144
POWER SYSTEM ANALYSIS LAB MANUAL ASAD NAEEM 2006‐RCET‐EE‐22 POWER SYSTEM ANALYSIS SUBMITTED TO: ENGR.M.JUNAID SUBMITTED BY: ASAD NAEEM 2006-RCET-EE-22 DEPARTMENT OF ELECTRICAL ENGINEERING (A CONSTITUENT COLLEGE: RACHNA COLLEGE OF ENGINEERING & TECHNOLOGY GUJRANWALA) UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE, PAKISTAN

Power System Analysis Lab Manual

  • Upload
    chethan

  • View
    3.507

  • Download
    15

Embed Size (px)

Citation preview

Page 1: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

 

POWER SYSTEM ANALYSIS

 

SUBMITTED TO: 

ENGR.M.JUNAID

 

 

SUBMITTED BY:

ASAD NAEEM

2006-RCET-EE-22

DEPARTMENT OF ELECTRICAL ENGINEERING (A CONSTITUENT COLLEGE: RACHNA COLLEGE OF ENGINEERING &

TECHNOLOGY GUJRANWALA) UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE, PAKISTAN

Page 2: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

01 To plot the daily load curve for the given data using MATLAB

02 Introduction to basics of Electrical Transients Analyzer Program (ETAP)

03 Evaluate the value of voltages for a 4-BUS system using node equations in MATLAB

04 Modeling and Load flow analysis of RCET power distribution network using ETAP

05 Bus elimination of a 4-BUS system using MATLAB

06 To study the Concept of Modifications of an Existing Bus-

Impedance Matrix & Implementing in MATLAB

07 Application of Gauss-Siedal and Newton-Raphson method for load flow studies on a three bus system using MATLAB

Page 3: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

08 Harmonic Load Modeling using built-in and user defined

models of ETAP

09 Impact of personal computer load on power distribution network of RCET

10 Flow of triplen harmonics (zero-sequence harmonics) during 5 different schemes of connection for a 3-phase transformer with

presence of large non-linear load using ETAP

11 Three phase short circuit analysis (3-phase faults-device duty) for a given power system using ETAP

12 Three phase short circuit analysis (3-phase faults-30 cycle

network) for a given power system using ETAP

13 Three phase short circuit analysis (LG, LL, LLG, & 3-Phase Faults - ½ Cycle) for a given power system using ETAP

14 Three phase short circuit analysis (LG, LL, LLG, & 3-Phase

Faults - 1.5 to 4 Cycle) for a given power system using ETAP

15 Three phase short circuit analysis (LG, LL, LLG, & 3-Phase Faults - 30 Cycle) for a given power system using ETAP

Page 4: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

 

EXPERIMENT#01 

To plot the daily load curve for the given data using MATLAB  

Given data: 

Interval from  To  Load MW12 A.M  2 A.M  62  6  56  9  109  12   1512 P.M  2 P.M  122  4  144  6  166  8  188  10  1610  11  1211  12 A.M 6 

Requirements: 

1. Find average value of load 2. Find peak value of load 3. Find the load factor 4. Plot the load curve 

Page 5: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

Theory Loads:

Loads of power systems are divided into three main categories that are given below.

1. Industrial Loads 2. Commercial Loads 3. Residential Loads

Very large industrial loads are served through the transmission lines. Large industrial loads are served directly from the sub-transmission level. And small industrial loads are served directly from the primary distribution network. The industrial loads are composite loads and induction motors from a high proportion of these loads. These composite loads are functions of voltage and frequency and form a major part of the system load. Commercial and residential load consist largely of lighting, heating and cooling. These loads are independent of frequency and consume negligibly small reactive power.

The real power of loads is expressed in terms of kilowatts or megawatts. The magnitude of load varies throughout the day and power must be available to the consumer on demand.

The daily load curve of a utility is a composite of demands made by various classes of users. The greatest value of load during a twenty four hours is called the peak or maximum demand. Smaller peaking generators may be commissioned to meet the peak load that occurs for only a few hours. In order to asses the usefulness of the generating plant the load factor is defined.

The load factor is the ratio of average load over a designated period of time to the peak load occurring in that period. Load factor may be given for a day, a month or an year. Yearly or annual load factor is the most useful since a year represents a full cycle of time. The daily load factor is

Page 6: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

Daily load factor = average load / peak load

Multiplying the numerator and denominator by a time period of 24 hr we have

Daily load factor= average load*24 hr / (peak load*24 hrs)

= energy consumed during 24 hr/ (peak load*24 hr)

The annual load factor is

Annual load factor = total annual energy / (peak load*8760 hr)

Today’s typical system load factors are in range of 55-70%. In Pakistan WAPDA standard for urban areas load factor is 60% and that of rural areas is 65%.

Matlab code:

data=[0 2 6;

2 6 5;

6 9 10;

9 12 15;

12 14 12;

14 16 14;

16 18 16;

18 20 18;

20 22 16;

22 23 12;

Page 7: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

23 24 6];

p=data(:,3);

Dt=data(:,2)-data(:,1);

w=p'*Dt;

pavg=w/sum(Dt)

peak=max(p)

LF=pavg/peak*100

L=length(data);

tt = [data(:,1) data(:,2)];

t = sort(reshape(tt, 1, 2*L));

for n = 1:L

pp(2*n-1)=p(n);

pp(2*n)=p(n);

end

plot(t,pp)

xlabel('TIME,Hr'),ylabel('P,MW')

Matlab results:

pavg =11.5417 

peak =18 

LF =64.1204 

 

Page 8: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

0 5 10 15 20 254

6

8

10

12

14

16

18

TIME,Hr

P,M

W

 

 

 

 

 

 

 

 

 

 

 

COMMENTS:

In this experiment we learn how to find the daily load curve for any power system using MATLAB. Load curve is very important as we can achieve very important information from it like:

• Peak load • Average load • Load factor

These quantities are very helpful for understanding any power system.

Page 9: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

EXPERIMENT#02 

Introduction to basics of Electrical Transients Analyzer Program (ETAP) 

What is ETAP?

ETAP is the most comprehensive analysis platform for the design, simulation, operation, control, optimization, and automation of generation, transmission, distribution, and industrial power systems. 

Project Toolbar The Project Toolbar contains icons that allow you to perform shortcuts of many commonly used functions in PowerStation. 

Create   Create a new project file 

Open    Open an existing project file 

Save    Save the project file 

Print    Print the one‐line diagram or U/G raceway system 

Cut  Cut the selected elements from the one‐line diagram or U/G raceway system to the Dumpster 

Copy  Copy the selected elements from the one‐line diagram or U/G raceway system to the Dumpster 

Paste    Paste elements from a Dumpster Cell to the one‐line diagram or U/G raceway       system 

Zoom In  Magnify the one‐line diagram or U/G raceway system 

Zoom Out  Reduce the one‐line diagram or U/G raceway system 

Zoom to Fit Page  Re‐size the one‐line diagram to fit the window 

Check Continuity  Check the system continuity for non‐energized elements 

Page 10: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

Power Calculator  Activate PowerStation Calculator that relates MW, MVAR, MVA, kV, Amp, and PF together with either kVA or MVA units 

Help    Point to a specific area to learn more about PowerStation 

Mode Toolbar ETAP offers a suite of fully integrated software solutions including arc flash, load flow, short circuit, transient stability, relay coordination, cable ampacity, optimal power flow, and more. Its modular functionality can be customized to fit the needs of any company, from small to large power systems. 

