Pindah Panas 2015

Embed Size (px)

Citation preview

  • 7/25/2019 Pindah Panas 2015

    1/40

    PRINSIP TEKNIK PANGAN

  • 7/25/2019 Pindah Panas 2015

    2/40

    Pindah panas adalah perpindahan energi dari

    suatu titik ke titik yang lain berdasarkan atas

    perbedaan suhu

    Contoh: pemanasan, pendinginan, pembekuan Perbedaan suhu (antar bahan) merupakan

    faktor yang sangat penting dalam

    menentukan laju pindah panas

    MSB-FTIP-USAHID-2015 2

  • 7/25/2019 Pindah Panas 2015

    3/40

    1. Konduksi: pindah panas darimolekul ke molekul

    2. Konveksi:pindah panas dengan

    adanya gerakan bahan secara

    curah dari bahan bersuhu tinggi

    ke bahan bersuhu rendah

    3. Radiasi: pindah panas dalambentuk gelombang

    elektromagnetik

    MSB-FTIP-USAHID-2015 3

  • 7/25/2019 Pindah Panas 2015

    4/40

    Pindah panas pada tingkat molekul

    Tidak ada perpindahan fisik pada bahan

    Terjadi pada bahan padat (solid)

    Berlaku hukum Fourier:

    q = laju aliran panas A = luas an tempat panas dipindahkan (tegak lurus arah

    aliran) q/A = fluks panas K = konduktivitas panas [W/(m.K)] dT/dx = gradien suhu Tanda negatif berarti bahwa aliran panas positif akan terjadi

    dalam arah suhu yang menurun

    q kAdTdx

    x Hukum Fourier I: Fluks panas (laju pindahpanas per satuan luas) pada konduksiberbanding lurus dengan gradien suhu:

    MSB-FTIP-USAHID-2015 4

  • 7/25/2019 Pindah Panas 2015

    5/40

    Thermal Conductivity, k unit: W/mC Metals: k = 50-400 W/mC

    Water: k = 0.597 W/mC

    Air : k = 0.0251 W/mC

    Insulating materials: k = 0.035 - 0.173 W/mC

    For foods k = 0.25 mc+ 0.155 mp+ 0.16 mf+ 0.135 ma+

    0.58 mm

    Where m is mass fraction and subscripts c:carbohydrate, p: protein, f: fat, a: ash, m:moisture.

    MSB-FTIP-USAHID-2015 5

  • 7/25/2019 Pindah Panas 2015

    6/40

    Pendugaan nilai k pada produk pangan (Choi

    dan Okos, 1987)

    k = (ki Xvi)

    Xvi = (Xi )/i

    = 1/(xi/ i)

    k = konduktivitas

    ki = konduktivitas tiap komponenXvi = fraksi volume tiap komponen

    Xi = fraksi massa tiap komponen

    = densitas

    MSB-FTIP-USAHID-2015 6

  • 7/25/2019 Pindah Panas 2015

    7/40

    Hubungan k komponen (ki) dengan suhu T (C)

    Hubungan komponen (i) dengan suhu T (C)

    [satuan = kg/m3]

    kair = kw= 0,57109 + 0,0017625 T 6,7306 x 10-6T2

    kes = kic= 2,2196 - 0,0062489 T + 1,0154 x 10-4T2

    krotein = kp= 0,1788 + 0,0011958 T 2,7178 x 10-6T2klemak= kf= 0,1807 - 0,0027604 T 1,7749 x 10

    -7T2

    kkarbohidrat= kc= 0,2014 + 0,0013874 T 4,3312 x 10-6T2

    kserat= kfi= 0,18331 + 0,0012497 T 3,1683 x 10-6T2

    kabu = ka= 0,3296 + 0,001401 T 2,9069 x 10-6T2

    air = w= 997,18 + 0,0031439 T 0,0037574 T2

    es = ic= 916,89 - 0,13071 Trotein = p= 1329,9 - 0,51814 T

    lemak= f= 925,59 - 0,41757 T

    karbohidrat= c= 1599,1 - 0,31046 T

    serat= fi= 1311,5 - 0,36589 T

    abu = a= 2423,8 - 0,28063 T

    MSB-FTIP-USAHID-2015 7

  • 7/25/2019 Pindah Panas 2015

    8/40

    Steady state berarti suhu bahan dapat

    berubah pada berbagai tempat tetapi tidak

    berubah karena waktu

    Konduksi melalui lempeng:

