléaire 132Chapitre 1 • Thermodynamique 135

Chapitre 2 • La radioactivité 143

Chapitre 3 • Les forces à l’intérieur du noyau 152

Chapitre 4 • Le réacteur nucléaire 157

Chapitre 5 • Gestion de l’énergie 163

Thème 6 • Gravitation et cosmologie 172Chapitre 1 • Les astres et leurs mouvements 177

Chapitre 2 • Modèles du système solaire 181

Chapitre 3 • Newton et la gravitation universelle 189

Chapitre 4 • Physique du Soleil et des étoiles 200

Chapitre 5 • Cosmologie 206

Annexes 213Annexe 1 • Données numériques et constantes physiques 214

Annexe 2 • Liste des tâches 217

Réponses des « Questions et exercices » numériques 219

Index 221

Bibliographie 225

Page 8: Physique 5e/6e

Marcher, courir, sauter, nager, voler sont des mouvements que nombre d’êtres vivants sont capables de réaliser. Même les astres du ciel sont en mouvement. Qui plus est, l’homme a confectionné bon nombre

d’engins qui lui assurent une mobilité sans cesse améliorée. Face à ce foison-nement de mouvements, la physique s’est évertuée à les catégoriser et à les décrire. Ce que nous ferons sous l’intitulé général de « cinématique ».

11CinématiqueTHÈME1THÈME1THÈME

Page 9: Physique 5e/6e

Chapitre 1 • Déplacement et vitesse

Chapitre 2 • Les mouvements accélérés

THÈMETHÈME

1111111111111

Page 10: Physique 5e/6e

THÈME 1 • Cinématique

Chapitre 1 • Déplacement et vitesse1 • Progression d’un objet mobile

sur une trajectoire rectiligne2 • Progression d’un objet mobile sur des trajets

non-rectilignesQuestions et exercices

Chapitre 2 • Les mouvements accélérés1 • Le vecteur accélération2 • Le Mouvement Rectiligne Uniformément

Accéléré (MRUA)3 • La chute libre4 • Le Mouvement Rectiligne Uniformément

Décéléré (MRUD)5 • Synthèse : MRU, MRUA et MRUD6 • La distance de freinage d’une automobile7 • Le temps de réaction avant le freinageQuestions et exercices

1

Page 11: Physique 5e/6e

La mobilité est une composante importante du développement de nos sociétés. Les temps de parcours de nos déplacements occupent une partie de notre journée. Il faut à la fois connaître la vitesse moyenne de nos déplacements et,

pour satisfaire notamment au code de la route, la vitesse à tout instant.

1Déplacement

et vitesse

Page 12: Physique 5e/6e

Thème 16

Nous envisagerons dans un premier temps des déplacements sur une trajectoire en ligne droite.

O X

Figure 1.1

1. Mise en situation

La fi gure 1.1 représente, à différents instants, un piéton que nous appellerons Steve. Au début, il marche à allure régulière sur le trottoir puis il est arrêté par un feu rouge. Lorsque le feu devient vert, Steve se remet prudemment en marche, pour progressivement hâter le pas et fi nir par courir  car  il  aperçoit  son bus  à  l’arrêt  quelques mètres plus loin.

Défi nissons la position de Steve par l’abscisse x sur un axe rectiligne OX orienté vers la droite. Le graphique de cette position en fonction du temps est montré ci-des-sous (fi gure 1.2).

Figure 1.2

2. Le mouvement uniforme

La première phase du mouvement de Steve est réali-sée à allure régulière. Sa vitesse de déplacement a été constante. On dit d’un tel mouvement qu’il est uniforme.

Soient :

• Dx = x2 - x1, le déplacement durant cette phase ;

• Dt = t2 - t1, la durée de cette phase.

vxt

= DD

L’unité SI de la vitesse est le m/s.

On emploie aussi très souvent le km/h :

11 36001 3600

36001

3 6m sms

mh

km h/ , /= ⋅⋅

= =

• Identifi er sur le graphique les différentes phases du mouvement de Steve.

• Quelle est la durée de chacune des phases ?

Questions

La vitesse est le rapport entre le déplacement et la durée de ce déplacement.

défi nition

1. Progression d’un objet mobile sur une trajectoire rectiligne

Page 13: Physique 5e/6e

7Chapitre 1 Déplacement et vitesse

Inversement :

110003600

13 6

km hms

m s/,

/= =

3. Le mouvement rectiligne uniforme

Dans un graphique position en fonction du temps, un MRU est caractérisé par une droite oblique. La vitesse peut être calculée en identifi ant le déplacement Dx1 et la durée Dt1 du mouvement (fi g. 1.3).