Edit Mode Edit mode enables you to build your one‐line diagram, change system connections, edit engineering properties, save your project, and generate schedule reports in Crystal Reports formats.  The Edit Toolbars for both AC and DC elements will be displayed to the right of the screen when this mode is active.  This mode provides a wide variety of tasks including: 

∙ Drag & Drop Elements ∙ Connect Elements ∙ Change IDs ∙ Cut, Copy, & Paste Elements ∙ Move from Dumpster ∙ Insert OLE Objects ∙ Cut, Copy & OLE Objects ∙ Merge PowerStation Project ∙ Hide/Show Groups of Protective Devices ∙ Rotate Elements ∙ Size Elements ∙ Change Symbols ∙ Edit Properties ∙ Run Schedule Report Manager 

 

 

 

Page 11: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

 

 

 

 

 

 

Page 12: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

 

 

 

 

 

Page 13: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

 

 

 

 

 

Page 14: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

 

 

 

 

Page 15: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

 

 

 

 

 

Page 16: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

 

 

 

 

 

 

Page 17: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

 

 

 

 

 

 

Page 18: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

 

 

Example implementation:

 

 

Page 19: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

EXPERIMENT#03 

Evaluate the value of voltages for a 4­BUS system using node equations in MATLAB 

GIVEN ONE LINE DIAGRAM

REACTANCE DIAGRAM

In the first step, we draw the reactance diagram of the given one-line diagram as shown below:

Page 20: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

SOURCE TRANSFORM

• After making the reactance diagram, we apply source transformation on the given network by replacing the voltage sources with current sources

• Replace all the reactance by admittances using the relation:

• Y=1/X • The resultant diagram now can be shown as:

NODE EQUATIONS

Now, using the above figure write the node equations of the system:

• Applying KCL at node-1:

I1= (V1-0) y10 + (V1-V4) y14+ (V1-V3) y13

I1= (y10+y14+y13) V1 + 0V2 + (-y13) V3+ (-y14) V4

Page 21: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

• Applying KCL at node-2:

I2= (V2-0) y20 + (V2-V3) y23+ (V2-V4) y24

I2= 0V1+ (y20+y23+y24) V2 + (-y23) V3+ (-y24) V4

• Applying KCL at node-3:

I3= (V3-0) y30 + (V3-V1) y31+ (V3-V4) y34 + (V3-V2) y32

I3= (-y31) V1+ (-y32) V2+ (y30+y31+y34) V3 + (-y34) V4

• Applying KCL at node-4:

0= (V4-V1) y14+ (V4-V3) y43 + (V4-V2) y42

0= (-y14) V1+ (-y42) V2 + (-y34) V3+ (y14+y43+y42) V4

Matrix form of the node equations is:

Where:

Page 22: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

CALCULATIONS

 

MATLAB CODE

YBUS= [0-9.80i 0 0+4.00i 0+5.00i;

0 0-8.30i 0+2.50i 0+5.00i;

0+4.00i 0+2.50i 0-15.30i 0+8.00i;

0+5.00i 0+5.00i 0+8.00i 0-18.00i];

I= [0-1.20i; 0-0.7200-0.9600i; 0-1.2000i; 0];

ZBUS=inv (YBUS);

V=ZBUS*I

MATLAB RESULTS

V =

1.4111 - 0.2668i

1.3831 - 0.3508i

1.4059 - 0.2824i

1.4010 - 0.2971i

Page 23: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

COMMENTS:

In this experiment we learn that using the bus impedance or admittance matrix we can find the voltages and currents for all buses of a given power system.

Moreover, we use MATLAB for the calculation of these quantities by just entering the bus impedance matrix and one given quantity (current or voltage) and MATLAB gives the results of very complex networks within no time.

Page 24: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

EXPERIMENT#04 

Modeling and Load flow analysis of RCET power distribution network using ETAP INTRODUCTION:

LOAD FLOW STUDIES

In power engineering, the power flow study (also known as load-flow study) is an important tool involving numerical analysis applied to a power system. Unlike traditional circuit analysis, a power flow study usually uses simplified notation such as a one-line diagram and per-unit system, and focuses on various forms of AC power (i.e: reactive, real, and apparent) rather than voltage and current. It analyses the power systems in normal steady-state operation. There exist a number of software implementations of power flow studies.

The great importance of power flow or load-flow studies is in the planning the future expansion of power systems as well as in determining the best operation of existing systems. The principal information obtained from the power flow study is the magnitude and phase angle of the voltage at each bus and the real and reactive power flowing in each line.

LOAD FLOW STUDIES IN ETAP

ETAP load flow analysis software calculates bus voltages, branch power factors, currents, and power flows throughout the electrical system. ETAP allows for swing, voltage regulated, and unregulated power sources with multiple power grids and generator connections. It is capable of performing analysis on both radial and loop systems. ETAP

Page 25: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

allows you to select from several different methods in order to achieve the best calculation efficiency and accuracy.

Run Load Flow Studies

Update Cable Load Currents

Load Flow display Option

Alert View

Report Manager

Halt current calculations

Net on line data

 

 

 

STEPS

Modeling of the main network Modeling of composite networks Running of load flow analysis Complete report from ETAP load flow analyzer

 

Page 26: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

MODELING OF BASIC RCET NETWORK

 

 

 

 

Page 27: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

MODELING OF COMPOSITE NETWORKS

STAFF COLONY:

Page 28: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

OLD BUILDING:

NEW BUILDING:

              

Page 29: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

HOSTEL-A,B:

Page 30: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

HOSTEL-E:

 

 

 

 

 

 

 

 

 

 

Complete ETAP load flow analysis report of the given network is attached with this experiment.

COMMENTS:

In this experiment we learn how to:

• Model a power system in ETAP • Model composite networks in a basic network • Assign properties of components added • Study the load flow analysis for that network

Page 31: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

EXPERIMENT#05 

Bus elimination of a 4­BUS system using MATLAB 

REACTANCE DIAGRAM

It is given that the transformer and generator at bus-3 are disconnected, so the reactance diagram now becomes:

SOURCE TRANSFORM

• After making the reactance diagram, we apply source transformation on the given network by replacing the voltage sources with current sources

• Replace all the reactance by admittances using the relation:

• Y=1/X • The resultant diagram now can be shown as:

Page 32: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

Part‐1: Elimination of Bus‐3&4  

MATRIX FORM

Where:

 

Page 33: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

MATLAB CODE

>>YBUS= [0-9.80i 0 0+4.00i 0+5.00i;

0 0-8.30i 0+2.50i 0+5.00i;

0+4.00i 0+2.50i 0-14.5i 0+8.00i;

0+5.00i 0+5.00i 0+8.00i 0-18.00i];

>>K= [0-9.80i 0; 0 0-8.30i];

>>L= [0+4.00i 0+5.00i; 0+2.50i 0+5.00i];

>>M= [0-14.5i 0+8.00i; 0+8.00i 0-18.00i];

>>LT= [0+4.00i 0+2.50i; 0+5.00i 0+5.00i];

>>N=inv (M);

>>P=L*N*LT;

>>Ybus=K-P

MATLAB RESULTS

Ybus =

0 - 4.8736i 0 + 4.0736i

0 + 4.0736i 0 - 4.8736i 

 

 

 

 

 

 

Page 34: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

Part-2: Elimination Bus-4

MATLAB CODE:

>>Ybus=[-9.8i 0 4.0i 5i;

0 -8.3i 2.5i 5i;

4i 2.5i -14.5i 8i;

5i 5i 8i -18i];

>>K=[-9.8i 0 4i;0 -8.3i 2.5i;4i 2.5i -14.5i];

>>L=[5i;5i;8i];

>>M=[-18i];

>>P=L';

>>T=inv(M);

>>A=K-L*T*P

MATLAB RESULTS

A=

0 -11.1889i 0 - 1.3889i 0 + 1.7778i

0 - 1.3889i 0 - 9.6889i 0 + 0.2778i

0 + 1.7778i 0 + 0.2778i 0 -18.0556i

Part-3: Elimination Bus-3

MATLAB CODE:

>>P=[-11.1889i -1.3889i;-1.3889i -9.6889i];

>>Q=[1.7778i;0.2778i];

Page 35: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

>>R=[-18.0556i];

>>S=Q';

>>T=inv(R);

>>B=P-Q*T*S

MATLAB RESULTS

B =

0 -11.3639i 0 - 1.4163i

0 - 1.4163i 0 - 9.6932i

 

COMMENTS:

Bus impedance matrix is a very important tool for the calculation of voltages and currents at all the buses of a given network. Suppose that any fault occurs in the power system then we can get a task to modify the bus impedance matrix by eliminating the faulty node which will reduce the order of matrix by eliminating the faulty node.

