Pr42. Mittermayr Et Al. 2015

Embed Size (px)

Citation preview

  • 8/10/2019 Pr42. Mittermayr Et Al. 2015

    1/10

    Sulfate resistance of cement-reduced eco-friendly concretes

    Florian Mittermayr a,,1, Moien Rezvani b,1, Andre Baldermann c, Stefan Hainer b, Peter Breitenbcher d,Joachim Juhart a, Carl-Alexander Graubner b, Tilo Proske b

    a Graz University of Technology, Institute of Technology and Testing of Building Materials, Inffeldgasse 24, 8010 GRAZ, Austriab Technische Universitt Darmstadt, Fachgebiet Massivbau, Franziska-Braun-Strae 3, 64287 DARMSTADT, Germanyc Graz University of Technology, Institute of Applied Geosciences, Rechbauerstrae 12, 8010 GRAZ, Austriad OBERMEYER Planen + Beraten GmbH, Niederlassung Wiesbaden, Biebricher Allee 36, 65187 Wiesbaden, Germany

    a r t i c l e i n f o

    Article history:

    Received 6 March 2014

    Received in revised form24 September 2014

    Accepted 28 September 2014Available online 13 October 2014

    Keywords:

    Durability

    Degradation

    Sulfate attack

    Thaumasite

    Supplementary cementitious material

    Superplasticizer

    a b s t r a c t

    Two newly developed cement-reduced eco-friendly concretes with high limestone powder content andlow water/powder ratio were tested for sulfate resistance. Mortar samples with a paste composition ofeco- as well as conventional concretes were immersed in 30 g l1 Na2SO4 and saturated Ca(OH)2 refer-

    ence solutions for 200 days at 8 C. To evaluate the reaction mechanisms of progressing sulfate attacka combined approach of mechanical, mineralogical, and microstructural methods was applied.

    Gypsum and bassanite neo-formations related linearly to the expansion during sulfate exposure,except for one sample where ettringite co-precipitated. Thaumasite formation was not observed in spiteof potentially favorable conditions. This is considered to be related to the evolution of the experimental

    solutions, kinetic effects, and the competing formation of CaCO3 polymorphs triggered by the usage of

    superplasticizer. Both eco-friendly mixes exhibited a better sulfate resistance than their correspondingreference samples and are therefore suggested to be applicable in low sulfate-loaded environmentsaccording to DIN EN 206-1. Eco-friendly concrete based on CEM III/B performed superior against sulfate

    attack and is expected to withstand even severe sulfate exposure despite a much higher water/cement

    ratio than required by the standard.2014 Elsevier Ltd. All rights reserved.

    1. Introduction

    1.1. Principles of eco-friendly concretes

    Recent cement production accounts for approximately 5% of theglobal anthropogenic CO2 emissions and thus is a major driving

    force for global warming and ocean acidification [1,2]. The majorityof the produced cement is currently consumed by the concreteindustry. Hence, the short- to medium-term decrease of the cementclinker content in concrete mixtures is suggested to be essential for

    the reduction of CO2emissions connected to the concrete industry.Such alternative mixtures are referred to as eco-friendly concretes.They are typically developed based on a promising concept whichincludes (i) the application of highly reactive cements, (ii) the

    reduction of the water volume and (iii) the introduction of highlyefficient superplasticizers as well as non-reactive, pozzolanic andlatent hydraulic supplementary cementitious materials (SCMs)

    [3,4]. Commercial Portland cement (PC) can therefore be partiallyreplaced by e.g. limestone powder, fly ash, and blast furnace slag(BFS) in the concrete mixture. Based on this approach a reduction

    of more than 30% cement clinker content in comparison to conven-tional concrete can be achieved, while maintaining the requiredmechanical properties and durability of the concrete[3].

    Thepositive effectof SCMs on concrete properties hasbeenstud-ied intensively in the last decades and their application in the con-creteindustry increasedexceptionally [5]. However, the availabilityof e.g. reactive fly ash and BFS is limited in many countries and the

    acquisition is oftencost-intensive[6,7]. Thereforean efficient appli-cation of reactive SCMs with limited availability contributing to theconcrete performance is required. Currently, limestone powderadditives have received particular attention complying with both

    ecological and economic benefits and mechanical requirements[812].