    qx

    x1

    x2

    x

    dTq kA

    dx

    MSB-FTIP-USAHID-2015 8

  • 7/25/2019 Pindah Panas 2015

    9/40

    xq dx kdT A

    1 1

    x Tx

    x T

    qdx kdT

    A

    1 1( )xq x x k T T

    A

    Boundary Conditionsx = x

    1 T = T

    1

    x = x2 T = T

    2

    Separating the variables,

    Integrating from x1to x (some interior location within the

    slab)

    1 1( )xqT T x x

    kA

    1

    1

    ( )

    ( )x

    T Tq kA

    x x

    MSB-FTIP-USAHID-2015 9

  • 7/25/2019 Pindah Panas 2015

    10/40

    if integrated from x1to x2

    2 1 1 2

    2 1

    ( ) ( )

    ( )x

    T T T T q kA kA

    x x L

    where L = thickness of the slab.

    MSB-FTIP-USAHID-2015 10

  • 7/25/2019 Pindah Panas 2015

    11/40

    COMPOSITE RECTANGULAR WALL (IN SERIES)

    T3

    Temperature

    q

    q

    kB

    kC

    kD

    LB

    LC

    LD

    T0

    x0

    x1

    x2

    x3

    x

    T0

    T3

    B

    C

    D

    q/A = kB[(T1-T0)/LB] = kC[(T2-T1)/LC] = kD[(T3-T2)/LD]

    q/A = T/[X1/k1 + X2/k2 + ...+ Xn/kn]

    MSB-FTIP-USAHID-2015 11

  • 7/25/2019 Pindah Panas 2015

    12/40

    In the flow of electricity, the electrical

    resistance is determined from the ratio of

    electric potential divided by the electric

    current. Similarly, we may consider heatresistance as a ratio of the driving potential

    (temperature difference) divided by the rate

    of heat transfer.

    Thus, 1 2conductionx

    T TR

    q

    2 1conduction

    x x LR

    kA kA

    or,

    units of resistance = C/W

    T1

    T2

    L/kA

    MSB-FTIP-USAHID-2015 12

  • 7/25/2019 Pindah Panas 2015

    13/40

    HEAT TRANSFER IN A TUBULAR PIPE

    r

    i

    ro

    Fourier's Law in cylindrical coordinates

    r

    dTq kA

    dr

    2rdT

    q k rLdr

    MSB-FTIP-USAHID-2015 13

  • 7/25/2019 Pindah Panas 2015

    14/40

    Boundary Conditions

    T =Ti at r = ri

    T=To at r = r0

    Separating the variables

    2

    rq dr kdT rL

    2

    o o

    i i

    r T

    r T

    q drk dT

    L r

    ln2

    o o

    i i

    r T

    r T

    qr k T

    L

    Integrating

    MSB-FTIP-USAHID-2015 14

  • 7/25/2019 Pindah Panas 2015

    15/40

    Recall for a single-layer pipe:

    and resistance due to conduction

    2 ( )

    ln

    i or

    o

    i

    Lk T Tq

    r

    r

    ln

    2

    o

    i

    c

    r

    rR

    Lk

    MSB-FTIP-USAHID-2015 15

  • 7/25/2019 Pindah Panas 2015

    16/40

    Thermal resistance diagram:

    r1

    r2

    r3

    T1

    T3

    Material A

    Material B

    T1 T2 T3RcA RcB

    MSB-FTIP-USAHID-2015 16

  • 7/25/2019 Pindah Panas 2015

    17/40

    For the composite pipe shown in the diagram

    The individual resistance values are:

    and, referring to the resistance diagram,

    Substituting the resistance terms

    2

    1ln

    2cA

    A

    r

    rR

    Lk

    3

    2ln

    2cB

    B

    r

    rR

    Lk

    1 3r

    CA CB

    T TqR R

    1 3

    2 3

    1 2

    ln ln

    2 2

    r

    A B

    T Tq r r

    r r

    Lk Lk

    MSB-FTIP-USAHID-2015 17

  • 7/25/2019 Pindah Panas 2015

    18/40

    Fluid flow over a solid body -- heat transfer

    between a solid and a fluid.