In this experiment we learn how to:

• Eliminate last two nodes together • Eliminate only one last node

 

 

 

 

 

Page 36: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

EXPERIMENT#06 

To study the Concept of Modifications of an Existing Bus­Impedance Matrix & Implementing in MATLAB 

IMPEDANCE MATRIX

Impedance matrix is a very important tool in power system analysis. Using this matrix we can find:

• Voltages at all buses when currents are given • Currents at all buses when voltages are given

So it is very important that how to modify the bus impedance matrix when any new impedance is add into the original system.

Suppose a power system with n-buses having the impedances matrix of order n*n:

There are four cases that can take place while adding a new impedance Zb in the system:

• Adding Zb from a new bus-P to reference bus • Adding Zb from a new bus-P to an existing bus-K • Adding Zb from an existing bus-K to reference bus • Adding Zb between two existing buses

Page 37: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

MODIFICATION CASES

CASE‐1: ADDING Zb FROM A NEW BUS TO REFERENCE BUS  

This condition is explained in the following diagram:

Clearly,

Vp-0=Ib*Zb

Vp=Ib*Zb

Hence the modified matrix will take the form as:

MATLAB CODE

function [Z]=Case1(Zorg,Zb)

Zorg=[1 2 3 4;2 5 6 7;3 6 8 9;4 7 9 10]

Page 38: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

Zb=17;

l=length(Zorg);

for i=1:l+1

for j=1:l+1

if i<=l && j<=l

Znew(i,j)=Zorg(i,j);

elseif i==l+1 && j==l+1

Znew(i,j)=Zb;

else

Znew(i,j)=0;

end

end

end

Znew

MATLAB RESULTS

Page 39: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

CASE‐2: ADDING Zb FROM A NEW BUS‐P TO AN EXISTING BUS‐K  

This condition is explained in the following diagram:

 

Clearly,

Vp-Vk,new=Ip*Zb

Vp=Vk,new+Ip*Zb

Where,

Vk,new=Vk,org+Ip*Zkk

Vp= Vk,org+Ip(Zkk+Zb)

Hence the modified matrix will take the form as:

Page 40: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

 

MATLAB CODE:

function [Z]=CASE2(Zorg,Zb) Zorg=[1 2 3 4;2 5 6 7;3 6 8 9;4 7 9 10] Zb=5; l=length(Zorg); row =Zorg(l,:); column =Zorg(:,l); for i=1:l+1 for j=1:l+1 if i<=l && j<=l Znew(i,j)=Zorg(i,j); elseif i==l+1 for p=1:l Znew(i,p)=row(p); end elseif j==l+1 for q=1:l Znew(q,j)=column(q); end end if i==l+1 && j==l+1 Znew(i,j)=Zb+Zorg(l,l); end end end Znew

Page 41: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

MATLAB RESULTS

CASE‐3: ADDING Zb FROM AN EXISTING BUS‐K TO REFERENCE  

              BUS 

This condition is explained in the following diagram:

 

Page 42: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

Here we can apply the same case as in case-2 and then put Vp=0. This task can be achieved by eliminating the last row and column of the Znew matrix.

Now this matrix is of the order (n+1)*(n+1), we have to achieve a matrix of order n*n using formula:

Zkj(new)=Zkj(org)-(Zk(n+1)Z(n+1)j/Zkk+Zb)

In this case,

K=n

MATLAB CODE:

function [Z]=CASE3(Zorg,Zb)

Zorg=[1 2 3 4;2 5 6 7;3 6 8 9;4 7 9 10]

Zb=5;

l=length(Zorg);

row =Zorg(l,:);

column =Zorg(:,l);

for i=1:l+1

for j=1:l+1

Page 43: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

if i<=l && j<=l

Znew(i,j)=Zorg(i,j);

elseif i==l+1

for p=1:l

Znew(i,p)=row(p);

end

elseif j==l+1

for q=1:l

Znew(q,j)=column(q);

end

end

if i==l+1 && j==l+1

Znew(i,j)=Zb+Zorg(l,l);

end

end

end

Znew

for a=1:l

for b=1:l

K(a,b)=Znew(a,b);

end

Page 44: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

end

for a=1:l

L(a,1)=Znew(a,5);

end

M=Znew(l+1,l+1);

P=L';

T=inv(M);

Zwithnewbusrefferenced=K-L*T*P

MATLAB RESULTS

Page 45: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

 

CASE‐4: ADDING Zb BETWEEN TWO EXISTING BUSES  

This condition is explained in the following diagram:

 

 

In this case,

Zbb=Zb+Zjj+Zkk-2Zjk

Hence the modified matrix will take the form as:

Page 46: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

Here again we have to eliminate the last row and column to achieve the final matrix.

MATLAB CODE:

function [Z]=CASE4(Zorg,Zb)

Zorg=[1 2 3 4;2 5 6 7;3 6 8 9;4 7 9 10]

Zb=5;

l=length(Zorg);

R1 =Zorg(l,:);

C1 =Zorg(:,l);

R2 =Zorg(l-1,:);

C2 =Zorg(:,l-1);

for i=1:l+1

for j=1:l+1

if i<=l && j<=l

Znew(i,j)=Zorg(i,j);

Page 47: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

elseif i==l+1

for p=1:l

Znew(i,p)=R1(p)-R2(p);

End

elseif j==l+1

for q=1:l

Znew(q,j)=C1(q)-C2(q);

End

End

if i==l+1 && j==l+1

Znew(i,j)=Zb+Zorg(l,l)+Zorg(l-1,l-1)-(2*Zorg(l,l-1));

end

end

end

Znew

for a=1:l

for b=1:l

K(a,b)=Znew(a,b);

end

end

for a=1:l

Page 48: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

L(a,1)=Znew(a,5);

end

M=Znew(l+1,l+1);

P=L';

T=inv(M);

Zfinal=K-L*T*P

MATLAB RESULTS

 

Page 49: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

COMMENTS:

Bus impedance matrix is a very important tool for the calculation of voltages and currents at all the buses of a given network. Suppose that any improvement occurs in the power system then we can get a task to modify the bus impedance matrix by adding the new impedance in the system. The new impedance can be added in four different conditions:

• Addition of new impedance from a new bus to reference bus

• Addition of new impedance from a new bus to existing bus

• Addition of new impedance from an existing bus to reference bus

• Addition of new impedance between two existing buses

In this experiment we learn how to modify the bus impedance matrix for all four cases using MATLAB.