    In previous studies newly developed eco-friendly concreteswithreduced cement content and low water/powder (w/p) ratio were

    described [3,9,13]. Their resistance against carbonation (expositionclass XC4), slight freezethaw attack (XF1) and water penetrationdepth was tested successfully, according to DIN EN 206-1 [14]

    http://dx.doi.org/10.1016/j.cemconcomp.2014.09.020

    0958-9465/2014 Elsevier Ltd. All rights reserved.

    Corresponding author. Tel.: +43 316 873 7159; fax: +43 316 873 7650.

    E-mail address: [email protected](F. Mittermayr).1 First author.

    Cement & Concrete Composites 55 (2015) 364373

    Contents lists available at ScienceDirect

    Cement & Concrete Composites

    j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c e m c o n c o m p

    http://dx.doi.org/10.1016/j.cemconcomp.2014.09.020mailto:[email protected]://dx.doi.org/10.1016/j.cemconcomp.2014.09.020http://www.sciencedirect.com/science/journal/09589465http://www.elsevier.com/locate/cemconcomphttp://www.elsevier.com/locate/cemconcomphttp://www.sciencedirect.com/science/journal/09589465http://dx.doi.org/10.1016/j.cemconcomp.2014.09.020mailto:[email protected]://dx.doi.org/10.1016/j.cemconcomp.2014.09.020http://crossmark.crossref.org/dialog/?doi=10.1016/j.cemconcomp.2014.09.020&domain=pdf
  • 8/10/2019 Pr42. Mittermayr Et Al. 2015

    2/10

    and DIN 1045-2[15]. Results have shown that these eco-friendlyconcretes exhibited similar (or even better) mechanical properties

    than the conventional concretes as well as an acceptable durabilityagainst freezethaw attack, water penetration and carbonation[3,9,13]. Compared to conventional concrete containing ordinaryPC, the global warming potential of the eco-concretes is reducedby more than 30% and up to 60% [3]. However, the durability of

    these concretes against sulfate attack is still in question and there-fore the aim of the present study.

    1.2. The influence of sulfate attack on concretes with limestone

    During service life concrete elements often come into contactwith sulfate ions that are present in e.g. soil solutions or ground

    water. In such sulfate-loaded environments, the formation ofettringite {3CaOAl2O33CaSO432H2O}, gypsum {CaSO42H2O} andthaumasite {CaSiO3CaCO3CaSO415H2O} is considered to causesevere damage on concrete structures [16,17]. At temperaturesP15 C ettringite (Ett) is typically formed and is known to causemicrostructural damage to the cement paste by generating expan-sive forces, particularly in small pores due to high crystallization

    pressure[18,19]. It is generally accepted that aluminate phasesthat occur in the cement clinker (C3A and C4AF) support the forma-tion of Ett and hence have a strong influence on the sulfate-resis-tance of concrete[20,21]. Ett is often accompanied by gypsum(Gp) formation which results in further expansion and destruction.

    Gp typically forms in high sulfate-loaded environments that arefrequently used for testing of concrete and mortar in the lab[22,23].

    The sulfate resistance of concrete can be strongly improved by

    using cement with a low C3AandC4AF content and/or with reactiveSCMs. For instance,Skaropoulou et al. [24] havereported that basedon lab tests mortar specimens with BFS or metakaoline showed abetter performance against sulfate attack than PC based ones inde-pendent from their limestone content. Gutteridge and Dalziel[25]

    have shown that limestone additives can enhance the concretestrength by improving the hydration rate and Bonavetti et al. [10]suggested that limestone may react with alumina phases to formstable calcium monocarbonate aluminate hydrate. Furthermore,