Figure 1.3

La fi gure 1.3 détaille en fait la première phase du mouve-ment de Steve. Nous pouvons y lire :

Dx1 = 30 m

Dt1 = 30 s

vxt1

1

1

3030

1 0= = =DD

, /m s

C’est la vitesse constante de ce mouvement uniforme.

D’une manière générale, la pente (ou coeffi cient angu-laire) de la droite dans un graphique position en fonction du temps (x,t) donne la valeur de la vitesse (fi g. 1.4).

Figure 1.4

Un MRU rapide se distingue ainsi aisément d’un MRU à vitesse faible (fi g. 1.5).

Figure 1.5

4. L’immobilité

La deuxième phase du mouvement de Steve est un arrêt devant le feu rouge. D’une manière générale, un corps qui est immobile est dit à l’arrêt ou au repos. Sa vitesse est bien sûr nulle et la position se traduit sur le graphi-que (x,t ) par une ligne horizontale.

5. Notion de vitesse instantanée

Dans la troisième phase du mouvement de Steve, sa vi-tesse a varié : la vitesse a augmenté au cours de trajet. Ce mouvement n’est donc plus uniforme. La fi gure 1.2 permet de constater que :

• entre la 50e et la 60e seconde, il ne parcourt que 5 m ;

• de la 70e à la 80e seconde, il parcourt 17 m.

Focalisons-nous sur la 60e seconde et effectuons un zoom sur le graphique autour de cet instant (fi g. 1.6) : la portion de courbe devient presque une droite et nous permet de déterminer un déplacement Dx3 et un inter-valle de temps Dt3.

Figure 1.6

Si la trajectoire est rectiligne et la vitesse constan-te, le mouvement est dit Mouvement rectiligne Uniforme, en abrégé, MrU.

défi nition

Page 14: Physique 5e/6e

Thème 18

Il vient :Dx3 = 2,5 mDt3 = 4,0 s

vxt3

3

3

2 54 0

0 62= = =DD

,,

, /m s ; c’est la vitesse à la 60e se-

conde. Elle était plus faible avant, elle sera plus élevée après. On dit de cette vitesse à la 60e seconde que c’est une vitesse instantanée.

La vitesse indiquée sur les compteurs de vitesse des automobiles est pratiquement une vitesse instantanée car elle se mesure sur un tour de roue ce qui constitue un temps très court. Bien évidemment, le radar de la police mesure aussi des vitesses instantanées.

Figure 1.7Le compteur de vitesse d’une automobile.

Lorsque le mouvement est rectiligne et uniforme, la vi-tesse  instantanée  a  même  valeur  à  tout  moment.  Au contraire, dans un mouvement non uniforme, à chaque instant correspond une valeur différente de la vitesse instantanée. Cela se traduit dans le graphique (x, t ) par une ligne courbe (fi g. 1.8).

Figure 1.8Graphique position-temps d’un mouvement non uniforme.

6. La vitesse moyenne

Sur de longs parcours, il est d’usage de parler de vitesse moyenne.

Pour calculer la vitesse moyenne sur l’entièreté du par-cours, il faut prendre pour intervalle de temps la durée totale du voyage y compris les moments d’arrêts.

vxtmoy

tot

tot

=DD

Ainsi pour le déplacement de Steve (fi g. 1.9 ), le dépla-cement total est de 60 m et la durée totale de 80 s.

Sa vitesse moyenne est 

vxtmoy

tot

tot

m s= = =DD

6080

0 75, /

La vitesse moyenne correspond à  la vitesse fi ctive qui permettrait de faire le parcours entier en MRU dans le même temps (ligne en pointillés à la fi gure 1.9).

Figure 1.9

Ordre de grandeur de quelques vitesses moyennes

Vitesse en m/s

Vitesse en km/h

Escargot en mouvementMarche normale de l’hommeSprinter 100 mAutomobile en mouvement Guépard en courseAvion long courrier en volSatellite géostationnaire Terre autour du Soleil

0,0011102529250

3 05029 900

3,6 ∙ 10–3

3,63690104900

11 000108 000

La vitesse instantanée est une vitesse à un instant précis du déplacement d’un corps. Elle se calcule par v = Dx / Dt en choisissant un intervalle de temps le plus petit possible.

défi nition

Page 15: Physique 5e/6e

9Chapitre 1 Déplacement et vitesse

7. Applications du MRU

1. Utiliser les unités de vitesse

Une automobile parcourt 18,6 km en 12,5 minutes. Quelle est sa vitesse en m/s et en km/h ?