 

 

 

 

 

 

 

 

 

 

Page 50: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

EXPERIMENT#07 

Application of Gauss­Siedal and Newton­Raphson method for load flow studies on a three bus system using MATLAB(Implimentation of example#6.7,6.8 & 6.10 from POWER SYSTEM ANALYSIS by Hadi­Saadat) 

EXAMPLE 6.7

Given figure shows the one line diagram of a simple three bus system with generation at bus-1. The magnitude of voltage at bus-1 is adjusted to 1.05 per unit. The scheduled loads at buses-2 and 3 are as marked on the diagram. Line impedances are marked in per unit on a 100-MVA base and the line charging susceptances are neglected.

(A) Using the Gauss-Siedal method, determine the phasor values of the voltage at the load buses 2 and 3 (P&Q buses) accurate to four decimal places

(B) Find the slack bus real and reactive power (C) Determine the line flows and line losses. Construct a

power flow diagram showing the direction of line flow

Page 51: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

SOLUTION

Line impedances are converted to admittances:

 

 

At the P-Q buses, the complex loads expressed in per unit are:

S2sch=-(256.6+j110.2)/100= -2.566-j1.102 pu

S3sch=-(138.6+j45.2)/100= -1.386-j0.452 pu

Starting from an initial estimate of V2(0)=1.0+j0.0 and

V3(0)=1.0+j0.0

Page 52: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

GAUSS-SIEDEL FARMULA

 

SLACK1=conj(V1)*[V1*(y12+y13)-( y12*V2+y13*V3)] Sij=Vi*conj(Iij) Iij=yij*(Vi-Vj)

MATLAB CODE

y12=10-j*20; y13=10-j*30; y23=16-j*32; V1=1.05+j*0;

%CODE FOR PART-A

iter=0; s2=-2.566-j*1.102; s3=-1.386-j*0.452; V2=1+j*0.0; V3=1+j*0.0; for I=1:10; iter=iter+1; V2=(conj(s2)/conj(V2)+y12*V1+y23*V3)/(y12+y23); V3=(conj(s3)/conj(V3)+y13*V1+y23*V2)/(y13+y23); end V2 V3

Page 53: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

%CODE FOR PART-B

Pslack=conj(V1)*[V1*(y12+y13)-(y12*V2+y13*V3)]

%CODE FOR PART-C I12=y12*(V1-V2) I21=-I12 I13=y13*(V1-V3) I31=-I13 I23=y23*(V2-V3) I32=-I23 s12=V1*conj(I12) s21=V2*conj(I21) s13=V1*conj(I13) s31=V3*conj(I31) s23=V2*conj(I23) s32=V3*conj(I32) SL12=s12+s21 SL13=s13+s31 SL23=s23+s32

MATLAB RESULTS

PART-A RESULTS

V2 =

0.9800 - 0.0600i

V3 =

1.0000 - 0.0500i

PART-B RESULTS

SLACK-BUS POWER

Pslack = 4.0949 - 1.8900i

Page 54: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

PART-C RESULTS

I12 = 1.9000 - 0.8000i

I21 = -1.9000 + 0.8000i

I13 = 2.0000 - 1.0000i

I31 = -2.0000 + 1.0000i

I23 = -0.6400 + 0.4800i

I32 = 0.6400 - 0.4800i

LINE FLOWS

s12 = 1.9950 + 0.8400i

s21 = -1.9100 - 0.6700i

s13 = 2.1000 + 1.0500i

s31 = -2.0500 - 0.9000i

s23 = -0.6560 - 0.4320i

s32 = 0.6640 + 0.4480i

LINE LOSSES

SL12 = 0.0850 + 0.1700i

SL13 = 0.0500 + 0.1500i

SL23 = 0.0080 + 0.0160i

 

Page 55: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

EXAMPLE 6.8

Given figure shows the one line diagram of a simple three bus system with generators at buses-1 and 3. The magnitude of voltage at bus-1 is adjusted to 1.05pu. voltage magnitude at bus-3 is fixed at 1.04 pu with a real power generation of 200MW. A load consisting of 400MW and 250MVAR is taken from bus-2. Line impedances are marked in per unit on a 100MVA base, and the line charging susceptances are neglected. Obtain the power flow solution by the Gauss-Siedal method including line flows and line losses.

Where,impedances are replaced by admittances as:

Page 56: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

FARMULA’S

 

S3=conj(V3)*(y33*V3-y13*V1-y23*V2) Q3=-imag(conj(V3)*(y33*V3-y13*V1-y23*V2))

 

MATLAB CODE

y12=10-j*20; y13=10-j*30; y23=16-j*32; y33=y13+y23; V1=1.05+j*0; format long iter=0; s2=-4.0-j*2.5; p3=2; V2=1+j*0.0; Vm3=1.04; V3=1.04+j*0; for I=1:10; iter=iter+1; E2=V2; E3=V3; V2=(conj(s2)/conj(V2)+y12*V1+y23*V3)/(y12+y23) DV2=V2-E2; Q3=-imag(conj(V3)*(y33*V3-y13*V1-y23*V2)) s3=p3+j*Q3; Vc3=(conj(s3)/conj(V3)+y13*V1+y23*V2)/(y13+y23); Vi3=imag(Vc3); Vr3=sqrt(Vm3^2-Vi3^2);

Page 57: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

V3=Vr3+j*Vi3 DV3=V3-E3; end V2 V3 Q3 format short I12=y12*(V1-V2); I21=-I12; I13=y13*(V1-V3); I31=-I13; I23=y23*(V2-V3); I32=-I23; s12=V1*conj(I12); s21=V2*conj(I21); s13=V1*conj(I13); s31=V3*conj(I31); s23=V2*conj(I23); s32=V3*conj(I32); I1221=[I12,I21]; I1331=[I13,I31]; I2332=[I23,I32]; SL12=s12+s21 SL13=s13+s31 SL23=s23+s32 S1=(s12+s13) S2=(s23+s21) S3=(s31+s32) S12=s12 S21=s21 S13=s13 S31=s31 S23=s23 S32=s32

Page 58: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

MATLAB RESULTS

ITERATION RESULTS: 

1ST ITERATION 

V2 = 0.974615384615385 - 0.042307692307692i

Q3 = 1.160000000000002

V3 = 1.039987148574197 - 0.005170183798502i

2ND ITERATION 

V2 = 0.971057059512953 - 0.043431876337850i

Q3 = 1.387957731052817

V3 = 1.039974378708180 - 0.007300111679686i

3RD ITERATION 

V2 = 0.970733708554698 - 0.044791724463619i

Q3 = 1.429040300785471

V3 = 1.039966679445820 - 0.008325001047174i

4TH ITERATION 

V2 = 0.970652437281433 - 0.045329920732880i

Q3 = 1.448333275594840

V3 = 1.039963173621928 - 0.008752000354604i

5TH ITERATION 

V2 = 0.970623655331095 - 0.045554240372625i

Q3 = 1.456209166612119

Page 59: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

V3 = 1.039961668920058 - 0.008929007616053i

6TH ITERATION 

V2 = 0.970612037114234 - 0.045646940090561i

Q3 = 1.459469889628077

V3 = 1.039961037734205 - 0.009002221658867i

7TH ITERATION 

V2 = 0.970607253520093 - 0.045685276728252i

Q3 = 1.460818201396914

V3 = 1.039960775170297 - 0.009032502820155i

8TH ITERATION 

V2 = 0.970605276281561 - 0.045701131870879i

Q3 = 1.461375872168914

V3 = 1.039960666313617 - 0.009045027392915i

9TH ITERATION 

V2 = 0.970604458527297 - 0.045707689707255i

Q3 = 1.461606535170454

V3 = 1.039960621244008 - 0.009050207830587i

10TH ITERATION 

V2 = 0.970604120282796 - 0.045710402176455i

Q3 = 1.461701943643423

V3 = 1.039960602594413 - 0.009052350604469i

Page 60: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

FINAL RESULTS: 