    Matschei et al.[26]have demonstrated that limestone has a signif-icant influence on the distribution of lime, alumina and sulfatephases during concrete hydration. Although the addition of lime-stone can improve the concretes performance, cements with high

    amounts of calcium carbonate fillers are known to be prone tothe thaumasite form of sulfate attack (TSA). Numerous experimen-tal studies have shown that cementitious materials with limestonefillers are susceptible to TSA, especially at low temperatures

    ( 98 wt.%, a median diameter value (D50 volume based) of15lm and a Blaine value of 330 m2/kg. The fly ash had a similargrain size but a slightly lower Blaine value of 300 m2/kg. In allmixtures the CEN standard reference sand (EN 1961 [42]) with

    a maximum grain size of 2.0 mm was used.Mixtures Ref I, Ref II and Ref III, made of the respective cement

    types (I), (II) and (III), represent conventional reference mortarswith a water/cement (w/c) ratio of 0.60. This is the maximum value

    according to the German standard for concrete (DIN EN 206-1/DIN 1045-2) for exposure class XA1 with a sulfate concentrationin groundwater of 200 < SO4

    26 600mg l1. The cement

    content of these reference mortars was in accordance with EN196-1 Methods of testing cement. Mixtures Ref II and Ref III

    reflect semi-reference mortars which both have a w/p ratio of0.60 but correspondingly higher w/cratios of 1.07 and 0.76, respec-tively. The mix designs of the cement-reduced eco-mortars were

    characterized by high limestone powder content and a low w/p-ratio of0.35 (Eco II and Eco III). The lowerw/p-ratio was chosento fulfill the concept of clinker-reduced concretes and to attain asufficient durability [3]. To maintain the aimed table flow of

    180 mm according to DIN 1015-3[43]the use of a superplasticizerwas necessary for the Eco-mixes. The percentage of cement reduc-tion in these eco-mortars was up to 35% compared to thecorresponding concretes[3].

    2.2. Casting, curing, and test procedure

    Mortar specimens prisms (40 40 160 mm) and thin

    prisms (10 40 160 mm) were fabricated according to EN196-1 and demolded after 48 2 h. On the basis of the GermanBuilding Authority (DIBt) testing procedure for sulfate resistance[44], the specimens were pre-cured for 14 days at 20 C in satu-

    rated Ca(OH)2 solution. Afterwards, the mortar specimens weredivided into two aliquots, each of which was stored in 30 g l1 Na2SO4 and in saturated Ca(OH)2 reference solution at 8 C for200 days. Distilledwater was used for the preparation of the exper-

    imental solutions. During the immersion period the volume ratio ofthe Na-sulfate and the Ca-hydroxide solutions to the samples wasfixed at 6:1. The specimens were placed on plastic spacers about

    2 cm above the bottom of the tank. The test solutions wererenewed regularly every four weeks. In order to study the effectof hydration, the pre-curing time of three specimens of the Eco IIItype was extended to 28 days (Eco III-28d), followed by immersion

    in Na2SO4 and Ca(OH)2 solutions at 8 C as described above. Thestrain development of the thin prisms was measured by meansof a strain gauge with an accuracy of 0.001 mm/m. Two measuringsteel points were fixed on both sides of the specimens by using a

    chemically resistant epoxy resin. In order to determine changesin the expansion rate of mortar samples over time, strain measure-ments were carried out every two weeks on three samples of eachmix.

    According to the SVA-guideline [44], mortars with an expansion60.5 mm/m after 91 days of reaction time indicate a high sulfate

    resistance. However, the w/c-ratio of the reference mixes withregular cement contents was 0.60, instead of a required w/c-ratio

    F. Mittermayr et al. / Cement & Concrete Composites 55 (2015) 364373 365

    http://-/?-http://-/?-http://-/?-
  • 8/10/2019 Pr42. Mittermayr Et Al. 2015

    3/10

    of 0.50. This higher w/c-ratio was used to enable a direct compar-ison to the Eco-mixes. Furthermore, the temperature was set to8 C using a climate chamber, instead of 20 C, in order to trigger

    TSA. The compressive strength of the mortar prisms was deter-

    mined after 56 days of storage in the experimental solutions, inaccordance with EN 196-1. Visual inspection and subsequent min-

    eralogical and microstructural investigations were conducted onthe mortar prisms that were immersed for 200 days.

