28
2006 自自自自自自自 -ENS-L5 Population dynamics L5 English in Natural Science 自自自自自自自

Population dynamics L5

  • Upload
    jalila

  • View
    22

  • Download
    0

Embed Size (px)

DESCRIPTION

Population dynamics L5. English in Natural Science 自然科学の英語. Abundance. Birds in river forests (Spain) (Sanchez-Bayo, F. 1985). Abundance vs body size. Small animals are more abundant than large ones Birds are less abundant than mammals. Mammals Log(Y) = 1.3-0.66*log [X] Birds - PowerPoint PPT Presentation

Citation preview

Page 1: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Population dynamicsL5

English in Natural Science

自然科学の英語

Page 2: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Abundance

Birds in river forests (Spain)(Sanchez-Bayo, F. 1985)

Page 3: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Abundance vs body size

• Small animals are more abundant than large ones• Birds are less abundant than mammals

350 mammal and 552 bird species (Silva et al., 1997)

MammalsLog(Y) = 1.3-0.66*log[X]

BirdsLog(Y) = 0.22-0.54*log[X]

Page 4: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Abundance and distributionJim Brown (1984)“Population densities

decrease towards the boundary of the geographical range of a species”

Ilkka Hanski (1982)“Widespread species

tend to be more abundant”

1. Sampling artifact2. Specialization

Generalist - large areaSpecialist - small area

3. Metapopulations and dispersal

Western grey kangaroo(Macropus fuliginosus)(Caughley et al. 1987)

Page 5: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Abundance vs distribution range

Rapoport’s rule (1975)“Geographic range size

decreases from polar to equatorial latitudes, with smallest range sizes in the tropics”

Why?1. Tolerance

2. Dispersal favours generalist species

3. Competition+Dispersal

+ Competition

+Tolerance

523 North American mammals(Pagel et al. 1991)

Page 6: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Population dynamics• Parameters

– Natality (fertility) rate

• Offspring, reproduction

rx = bx ÷ nx

– Mortality rate• Life expectancy

(longevity)

qx = dx ÷ nx

Big mammals

Birds

Fishinvertebrates

Small mammals

• Life tables– Mortality/cohort– Age, sex structure

Page 7: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Intrinsic capacity for increase r (Lotka, 1925)

• Exponential– constant rate (%)

Nt = N0 ert

N population

– Finite rate of increase

= er

individual

– Doubling time: time for a quantity to double

Dt = 70 ÷ r

• Linear– constant amount

y = x + A

Linear

Exponential

• LogisticK = carrying capacity

Nt = K ÷ (1+ ea-rt)

Page 8: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Natural processesExponential growth

– Populations(human, r = 1.7% year)

– Food consumption– Waste production– Economy

(Japan: 1-2% year)

(USA: 5% year)

(China: 7% year)

• Exponential reduction– Radioactive residues– Chemical concentration

(eg. pesticides, pollutants)

– Forest destruction

Linear growth– [CO2] atmosphere

– Food production (?)– industry

1

2

3

4

5

6

Gone!

Page 9: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Limits to population growth• Food resource

– carrying capacity (K)T.R. Malthus (1766-1834)

• Predators

• Abiotic factors– Temperature– Water availability

(Scheffer, 1951)

Reindeer

(Walters et al., 1990)

Daphniarosea

Page 10: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Life strategiesr unrelated to abundance• High r (r strategy)

– Generalist niche– Unstable populations– Quick recovery

• Low r (K strategy)– Specialist niche– Stable populations– Prone to extinction

• Decisive factor:– Mortality rate

High r

Low K

• How to increase r ?– Larger offspring size (r)– Increase longevity (K)

• more times to reproduce

– Younger reproductive age (both r and K)

Rep

rodu

ctiv

e su

cces

s

Reproductive effort

Repeated reproduction(K strategy)

Big-bang reproduction(r strategy)

Page 11: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Stationary distribution

No population increase in timeFertility rate = mortality rate

r = qx

Page 12: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Competition

• Resource competition– Inter or intraspecific

• Interference competition (contest)– Usually intraspecific– Sex: males only

Resources

• Plants– Water– Light– Nutrients in soil

• Animals– Food– Space

Page 13: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Competition: Mathematical models

Lotka (1925) and Volterra (1926)

Species 1dN1 K1-N1-N2

dt K1

Species 2dN2 K2-N2-N1

dt K2

=r1N1

=r2N2

Coexistence

Species 1 wins Species 2 wins

Exclusion

Page 14: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Tilman model (1990)