V2 = 0.970604120282796 - 0.045710402176455i

V3 = 1.039960602594413 - 0.009052350604469i

Q3 = 1.461701943643423

SL12 = 0.0839 + 0.1679i

SL13 = 0.0018 + 0.0055i

SL23 = 0.0985 + 0.1969i

S1 = 2.1841 + 1.4085i

S2 = -3.9999 - 2.5000i

S3 = 2.0000 + 1.4618i

S12 = 1.7936 + 1.1874i

S21 = -1.7096 - 1.0195i

S13 = 0.3906 + 0.2212i

S31 = -0.3887 - 0.2157i

S23 = -2.2903 - 1.4805i

S32 = 2.3888 + 1.6775i

Page 61: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

EXAMPLE 6.10

Given figure shows the one line diagram of a simple three bus system with generators at buses-1 and 3. The magnitude of voltage at bus-1 is adjusted to 1.05pu. voltage magnitude at bus-3 is fixed at 1.04 pu with a real power generation of 200MW. A load consisting of 400MW and 250MVAR is taken from bus-2. Line impedances are marked in per unit on a 100MVA base, and the line charging susceptances are neglected. Obtain the power flow solution by the Newton-Raphson method including line flows and line losses.

Where,impedances are replaced by admittances as:

The bus impedance matrix can be constructed as:

YBUS=[20-j50 -10+j20 -10+j30

Page 62: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

-10+j20 26-j52 -16+j32

-10+j30 -16+j32 26-j62];

FARMULA’S

P1=V1^2*Y11*cos(Ѳ11)+V1*V2*Y12*cos(Ѳ12-d1+d2)+... V1*V3*Y13*cos(Ѳ13-d1+d3) Q1=-V1^2*Y11*sin(Ѳ11)-V1*V2*Y12*sin(Ѳ12-d1+d2)-... V1*V3*Y13*sin(Ѳ13-d1+d3) Q3=-V3*V1*Y31*sin(Ѳ31)-d3+d1)-V3*V2*Y32*... sin(Ѳ32-d3+d2)-V3^2*Y33*sinѲ33

MATLAB CODE V=[1.05;1.0;1.04]; d=[0;0;0]; Ps=[-4;2.0]; Qs=-2.5; YB=[20-j*50 -10+j*20 -10+j*30 -10+j*20 26-j*52 -16+j*32 -10+j*30 -16+j*32 26-j*62]; Y=abs(YB); t=angle(YB); iter=0; pwracur=0.00025; %power accuracy DC=10; %set the maximun power residue to a high value while max(abs(DC))>pwracur iter=iter+1 P=[V(2)*V(1)*Y(2,1)*cos(t(2,1)-d(2)+d(1))+V(2)^2*Y(2,2)*cos(t(2,2))+... V(2)*V(3)*Y(2,3)*cos(t(2,3)-d(2)+d(3)); V(3)*V(1)*Y(3,1)*cos(t(3,1)-d(3)+d(1))+V(3)^2*Y(3,3)*cos(t(3,3))+... V(3)*V(2)*Y(3,2)*cos(t(3,2)-d(3)+d(2))];

Page 63: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

Q=-V(2)*V(1)*Y(2,1)*sin(t(2,1)-d(2)+d(1))-V(2)^2*Y(2,2)*sin(t(2,2))-... V(2)*V(3)*Y(2,3)*sin(t(2,3)-d(2)+d(3)); J(1,1)=V(2)*V(1)*Y(2,1)*sin(t(2,1)-d(2)+d(1))+... V(2)*V(3)*Y(2,3)*sin(t(2,3)-d(2)+d(3)); J(1,2)=-V(2)*V(3)*Y(2,3)*sin(t(2,3)-d(2)+d(3)); J(1,3)=V(1)*Y(2,1)*cos(t(2,1)-d(2)+d(1))+2*V(2)*Y(2,2)*cos(t(2,2))+... V(3)*Y(2,3)*cos(t(2,3)-d(2)+d(3)); J(2,1)=-V(3)*V(2)*Y(3,2)*sin(t(3,2)-d(3)+d(2)); J(2,2)=V(3)*V(1)*Y(3,1)*sin(t(3,1)-d(3)+d(1))+... V(3)*V(2)*Y(3,2)*sin(t(3,2)-d(3)+d(2)); J(2,3)=V(3)*Y(2,3)*cos(t(3,2)-d(3)+d(2)); J(3,1)=V(2)*V(1)*Y(2,1)*cos(t(2,1)-d(2)+d(1))+... V(2)*V(3)*Y(2,3)*cos(t(2,3)-d(2)+d(3)); J(3,2)=-V(2)*V(3)*Y(2,3)*cos(t(2,3)-d(2)+d(3)); J(3,3)=-V(1)*Y(2,1)*sin(t(2,1)-d(2)+d(1))-2*V(2)*Y(2,2) *sin(t(2,2)) ... V(3)*Y(2,3)*sin(t(2,3)-d(2)+d(3)); DP=Ps-P; DQ=Qs-Q; DC=[DP;DQ] J DX=J\DC d(2)=d(2)+DX(1); d(3)=d(3)+DX(2); V(2)=V(2)+DX(3); V, d, delta=180/pi*d; end P1=V(1)^2*Y(1,1)*cos(t(1,1))+V(1)*V(2)*Y(1,2)*cos(t(1,2)- d(1)+d(2))+... V(1)*V(3)*Y(1,3)*cos(t(1,3)-d(1)+d(3)) Q1=-V(1)^2*Y(1,1)*sin(t(1,1))-V(1)*V(2)*Y(1,2)*sin(t(1,2)-d(1)+d(2))-... V(1)*V(3)*Y(1,3)*sin(t(1,3)-d(1)+d(3)) Q3=-V(3)*V(1)*Y(3,1)*sin(t(3,1)-d(3)+d(1))-V(3)*V(2)*Y(3,2)*... sin(t(3,2)-d(3)+d(2))-V(3)^2*Y(3,3)*sin(t(3,3))

Page 64: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

MATLAB RESULTS

1ST ITERATION DC =

-2.8600

1.4384

-0.2200

J =

54.2800 -33.2800 24.8600

-33.2800 66.0400 -16.6400

-27.1400 16.6400 49.7200

DX =

-0.0453

-0.0077

-0.0265

V =

1.0500

0.9735

1.0400

d = 0

-0.0453

-0.0077

Page 65: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

2ND ITERATION 

DC = -0.0992 

0.0217

-0.0509

J =

51.7247 -31.7656 21.3026

-32.9816 65.6564 -15.3791

-28.5386 17.4028 48.1036

DX =

-0.0018

-0.0010

-0.0018

V =

1.0500

0.9717

1.0400

d =

0

-0.0471

-0.0087

Page 66: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

3RD ITERATION 

DC =

1.0e-003 *

-0.2166

0.0382

-0.1430

J =

51.5967 -31.6939 21.1474

-32.9339 65.5976 -15.3516

-28.5482 17.3969 47.9549

DX =

1.0e-005 *

-0.3856

-0.2386

-0.4412

V =

1.0500

0.9717

1.0400

d = 0

-0.0471

-0.0087

Page 67: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

FINAL RESULTS: 

P1 =

2.1842

Q1 =

1.4085

Q3 =

1.4618

COMMENTS:

Power system calculations are mostly very complex for large power systems. To analyze such power systems, there are two very important iterative methods:

• Gauss Siedel Method • Newton Raphson method

In this experiment we learn how to apply these two methods using MATLAB.