    2.3. Mineralogical and microstructural analyses

    Prior to the analyses the mortar prisms were dried at 40 C.Powder X-ray diffraction (XRD) patterns were recorded for mineralidentification. Representative samples were taken and finely

    ground in a ball mill for 15 min, together with 10% zincite {ZnO}as an internal standard. Randomly oriented preparations weremade using the front loading technique and subsequently X-rayedfrom 3to 902hwith a step size of 0.008and a count time of40 s

    per step using a PANalytical XPert PRO diffractometer operated at40 kV and 40 mA. Phase identification was made with the PANalyt-ical XPert HighScore Plus software.

    For microstructural analyses, representative sample pieces

    were impregnated with epoxy resin under vacuum, followed bycutting of the samples with a diamond saw and subsequent grind-ing with diamond grinding wheels, using ethanol cooling and pol-ishing with 3 and 1 lm diamond oil suspensions. Back-scattered

    electron (BSE) images were recorded on polished carbon-coatedspecimens using a Jeol JXA-8200 SuperProbe electron probe microanalyzer. For mineral identifications semi-quantitative single spotanalyses were performed using the implemented energy-disper-

    sive X-ray spectroscopy (EDX) system operated at 15 kV and 10 nA.

    3. Results

    3.1. Visual inspection

    Typical appearances of mortar samples that were stored in3 0 g l1 Na2SO4 solution for 200 days are pictured in Fig. 1 andclassified inTable 2. In order to evaluate the deterioration level,the samples were divided into four categories, reflecting no dam-

    age (0), minor damage (Mi), major damage (Ma), and destroyed(D). The Ref II and Ref II mortar mixes suffered severe damagedue to intense sulfate attack and were completely decomposed,while Eco II and Ref I mixes developed a major degree of damage.

    Ref III and Ref III showed only some, but rather less pervasivevisual cracks on the surface and were therefore classified into the

    minor damage category. Eco III and Eco III-28d offered nomacroscopic damage, suggesting an outstanding sulfate resistance.

    3.2. Mechanical properties

    3.2.1. Compressive strength

    The compressive strength values are presented in Fig. 2. They

    were obtained after 14 days of pre-storage of the mortars in a satu-rated Ca(OH)2 solution and after the immersion period of 56 days in

    Na2SO4 solution and in saturated referenceCa(OH)2 solution at 8 C.Subtraction of the compressive strength values of Ca(OH)2-immersed mortars from the sulfate-immersed ones yielded inD-strength values that are reported inTable 2.

    As shown in Fig. 3 the CEM II/A-S-based reference mortar(Ref II) exhibited a compressive strength of 39 N/mm2 after14 days of pre-storage. This value is significantly higher than thatof the CEM I and CEM III-based reference mortars (Ref I and Ref III)

    with 33 N/mm2. The Ref II and Ref III mixes, characterized by aconstant water content, but reduced cement content, displayedlower compressive strength values of 2730 N/mm2 compared toRef II and Ref III. This behavior reflects the increase of the w/c-ratio

    from 0.60 to 1.07 and 0.60 to 0.76, respectively. The low w/p-ratioof Eco III, as a result of water reduction, resulted in an increase ofcompressive strength up to 40 N/mm2, compared to Ref III. Thisis in contrary to the behavior of Eco II and the corresponding mix

    Ref II. Notably, prolonged curing of 28 days (Eco III-28d) stronglyincreased the compressive strength to 49 N/mm2 (seeFig. 3).