Calcul de la vitesse en m/s :

D x = 18,6 km = 18 600 m

D t = 12,5 min = 12 min 30 s = (12.60) + 30 = 750 s

vxt

= = =DD

18600750

24 8, /m s

Calcul de la vitesse en km/h :

vs

= ⋅⋅

= =24 8 3 6001 3 600

89 2801

89 3,

, /m m

hkm h

Il est aussi possible de calculer cette vitesse en km/h en gardant le déplacement en km et en traduisant l’inter-valle de temps de 12,5 minutes en heures.

2. Calculer une vitesse moyenne

Un randonneur déclenche son chronomètre au mo-ment de son départ. Il marche à la vitesse constante de 1,2 m/s durant 3 minutes et 20 secondes. Il s’arrête alors durant 1 minute et 28 secondes. Puis il repart à la vitesse constante de 1,4 m/s et franchit une distance de 105 m. Quelle a été sa vitesse moyenne ?

Il faut connaître à la fois le déplacement total et la durée totale du trajet de ce randonneur. Détaillons les trois éta-pes de ce mouvement (fi g. 1.10) :

1re étape :

v1 = 1,2 m/s

D t1 = 3 min 20 s = (3 · 60) + 20 = 200 s

Sur base de ces données, nous pouvons calculer D x1 :

D x1 = v1 · D t1 = 1,2 · 200 = 240 m

2e étape :

un arrêt qui dure 1 min 28 s

D t2 = (1 · 60) + 28 = 88 s

v2 = 0 m/s

et bien sûr D x2 = 0 m

3e étape :

v3 = 1,4 m/s

D x3 = 105 m

Sur base de ces données, nous pouvons calculer D t3 :

D Dt

xv3

3

3

1051 4

75= = =,

s

Calculons D xtot et D ttot, puis la vitesse moyenne :

D xtot = 240 + 0 + 105 = 345 m

D ttot = 200 + 88 + 75 = 363 s

vxtmoy

tot

tot

m/s= = =DD

345363

0 95,

28 s

Figure 1.10

Un dicton raconte qu’il est possible d’estimer soi-mê-me à quelle distance est tombée la foudre : dès que l’éclair de la foudre est perçu, il suffi t de compter mentalement ; si le tonnerre (le son) est perçu après avoir compté lentement jusqu’à trois, la foudre est tombée à 1 km. S’il faut compter jusqu’à six, elle est tombée à 2 km. Et ainsi de suite.

Il faut savoir que la lumière voyage à une vitesse ex-traordinairement grande : 300 000 km à la seconde. Le son, lui, en comparaison, se propage beaucoup plus lentement : 340 m/s dans l’air à 15°C. Voilà pourquoi il y a une différence de temps entre la perception de l’éclair et la perception du tonnerre.

Vérifi er numériquement l’exactitude du dicton.

Tâche (FT3) Calculer à quelle distance est tombée la foudre

Page 16: Physique 5e/6e

Thème 110

Quittons les parcours en ligne droite pour envisager des trajectoires qui peuvent être courbes, voire sinueuses.

1. Mise en situation

Un procès-verbal (PV) de police peut renseigner que le véhicule immatriculé AXT758 a franchi le carrefour des Quatre-Bras à la vitesse de 85 km/h.

La fi gure 1.11 a illustre ce carrefour.

L’information est-elle complète ?

Non, il serait bon de préciser sur quelle voie circulait le véhicule. Les limitations de vitesse ne sont peut-être pas identiques sur chaque route constituant le carrefour.

Le PV doit, par exemple, préciser que l’auto roulait sur la route nationale 4 (RN4). La fi gure 1.11 b montre cette route RN4.

Toutes les caractéristiques de la vitesse sont-elles ainsi connues ?

Non, il reste à décrire dans quel sens circulait le véhicule.

Le PV ajoutera alors que le véhicule se dirigeait vers Namur.

La fi gure 1.11 c illustre l’information complète.

Figure 1.11 a Le lieu où la vitesse a été constatée.

Figure 1.11 b La direction de la route où circulait l’auto : la RN4.

Figure 1.11 c Le sens de circulation est connu.

2. Le vecteur vitesse

La vitesse à un endroit donné n’est complètement préci-sée que si on connaît :

• sa grandeur (on dit aussi valeur) ;

• la direction du mouvement du mobile ;

• le sens du parcours.