Gauss-Seidel iteration has two advantages:

• Errors do not accumulate during the calculation. If the procedure converges, it approaches the correct answer without rounding errors such as can occur during inversion of large matrices.

• The method can be used for nonlinear sets of equations.

While Newton Raphson method is readily applied to non-linear equations, and can use finite-difference estimates of the derivatives to evaluate the gradients.

Page 68: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

EXPERIMENT#08 

Harmonic Load Modeling using built­in and user defined models of ETAP  

HARMONIC ANALYSIS

Because of the wide and ever increasing applications of power electronic devices, such as variable speed drives, uninterruptible power supplies (UPS), static power converters, etc., power system voltage and current quality has been severely affected in some areas.  In these areas components other than that of fundamental frequency can be found to exist in the distorted voltage and current waveforms.  These components usually are the integer multipliers of the fundamental frequency, called harmonics.  In addition to electronic devices, some other non‐linear loads, or devices including saturated transformers, arc furnaces, fluorescent lights, and cycloconverters are also responsible for the deterioration in power system quality. 

HARMONIC SOURCES

The following components can be modeled as a harmonic voltage source in PowerStation: 

• Power Grid • Synchronous Generator • Inverter • Charger/Converter 

Page 69: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

• Static Load 

IMPORTANT DEFINITIONS

Transients

The term transient has long been used in the analysis of power system variations to denote an event that is undesirable and momentary in nature. Transient is “that part of the change in a variable that disappears during transition from one steady state operating condition to another.” 

Impulsive transient

An impulsive transient is a sudden; non–power frequency change in the steady‐state condition of voltage, current, or both that is unidirectional in polarity (primarily either positive or negative). 

Oscillatory transient

An oscillatory transient is a sudden, non–power frequency change in the steady‐state condition of voltage, current, or both, that includes both positive and negative polarity values. 

Long-Duration Voltage Variations

Long‐duration variations encompass root‐mean‐square (rms) deviations at power frequencies for longer than 1 minute.  

Overvoltage

An overvoltage is an increase in the rms ac voltage greater than 110 percent at the power frequency for duration longer than 1 

Page 70: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

min. Over voltages are usually the results of load switching (e.g., switching off a large load or energizing a capacitor bank).  

Under voltage

An under voltage is a decrease in the rms ac voltage to less than 90 percent at the power frequency for a duration longer than 1 min. Under voltages are the results of switching events that are the opposite of the events that cause over voltages. 

Short-Duration Voltage Variations

This category encompasses the IEC category of voltage dips and short interruptions. Each type of variation can be designated as instantaneous, momentary, or temporary, depending on its duration. 

Short‐duration voltage variations are caused by fault conditions, the energization of large loads which require high starting currents, or intermittent loose connections in power wiring. 

Interruption

An interruption occurs when the supply voltage or load current decreases to less than 0.1 pu for a period of time not exceeding 1 min. 

Sags (dips)

Sag is a decrease to between 0.1 and 0.9 pu in rms voltage or current at the power frequency for durations from 0.5 cycle to 1 min. 

Swells

Page 71: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

A swell is defined as an increase to between 1.1 and 1.8 pu in rms voltage or current at the power frequency for durations from 0.5 cycle to 1 min. 

Voltage Imbalance

Voltage imbalance (also called voltage unbalance) is sometimes defined as the maximum deviation from the average of the three‐phase voltages or currents, divided by the average of the three‐phase voltages or currents, expressed in percent. 

Waveform Distortion

Waveform distortion is defined as a steady‐state deviation from an ideal sine wave of power frequency principally characterized by the spectral content of the deviation. 

Harmonics

Harmonics are sinusoidal voltages or currents having frequencies that are integer multiples of the frequency at which the supply system is designed to operate (termed the fundamental frequency usually 50 or 60 Hz). 

Interharmonics

Voltages or currents having frequency components that are not integer multiples of the frequency at which the supply system is designed to operate (e.g., 50 or 60 Hz) are called Interharmonics. 

Odd harmonics

Page 72: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

Voltages or currents having frequency components that are odd integer multiples of the frequency at which the supply system is designed to operate (e.g., 50 or 60 Hz) are called odd harmonics. 

Even harmonics

Voltages or currents having frequency components that are even integer multiples of the frequency at which the supply system is designed to operate (e.g., 50 or 60 Hz) are called even harmonics. 

Voltage Fluctuation

Voltage fluctuations are systematic variations of the voltage envelope or a series of random voltage changes, the magnitude of which does not normally exceed the voltage ranges specified by ANSI C84.1 of 0.9 to 1.1 pu. 

Power Frequency Variations

Power frequency variations are defined as the deviation of the power system fundamental frequency from it specified nominal value (e.g., 50 or 60 Hz). 

Power factor, displacement

The power factor of the fundamental frequency components of the voltage and current waveforms 

Power factor (true)

The ratio of active power (watts) to apparent power (volt amperes) 

Total harmonic distortion (THD)

Page 73: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

The ratio of the root mean square of the harmonic content to the rms value of the fundamental quantity, expressed as a percent of the fundamental. 

Triplen harmonics

A term frequently used to refer to the odd multiples of the third harmonic, which deserve special attention because of their natural tendency to be zero sequence. 

 

ONE LINE DIAGRAM

 

 

MODELING OF HARMONIC LOAD

• Double click on the charger • Select the harmonics section • Select the type of harmonics from the given library of

harmonics

Page 74: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

BUILT-IN MODELS OF ETAP

ROCKWELL (12-Pulse-VFD)

ROCKWELL (18-Pulse-VFD)

Page 75: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

ROCKWELL (6-Pulse-VFD)

TOSHIBA (PWM-ASD)

TYPICAL (LCI)

Page 76: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

TYPICAL-IEEE (12-Pulse1)

TYPICAL-IEEE (12-Pulse2)

Page 77: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

TYPICAL-IEEE (18-Pulse-CT)

TYPICAL-IEEE (18-Pulse-VT)

Page 78: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

TYPICAL-IEEE (6-Pulse1)

TYPICAL-IEEE (6-Pulse2)

Page 79: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

TYPICAL-IEEE (Fluorescent)

TYPICAL-IEEE (Large-ASD)

Page 80: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

TYPICAL-IEEE (SPC)

TYPICAL-IEEE (XFMR-Magnet)

Page 81: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

USER DEFINED MODELING

• Go to the library tab given on the main window of ETAP • Select the harmonic section • Click on add tab • Enter the name of new harmonic model • Click on edit tab • Enter the spectrum components in the table

Page 82: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

COMMENTS

In this experiment, we learnt:

• How to model a harmonic load using built-in models • How to built a user-defined harmonic model • How to model a harmonic load using user-defined

models

So, ETAP is a very powerful tool for harmonic analysis of any power distribution network.

EXPERIMENT#09 

Impact of personal computer load on power distribution network of RCET 

Harmonics

Harmonics are sinusoidal voltages or currents having frequencies that are integer multiples of the frequency at which the supply system is designed to operate (termed the fundamental frequency usually 50 or 60 Hz). 