1

2

3

6

4

Neither species can live

Only species A can live

Species A wins

Species B wins

Only species B can live

5

Species A & B co-exist

Zero growth

• Equilibrium point depends on rate of consumption of resources 1 and 2

R1: rate A > rate B A wins

Page 15: Population dynamics L5

2006 自然科学の英語 -ENS-L5 Grain beetles in wheat (Birch,1953)

2. Spatial segregation

Co-existence

Saccharomyces + Schizosaccharomyces yeast(Gause, 1932)

inside

outside

Species must occupy different niches (Gause, 1934)1. resource partitioning

(share)

Page 16: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Tern species in Christmas Island(Ashmole, 1968)

Segregation

• Efficient utilization of the same resource– Habitat (space)– Size of prey (diet)– Time

• Day - night• Seasons (migration)

• Mechanism of evolution– r and K selection theory

(MacArthur & Wilson, 1967)

Page 17: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Predation & parasitism

• Predators– External– Big size

• Parasites– Internal - live on host– Small size (i.e.larvae)

• Natural agents to control populations– Exponential increase logistic model

• Exponential reproduction ‘biomass waste’– Producers: plants, phytoplankton– Predation: one species eats another

• Herbivores: eat plants• Carnivores/parasites: eat herbivores (prey)

• Predators/parasites USE that extra biomass

Page 18: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Predators and parasites depend on prey/host

AbundancePrey (lemming)

abundancebird predators

Page 19: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Models• Discrete populations: one generation/year

– Prey Nt+1 = (1-B zt)Nt-C NtPt

– Predator Pt+1 = Q NeqPt

(Utida, 1957)

Parasitic wasp

Prey = Host

B = prey reproductive rateC = predator efficiencyQ = predator reproductive rate

Page 20: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Prey population density (N)

Pre

dat

or

den

sity

(P

)

Caribou (Bergerud 1980; Sinclair 1989)

Continuous generations• Lotka (1925) and Volterra (1926): unrealistic• Rosenzweig-MacArthur (1963)

Intraspecificcompetition

En

viron

men

tal pre

ssure

(Carrying capacity)

Predator equilibrium

Food shortage equilibrium

Predation

Page 21: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Population regulation

Birth rate (b) DOWNDeath rate (d) UPpredationdiseasefood shortage

Birth rate (b) UPDeath rate (d) DOWN

Net reproductive rate (R0) =number of female offspring / female / generation

HumansR0 = 1.1

Stable populations

Stochastic variation

Page 22: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Probability of extinction (Pielou, 1969)

P = (d/b)N0

d = death rateb = birth rate

N0 = initial population size

1) b > d P > 1.0 survival2) b < d P < 1.0 extinction3) b = d P = 1.0 extinction

Extinction

• Species ceases to exist• Causes

– Habitat loss– Introduced species

(competition, predation)– Overkill– stochasticity

• Human impact– Habitat destruction– Overkill (e.g. Dodo,

Mammoth, Moa)because of stochastic changes

in a lifetime (e.g. disease, climate)

Page 23: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Natural extinction• Geological eras and periods

– Characterised by changes in biodiversity• Extinction of old forms• Apparition of new forms

• Natural causes– Atmospheric composition

• Plants increased O2 and decreased CO2

– Astronomic - Milankovitch cycles• Climate variation (i.e. iceage)

– Catastrophes (Cuvier, 1769-1832)• Five major extinction events• Cause: asteroids? Earth’s geochemistry?

Page 24: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Historical extinction events

52% families95% species

15% families50% genera

Page 25: Population dynamics L5

2006 自然科学の英語 -ENS-L5

extraterrestrial iridium layer meteoriteCretaceous-Triasic boundary

ItalyCaribbean Denmark

(Alvarez et al. 1980, 82) (Kastner et al. 1984)

Page 26: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Mass extinctions…recovery

Page 27: Population dynamics L5

2006 自然科学の英語 -ENS-L5

Evolution and extinction

• Extinction is an irreversible process

• Extinction events have a founder effect– New taxa appear– Biodiversity flourishes, even more than before

• Eventually all species go extinct– Evolve to generate another species

(average lifetime of species is 10 m years)– Stop existing - gone!

Page 28: Population dynamics L5

2006 自然科学の英語 -ENS-L5

References

• Charles J. Krebs. 2001. Ecology 5th ed. / 応用動物昆虫学   B-226

• Tokeshi M. 1999. Species coexistence: ecological and evolutionary perspectives / 応用動物昆虫学 B-207

• Alvarez, L. W., W. Alvarez, et al. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208: 1095-1108