    Newtons Law of Cooling:

    where: h is convective heat transfer

    coefficient (W/m2C), A is area (m2), Tpis

    plate surface temperature (C), Tais

    surrounding fluid temperature (

    C).

    q = h A (Tp-Ta)

    MSB-FTIP-USAHID-2015 18

  • 7/25/2019 Pindah Panas 2015

    19/40

    where h = convective heat transfer coefficient,

    W/m2C

    h = f ( density, velocity, diameter, viscosity,specific heat, thermal conductivity, viscosity of

    fluid at wall temperature )

    The convective heat transfer coefficient is

    determined by dimensional analysis A series of experiments are conducted to

    determine relationships between following

    dimensionless numbers.

    q=hA(TW-Ta)

    MSB-FTIP-USAHID-2015 19

  • 7/25/2019 Pindah Panas 2015

    20/40

    Forced Convection - artificially induced fluid flow

    Free (Natural) Convection -- caused due to density

    differences

    Fluid condition h (W/m2C) Air, free convection 5-25

    Air, forced convection 10-200

    Water, free convection 20-100

    Water, forced convection 50-10,000 Boiling water 3,000-100,000

    Condensing water vapor 5,000-100,000

    MSB-FTIP-USAHID-2015 20

  • 7/25/2019 Pindah Panas 2015

    21/40

    Nusselt Number = NNu= hD/k

    Prandtl Number = NPr= mcp/k

    Reynolds Number = NRe = rvD/m

    where

    D = characteristic dimension

    k = thermal conductivity of fluid

    v = velocity of fluid

    cp= specific heat of fluid

    r = density of fluid

    m = viscosity of f

    MSB-FTIP-USAHID-2015 21

  • 7/25/2019 Pindah Panas 2015

    22/40

    FORCED CONVECTION: NNu = f(NRe, NPr)

    Laminar Flow in Pipes: If NRe < 2100:

    For (NRex NPr x D/L ) < 100

    For (NRex NPr x D/L) >100

    0.14Re Pr

    0.66

    Re Pr

    0.085

    3.66

    1 0.045

    bNu

    w

    DN NL

    ND

    N NL

    0.140.33

    Re Pr 1.86 b

    Nu

    w

    DN N N

    L

    MSB-FTIP-USAHID-2015 22

  • 7/25/2019 Pindah Panas 2015

    23/40

    All physical properties are evaluated at bulk

    fluid temperature, except mw.

    Transition Flow in Pipes: NRebetween 2100and 10,000: use figure 4.26 to determine h.

    Turbulent Flow in Pipes:NRe> 10000:

    0.14

    0.8 0.33

    Re Pr 0.023 b

    Nu

    w

    N N N

    MSB-FTIP-USAHID-2015 23

  • 7/25/2019 Pindah Panas 2015

    24/40

    FREE CONVECTION

    Free convection involves the dimensionless

    number called Grashof Number, NGr

    All physical properties are evaluated at the

    filmtemperature Tf= (Tw+ Tb)/2

    3 22Gr

    D g TN

    Prm

    Nu Gr

    hDN a N N

    k

    MSB-FTIP-USAHID-2015 24

  • 7/25/2019 Pindah Panas 2015

    25/40

    Forced Convection - artificially induced fluid flow

    Free (Natural) Convection -- caused due to density

    differences

    Fluid condition h (W/m2C) Air, free convection 5-25

    Air, forced convection 10-200

    Water, free convection 20-100

    Water, forced convection 50-10,000 Boiling water 3,000-100,000

    Condensing water vapor 5,000-100,000

    MSB-FTIP-USAHID-2015 25

  • 7/25/2019 Pindah Panas 2015

    26/40

    Heat transfer between two surfaces by

    emission and later absorption of

    electromagnetic radiation

    requires no physical medium

    MSB-FTIP-USAHID-2015 26

  • 7/25/2019 Pindah Panas 2015

    27/40

    Stefen-Boltzmann Equation:

    where s = Stefen-Boltzmann's constant, 5.669x10-8W/m2K4

    e = emissivity, (varies from 0 to 1)

    dimensionless

    A = area, m2

    T1= temperature of surface 1, Absolute

    T2= temperature of surface 2, Absolute

    q = A s e (T24T1

    4)