Page 83: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

PC LOAD THD’S

Harmonic No. %THD 3rd 91.63 5th 86.61 7th 69.87 9th 44.76 11th 54.81 13th 46.44 15th 46.44 17th 33.05 19th 24.70 23rd 11.74 25th 7.900 29th 5.120

%THD 178.97  

 

ONE LINE DIAGRAM

Page 84: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

 

 

 

 

 

 

LOAD FLOW DIAGRAM

Page 85: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

 

 

 

 

 

 

Page 86: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

 

 

 

 

 

 

 

LOAD FLOW ANALYSIS REPORT

 

HARMONIC ANALYSIS RESULTS

Page 87: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

VOLTAGE WAVEFORMS & SPECTRAS

BUS-5:

BUS-11:

Page 88: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

BUS-27:

Page 89: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

BUS-33:

Page 90: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

CURRENT WAVEFORMS & SPECTRAS

Page 91: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

CABLE-2:

CABLE-7:

Page 92: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

CABLE-11:

Page 93: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

CABLE-18:

Page 94: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

 

 

Page 95: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

HARMONIC ANALYSIS REPORT

COMMENTS

Page 96: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

In this experiment, we learnt:

• How to apply harmonic analysis to a power distribution network

• How to perform load flow analysis on a power distribution network

• How to perform harmonic analysis on a power distribution network

• How to get harmonic spectra at required locations

Page 97: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

EXPERIMENT#10 

Flow of triplen harmonics (zero­sequence harmonics) during 5 different schemes of connection for a 3­phase transformer with presence of large non­linear load using ETAP  

ONE LINE DIAGRAM

 

 

HARMONIC MODEL USED

PC load is used as a source of harmonics in this experiment that has the following range of THD’S.

Harmonic No. %THD 3rd 91.63

Page 98: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

5th 86.61 7th 69.87 9th 44.76 11th 54.81 13th 46.44 15th 46.44 17th 33.05 19th 24.70 23rd 11.74 25th 7.900 29th 5.120

%THD 178.97

5 DIFFERENT SCHEMES OF TRANSFORMER WINDING

PRIMARY SIDE SECONDARY SIDE 1 Y-Grounded Y-Ungrounded 2 Y-Grounded Y-Grounded 3 Y-Grounded Delta 4 Y-Ungrounded Delta 5 Delta Delta

 

 

 

 

HARMONIC ANALYSIS RESULTS

Page 99: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

CASE-1:

Transformer primary side Y-Grounded and secondary Y-Ungrounded

VOLTAGE SPECTRA ON LT-SIDE

VOLTAGE SPECTRA ON HT-SIDE

VOLTAGE WAVEFORM ON LT-SIDE

Page 100: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

VOLTAGE WAVEFORM ON HT-SIDE

CURRENT SPECTRA ON LT-SIDE

Page 101: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

CURRENT SPECTRA ON HT-SIDE

CURRENT WAVEFORM ON LT-SIDE

Page 102: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

CURRENT WAVEFORM ON HT-SIDE

OBSERVATIONS:

Harmonic source is connected on the LT side of transformer, so the triplen harmonics are blocked due to ungrounded Y-connection. The magnitude of remaining harmonic components is reduced on the HT side of transformer.

CASE-2:

Page 103: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

Transformer primary side Y-Grounded and secondary Y-Grounded

VOLTAGE SPECTRA ON LT-SIDE

VOLTAGE SPECTRA ON HT-SIDE

VOLTAGE WAVEFORM ON LT-SIDE

Page 104: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

VOLTAGE WAVEFORM ON HT-SIDE

CURRENT SPECTRA ON LT-SIDE

Page 105: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

CURRENT SPECTRA ON HT-SIDE

CURRENT WAVEFORM ON LT-SIDE

Page 106: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

CURRENT WAVEFORM ON HT-SIDE

OBSERVATIONS:

Harmonic source is connected on the LT side of transformer, so the triplen harmonics are not blocked due to grounded Y-connection. The triplen harmonics are also present on the HT side of transformer as that is also Y-grounded.

CASE-3:

Page 107: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

Transformer primary side Y-Grounded and secondary Delta

VOLTAGE SPECTRA ON LT-SIDE

VOLTAGE SPECTRA ON HT-SIDE

VOLTAGE WAVEFORMS ON LT-SIDE

Page 108: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

VOLTAGE WAVEFORM ON HT-SIDE

CURRENT SPECTRA ON LT-SIDE

Page 109: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

CURRENT SPECTRA ON HT-SIDE

CURRENT WAVEFORM ON LT-SIDE

Page 110: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

CURRENT WAVEFORM ON HT-SIDE

OBSERVATIONS:

Harmonic source is connected on the LT side of transformer, so the triplen harmonics are blocked due to delta-connection. The triplen harmonics are also blocked on the HT side of transformer as there are no triplen harmonics on secondary side of transformer.

CASE-4:

Page 111: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

Transformer primary side Y-Ungrounded and secondary Delta

VOLTAGE SPECTRA ON LT-SIDE

VOLTAGE SPECTRA ON HT-SIDE

VOLTAGE WAVEFORM ON LT-SIDE

Page 112: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

VOLTAGE WAVEFORM ON HT-SIDE

CURRENT SPECTRA ON LT-SIDE

Page 113: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

CURRENT SPECTRA ON HT-SIDE

CURRENT WAVEFORM ON LT-SIDE

Page 114: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

CURRENT WAVEFORM ON HT-SIDE

OBSERVATIONS:

Harmonic source is connected on the LT side of transformer, so the triplen harmonics are blocked due to delta-connection. The triplen harmonics are also blocked on the HT side of transformer as there are no triplen harmonics on secondary side of transformer.

CASE-5:

Page 115: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

Transformer primary side Delta and secondary Delta

VOLTAGE SPECTRA ON LT-SIDE

VOLTAGE SPECTRA ON HT-SIDE

VOLTAGE WAVEFORM ON LT-SIDE

Page 116: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

VOLTAGE WAVEFORM ON HT-SIDE

CURRENT SPECTRA ON LT-SIDE

Page 117: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

CURRENT SPECTRA ON HT-SIDE

 

CURRENT WAVEFORM ON LT-SIDE

Page 118: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

CURRENT WAVEFORM ON HT-SIDE

 

OBSERVATIONS:

Harmonic source is connected on the LT side of transformer, so the triplen harmonics are blocked due to delta-connection. The triplen harmonics are also blocked on the HT side of transformer as there are no triplen harmonics on secondary side of transformer. Moreover, primary side is also delta-connected.

Page 119: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

EXPERIMENT#11  

Three phase short circuit analysis (3­phase faults­device duty) for a given power system using ETAP 

SHORT CIRCUIT ANALYSIS

The power station short circuit analysis program analyze the effect of three phase, line to ground, line to line, and line to line to ground faults on the electrical distribution networks. The program calculates the total short circuit currents as well as the contributions of individual motors, generators, and utility ties in the system. Fault duties are in compliance with the latest editions of the ANSI/IEEE standards and IEC standards.

The ANSI/IEEE Short-Circuit Toolbar and IEC Short-Circuit Toolbar sections explain how you can launch a short-circuit calculation, open and view an output report, or select display options. The Short-Circuit Study Case Editor section explains how you can create a new study case, what parameters are required to specify a study case, and how to set them. The Display Options section explains what options are available for displaying some key system parameters and the output results on the one-line diagram, and how to set them.

Short-Circuit Toolbar This toolbar is active when you are in Short-Circuit mode and the standard is set to ANSI in the Short-Circuit Study Case Editor.

Page 120: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

3-Phase Faults - Device Duty

Click on this button to perform a three-phase fault study per ANSI C37 Standard. This study calculates momentary symmetrical and asymmetrical rms, momentary asymmetrical crest, interrupting symmetrical rms, and interrupting adjusted symmetrical rms short-circuit currents at faulted buses. The program checks the protective device rated close and latching, and adjusted interrupting capacities against the fault currents, and flags inadequate devices.