    After 56 days of immersion in a saturated Ca(OH)2 solution asignificant increase in compressive strength was recognized for

    all mortar mixes (seeFigs. 2 and 3). Notably, the Eco mixes (Eco II,Eco III and Eco III-28d) exceeded the compressive strength valuesof their corresponding reference mortars. However, after 56 daysof storage in Na2SO4solution the compressive strength of all mor-

    tar mixes decreased up to 7%, except for Ref I, Ref II and Ref II. Inthe latter cases the compressive strength was even slightly

    improved as indicated with black arrows inFig. 2and by positiveD-strength values inTable 2. Interestingly, these mortars also rep-

    resented the samples with the highest visual damage degree(Fig. 1) and the largest D-expansion rates after sulfate exposure.The compressive strength was measured after 56 days because at

    this age the strain development of some thin prisms acceleratedsignificantly also resulting in incipient macroscopic damage.

    3.2.2. Strain

    The strain development of thin mortar prisms obtained over a91 days period is presented in Fig. 4 and the correspondingD-expansion values are given in Table 2. The D-expansion was

    determined by subtracting the strain of mortars that were storedin saturated Ca(OH)2 solution (as control specimens) from those

    immersed in30 g l1

    Na2SO4 solution. The mortar samplesdesignedwith CEM I 32.5 R and CEM II/A-S 52.5 N showed much higher

    Table 1

    Mix design for the mortar samples. Cement types are commercially available in accordance to EN197-1.

    Mix ID Ref I Ref II Ref III Ref II Eco II Ref III Eco III

    Water/cement 0.60 0.60 0.60 1.07 0.74 0.76 0.61

    Water/powder 0.60 0.60 0.60 0.60 0.36 0.60 0.35Cement Type CEM I 32.5R CEM II/A-S 52.5 N CEM III/B 42.5 N CEM II/A-S 52.5 N CEM III/B 42.5 N

    Clinkera [g] 450 405 135 262 293 102 112

    Slag [g] 45 315 28 32 252 286

    Total [g] 450 450 450 290 325 354 398Fly ash [g] 80 90 48 55

    Limestone [g] 80 256 48 236

    Total powder [g] 450 450 450 450 671 450 689

    Water [g] 270 270 270 270 233 270 241

    PCE-SP [g] 2.9 1.6

    Sand 02 mm [g] 1350 1350 1350 1350 1350 1350 1350

    a Denotes all constituents of the cement except for slag. (PCE-SP): polycarboxylatether superplasticizer.

    366 F. Mittermayr et al. / Cement & Concrete Composites 55 (2015) 364373

  • 8/10/2019 Pr42. Mittermayr Et Al. 2015

    4/10

  • 8/10/2019 Pr42. Mittermayr Et Al. 2015

    5/10

    4. Discussion

    4.1. Mechanical properties

    The increase of compressive strength between 14 days of pre-storage and after 56 days of storage in Ca(OH)2 solution can beattributed to the proceeding formation of hydrate phases in the

    matrix. This effect was distinctive for all mortars that containedlatent hydraulic and puzzolane additives like BFS and fly ash. After

    56 days of sulfate exposure, slight improvements in compressive

    strength were recognized for some mortars, i.e. Ref I, Ref II and

    Ref II (see Fig. 2), which reflected the microstructural densificationof mortars due to the development of expansive products such asGp, Ett and Bas[16]. Our results revealed that specimens whichshowed increasing compressive strength values after sulfate expo-

    sure exhibited also a higher expansion rate after 56 and 91 days.This behavior leads us to suggest that the initial improvementsin strength went along with negative effects of excessive expansionof the neo-formed sulfate minerals. Consequently, the compressivestrength results after Ca(OH)2exposure can be used for the charac-

    terization of the mechanical properties of mortars. However, theevolution of compressive strength of specimens during 56 days ofsulfate attack did not provide reliable information about their sul-

    fate resistance.Until 56 days of sulfate exposure, all mortar mixes had expan-

    sion rates below the SVA-guideline limit [44] of 0.5 mm/m (seeFig. 4). After 56 days, a significant expansion was observed for Ref I,

    Ref II, Ref II and Eco II mortars whereas the Ref III, Ref III, Eco III,and Eco III-28d mixes still displayed insignificant expansion until91 days of sulfate exposure. These observations clearly indicatethat both Portland (CEM I) and Portland slag composite