    MSB-FTIP-USAHID-2015 27

  • 7/25/2019 Pindah Panas 2015

    28/40

    q = UA(Ta- Tb) (1)

    Heat transfer through individual layers

    q = hiA(Ta- T1)

    q = hoA(T2- Tb)

    Ta

    hi

    T2

    Tb

    T1

    ho

    1 2( )kA T T

    q x

    1a

    i

    qT T

    h A

    MSB-FTIP-USAHID-2015 28

  • 7/25/2019 Pindah Panas 2015

    29/40

    Adding above three equations

    From (1)

    1 2

    qT T

    kA

    x

    2 b

    o

    qT T

    h A

    a b

    qT T

    UA

    a b

    i o

    q q x qT T

    h A kA h A

    a b

    qT T

    UA

    MSB-FTIP-USAHID-2015 29

  • 7/25/2019 Pindah Panas 2015

    30/40

    i o

    q q q x q

    UA h A kA h A

    1 1 1

    i o

    x

    U h k h

    1 1 1

    i i i i m o o

    x

    U A h A kA h A

    MSB-FTIP-USAHID-2015 30

  • 7/25/2019 Pindah Panas 2015

    31/40

    Similar expression obtained when an overall thermal

    resistance is calculated

    RT= Rconv1+ Rcond+ Rconv2

    Then

    Rconv1

    Rcond

    Rconv2

    Ta

    Tb

    1

    1conv

    i

    Rh A

    cond

    xR

    kA

    2

    1conv

    oR h A

    1 1T

    i o

    xR

    h A kA h A

    MSB-FTIP-USAHID-2015 31

  • 7/25/2019 Pindah Panas 2015

    32/40

    In cylindrical coordinates:

    r1

    r2

    2

    1

    ln

    1 1 12

    T

    i i o o

    r

    rRh A Lk h A UA

    MSB-FTIP-USAHID-2015 32

  • 7/25/2019 Pindah Panas 2015

    33/40

    1

    2

    Fluid H

    Fluid H

    Fluid C

    Fluid C

    Insulation

    dTH

    dTC

    dq

    Temperature

    Area

    TH, inlet

    TC, inlet

    TH, exit

    TC, exit

    MSB-FTIP-USAHID-2015 33

  • 7/25/2019 Pindah Panas 2015

    34/40

    MSB-FTIP-USAHID-2015 34

  • 7/25/2019 Pindah Panas 2015

    35/40

    The primary objective in using a heat

    exchanger is to transfer thermal energy from

    one fluid to another. We will use the

    following assumptions:

    1. Heat transfer is under steady-state

    conditions.

    2. The overall heat-transfer coefficient is

    constant throughout the length of pipe.

    3. There is no axial conduction of heat in the

    metal pipe.

    4. The heat exchanger is well insulated. The

    heat exchange is between the two liquid streamsflowing in the heat exchanger. There is negligible

    heat loss to the surroundings.

    MSB-FTIP-USAHID-2015 35

  • 7/25/2019 Pindah Panas 2015

    36/40

    Recall that change in heat energy in a fluid

    stream, if its temperature changes from T1to

    T2, is:

    where = mass flow rate of a fluid (kg/s), cp=

    specific heat of a fluid (kJ/kgC), and the

    temperature change of a fluid is from some inlet

    temperature T1to an exit temperature T2.

    q mc T T p ( )1 2

    MSB-FTIP-USAHID-2015 36

  • 7/25/2019 Pindah Panas 2015

    37/40

    Tlmis called the log mean temperature difference.Equation is used to design a heat exchanger and determine

    its area and the overall resistance to heat transfer, as

    illustrated in the following examples.

    , , 1

    , , 2

    H inlet C inlet

    H exit C exit

    T T T

    T T T

    q UA T T

    T

    T

    2 1

    2

    1

    ln

    q UA T lm ( )

    T T TT

    T

    lm 2 1

    2

    1

    ln

    MSB-FTIP-USAHID-2015 37

  • 7/25/2019 Pindah Panas 2015

    38/40

    MSB-FTIP-USAHID-2015 38

  • 7/25/2019 Pindah Panas 2015

    39/40

    MSB-FTIP-USAHID-2015 39

  • 7/25/2019 Pindah Panas 2015

    40/40