Page 121: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

Generators and motors are modeled by their positive sequence sub-transient reactance.

ONE LINE DIAGRAM

FAULTY POINT

• BUS-15

There is a short circuit fault on bus-15.

Page 122: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

LOAD FLOW DIAGRAM

 

Page 123: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

SHORT CIRCUIT ANALYSIS DIAGRAM

 

 

Page 124: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

COMMENTS:

In this experiment, we use three phase fault-device duty analysis to analyze the effect of fault on the system.

Following results are obtained in this experiment:

At bus-15:

Before fault After fault Current 568A 4.8KA

Power flow 345KW 3.6KW

We observe that the current flowing through bus-15 is increased up to many times as compared to the current before fault.

We observe that the power flowing through bus-15 is decreased up to many times as compared to the power before fault due to the short circuit at bus-15 as the load connected to that bus is now shorted and no power is flowing into that load.

Page 125: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

EXPERIMENT#12  

Three phase short circuit analysis (3­phase faults­30 cycle network) for a given power system using ETAP 

3-Phase Faults – 30-Cycle Network

Click on this button to perform a three-phase fault study per ANSI standards. This study calculates short-circuit currents in their rms values after 30 cycles at faulted buses.

Generators are modeled by their positive sequence transient reactance’s, and short-circuit current contributions from motors are ignored.

ONE LINE DIAGRAM

FAULTY POINT

Page 126: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

• BUS-15

There is a short circuit fault on bus-15.

LOAD FLOW DIAGRAM

 

Page 127: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

SHORT CIRCUIT ANALYSIS DIAGRAM

 

 

COMMENTS:

In this experiment, we use three phase fault-device duty analysis to analyze the effect of fault on the system.

Following results are obtained in this experiment:

At bus-15:

Before fault After fault Current 568A 3.6KA

Power flow 345KW 3.6KW

Page 128: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

We observe that the current flowing through bus-15 is increased up to many times as compared to the current before fault.

We observe that the power flowing through bus-15 is decreased up to many times as compared to the power before fault due to the short circuit at bus-15 as the load connected to that bus is now shorted and no power is flowing into that load.

Page 129: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

EXPERIMENT#13 

Three phase short circuit analysis (LG, LL, LLG, & 3­Phase Faults ­ ½ Cycle) for a given power system using ETAP  

LG, LL, LLG, & 3-Phase Faults - ½ Cycle

Click on this button to perform line-to-ground, line-to-line, line-to-line-to-ground, and three-phase fault studies per ANSI standards. This study calculates short-circuit currents in their rms values at ½ cycles at faulted buses.

Generators and motors are modeled by their positive, negative, and zero sequence sub-transient reactance.

In all the unbalanced fault calculations (½ cycle, 1.5-4 cycle and 30 cycles), it is assumed that the negative sequence impedance of a machine is equal to its positive sequence impedance. Generator, motor, and transformer grounding types and winding connections are taken into consideration when constructing system positive, negative, and zero sequence networks.

Page 130: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

ONE LINE DIAGRAM

FAULTY POINT

• BUS-15

There is a short circuit fault on bus-15.

Page 131: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

LOAD FLOW DIAGRAM

 

Page 132: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

SHORT CIRCUIT ANALYSIS DIAGRAM

 

 

COMMENTS:

In this experiment, we use three phase fault-device duty analysis to analyze the effect of fault on the system.

Following results are obtained in this experiment:

Page 133: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

At bus-15:

Before fault After fault Current 568A 6.2KA

Power flow 345KW 5.1KW

We observe that the current flowing through bus-15 is increased up to many times as compared to the current before fault.

We observe that the power flowing through bus-15 is decreased up to many times as compared to the power before fault due to the short circuit at bus-15 as the load connected to that bus is now shorted and no power is flowing into that load.

Page 134: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

EXPERIMENT#14 

Three phase short circuit analysis (LG, LL, LLG, & 3­Phase Faults ­ 1.5 to 4 Cycle) for a given power system using ETAP 

LG, LL, LLG, & 3-Phase Faults - 1.5 to 4 Cycle

Click on this button to perform three-phase, line-to-ground, line-to-line, line-to-line-to-ground, and three-phase fault studies per ANSI standards. This study calculates short-circuit currents in their rms values between 1.5 to 4 cycles at faulted buses.

Generators are modeled by their positive, negative, and zero sequence sub-transient reactance, and motors are modeled by their positive, negative and zero sequence transient reactance. Generator, motor and transformer grounding types and winding connections are taken into considerations when constructing system positive, negative, and zero sequential networks.

Page 135: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

ONE LINE DIAGRAM

FAULTY POINT

• BUS-15

There is a short circuit fault on bus-15.

Page 136: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

LOAD FLOW DIAGRAM

 

Page 137: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

SHORT CIRCUIT ANALYSIS DIAGRAM

 

 

 

COMMENTS:

In this experiment, we use three phase fault-device duty analysis to analyze the effect of fault on the system.

Following results are obtained in this experiment:

Page 138: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

At bus-15:

Before fault After fault Current 568A 5.7KA

Power flow 345KW 5KW

We observe that the current flowing through bus-15 is increased up to many times as compared to the current before fault.

We observe that the power flowing through bus-15 is decreased up to many times as compared to the power before fault due to the short circuit at bus-15 as the load connected to that bus is now shorted and no power is flowing into that load.

Page 139: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

EXPERIMENT#15 

Three phase short circuit analysis (LG, LL, LLG, & 3­Phase Faults ­ 30 Cycle) for a given power system using ETAP 

LG, LL, LLG, & 3-Phase Faults - 30 Cycle

Click on this button to perform three-phase, line-to-ground, line-to-line, line-to-line-to-ground, and three-phase fault studies per ANSI standards. This study calculates short-circuit currents in their rms values at 30-cycles at faulted buses.

Generators are modeled by their positive, negative, and zero sequence reactance, and short-circuit current contributions from motors are ignored. Generator, motor, and transformer grounding types and winding connections are taken into consideration when constructing system positive, negative, and zero sequence networks.

Page 140: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

ONE LINE DIAGRAM

FAULTY POINT

• BUS-15

There is a short circuit fault on bus-15.

Page 141: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

LOAD FLOW DIAGRAM

 

Page 142: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

SHORT CIRCUIT ANALYSIS DIAGRAM

 

 

 

COMMENTS:

In this experiment, we use three phase fault-device duty analysis to analyze the effect of fault on the system.

Following results are obtained in this experiment:

Page 143: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

At bus-15:

Before fault After fault Current 568A 4.8KA

Power flow 345KW 4.8KW

We observe that the current flowing through bus-15 is increased up to many times as compared to the current before fault.

We observe that the power flowing through bus-15 is decreased up to many times as compared to the power before fault due to the short circuit at bus-15 as the load connected to that bus is now shorted and no power is flowing into that load.

Page 144: Power System Analysis Lab Manual

POWER SYSTEM ANALYSIS LAB MANUAL  

ASAD NAEEM 2006‐RCET‐EE‐22  

COMPARISON OF SHORT CIRCUIT ANALYSIS

CURRENT POWER 3‐phase faults‐device duty

4.8

3.6

3‐phase faults‐30 cycle network

3.6

3.6

LG, LL, LLG, & 3‐Phase Faults ‐ ½ 

Cycle

6.2

5.1

LG, LL, LLG, & 3‐Phase Faults ‐ 1.5 to 

4 Cycle

5.7

5

LG, LL, LLG, & 3‐Phase Faults ‐ 30 

Cycle

4.8

4.8