Ces trois paramètres sont caractéristiques d’une gran-deur vectorielle. Dès que sont envisagés des déplace-ments qui  ne  sont  plus  rectilignes,  la  vitesse doit  être décrite par un vecteur.

3. Orientation du vecteur vitesse

On peut montrer que le vecteur vitesse est toujours tan-gent à la trajectoire. Ainsi, en chaque point de la trajec-toire d’un ballon (fi g. 1.12), les vitesses instantanées qui se succèdent sont tangentes à la trajectoire.

En effet, en zoomant sur un endroit de la trajectoire, on s’aperçoit que le vecteur vitesse est aligné sur la trajectoire.

Afi n d’illustrer notre propos, observons le marteau lancé par un athlète en compétition (fi g. 1.13).

Le marteau qui passe par les positions M1, M2 et M3 pos-sède en chacun de ces points une vitesse différente non seulement en grandeur mais aussi en direction (fi g. 1.14). Si le marteau est lâché en M3, on constate qu’il part se-lon la direction de la tangente à la trajectoire.

Le vecteur vitesse instantanée est, en tout point, tangent à la trajectoire.

Propriété

2. Progression d’un objet mobile sur des trajets non-rectilignes

Page 17: Physique 5e/6e

11Chapitre 1 Déplacement et vitesse

Figure 1.12

Figure 1.13Primoz Kozmus, médaille d’or, JO Pékin, 2008.

v1 inst

v3 inst

v2 instM2

M3

M1

Figure 1.14

1. Un piéton marche à la vitesse constante de 1,08 m/s durant 2 minutes et 40 secondes. Calculer la distance parcourue.

2. La distance entre Liège et Mons sur l’autoroute E42 est de 119 km. Calculer la vitesse moyenne, en km/h, d’une automobile qui part de Liège à 15h30 et arrive à Mons à 16h45. Traduire cette vitesse en m/s.

3. À la température de 15°C, le son se propage dans l’air à la vitesse de 340 m/s. Calculer le temps nécessaire pour parcourir 1 000 m.

4. Un randonneur marche en MRU à la vitesse de 1,25 m/s durant 12 minutes. Il s’arrête ensuite pendant 3,00 mi-nutes. Il repart et parcourt 630 m à la vitesse de 1,05 m/s. Calculer sa vitesse moyenne pour l’entièreté du déplacement décrit.

5. Le déplacement d’un mobile est décrit à la fi gure 1.15. La trajectoire est rectiligne.

x (m)

t (s)5 10 15 2000

5

10

15 A B C D E

Figure 1.15

Déterminer pour chaque phase s’il s’agit d’un MRU, d’un arrêt ou d’un mouvement non-uniforme.

6. Pour les phases B et D décrites à la fi gure 1.15, déter-miner la vitesse du mobile.

7. Pour l’ensemble du mouvement décrit à la fi gure 1.15, calculer la vitesse moyenne du mobile.

8. La fi gure 1.16 ci-dessous décrit, par un graphique (x, t ), le mouvement d’un piéton. Tracer le graphique de la vitesse en fonction du temps correspondant au mouvement de ce piéton.

x (m)

t (s)5 10 1500

5

10

15

Figure 1.16

9. Pendant 3,0 s, un modèle réduit d’auto télécomman-dée se déplace à la vitesse constante de 0,60 m/s. Il est ensuite mis à l’arrêt durant 2,0 s. Ensuite, il est remis en route à la vitesse de 0,40 m/s durant 5,0 s.

a) Dresser le graphique position-temps.

b) Calculer la vitesse moyenne pour l’ensemble du parcours.

Questions et exercices1. Un piéton marche à la vitesse constante de 1,08 m/s

Page 18: Physique 5e/6e

Thème 112

10. Extrait d’un journal : « Un accident entre une auto et un camion a eu lieu sur la RN29 Gembloux-Jodoigne. Lors de l’accident, qui a eu lieu au carrefour de la RN29 avec la RN91, le camion circulait sur la RN91. »

a) Citer la (les) caractéristique(s) du vecteur vitesse du camion donnée(s) dans cet extrait.

b) Identifi er la (les) caractéristique(s) qui manque(nt) pour défi nir complètement cette vitesse.

11. Un golfeur lance sa balle : la trajectoire de l’extré-mité du club est représentée à la fi gure 1.17. Tracer le vecteur vitesse instantanée aux endroits marqués A, B et C de la trajectoire. (Nous considérerons que la grandeur de la vitesse est la même dans les trois cas.)

Figure 1.17 2