    (CEM II/A-S 52.5 N) cement based mortars were more susceptibleto sulfate attack, compared to BFS based (CEM III/B) ones. Fromother studies it is also known that reactive hydration products suchas CH, Ett and other AFm phases can be effectively reduced when

    using proper SCMs such as BFS and fly ash containing cementitiousmaterials and thus lowering the risk of the formation of secondaryexpansive phases during sulfate attack like Gp and secondary Ett[5,45]. In our samples Gp had mainly developed in the interface

    transition zone (ITZ) around aggregates and in cracks parallel to

    Table 2

    Damage level degree from visual inspection (seeFig. 1). The D-expansion rate, D-compressive strength, D-sulfate phases (ettringite, gypsum and bassanite) and D-carbonate

    phases (calcite and vaterite) were calculated by subtracting the individual parameters of Ca(OH)2immersed samples from Na-sulfate ones. Negative D-values reflect losses and

    positive D-values reflect gains.

    Damage DSulfate [wt.%] DCarbonate [wt.%] DExpansion [mm/m] DStrength [N/mm2]Duration [d] 200 200 200 91 56

    Mix ID

    Ref I Major 4.6 3.9 1.46 0.1

    Ref II Destroyed 2.8 3.8 1.01 2.1Ref II Destroyed 1.7 0.1 4.78 1.5

    Eco II Major 3.8 3.7 0.98 4.1

    Ref III Minor 1.9 2.1 0.55 3.4

    Ref III Minor 0.3 1.1 0.31 0.9

    Eco III No damage 1.0 4.6 0.10 0.7

    Eco III-28d No damage 0.6 0.6 0.05 0.8

    0

    10

    20

    30

    40

    50

    60

    Ref I Ref II Ref II* Eco II Ref III Ref III* Eco III Eco III28d

    Mortarcompressive

    strength[N/mm]

    pre-storage 2 14d 20C

    pre-storage 2 56d 8C

    pre-storage Na2SO456d 8C

    Ca(OH)

    after Ca(OH)

    after

    Fig. 2. Compressive strength of mortars after 14 days pre-storage and after 56 days

    exposure in Ca(OH)2and Na2SO4solutions, respectively. Note that Eco III-28d was

    pre-stored for 28 days.

    20

    30

    40

    50

    60

    -Cem+

    FA+Cal

    -H2O+

    Cal+SP

    compressivestrength[N/mm

    2]

    CEM II/A-S

    CEM III/B

    -Cem+

    FA+Cal

    -H2O+

    Cal+SP

    -H2O+

    Cal+SP

    -Cem+

    FA+Cal

    -H2O+

    Cal+SP

    CEM II/A-S CEM III/B

    -Cem+

    FA+Cal

    14d storage in Ca(OH)2 14 + 56d storage in Ca(OH)2

    Ref I Ref II

    Ref II* Eco II

    Ref III Ref III*

    Eco III Eco III-28d

    CEM I

    curing

    (28+56d)

    CEM I

    curing

    (28d)

    Fig. 3. Evolution of compressive strength of mortars as a function of the mix designchange after 14 days pre-storage and after 56 days immersion in Ca(OH)2. (Cem):

    cement; (FA): fly ash; (Cal): calcite i.e. limestone; (SP): polycarboxylatether

    superplasticizer.

    0.0

    0.5

    1.0

    1.5

    4.5

    5.0

    0 14 28 42 56 70 84 98

    -expansion

    [mm/m]

    Exposure duration [d]

    Ref I Ref II

    Ref II* Eco II

    Ref III Ref III*

    Eco III Eco III-28d

    max. 4.78 mm/m

    SVA-guideline limit

    Fig. 4. Strain development (D-expansion rate) of mortars during 91 days of

    exposure at 8 in 30 g l1 Na2SO4and Ca(OH)2solutions.

    368 F. Mittermayr et al. / Cement & Concrete Composites 55 (2015) 364373

  • 8/10/2019 Pr42. Mittermayr Et Al. 2015

    6/10

    the sample surface (see Fig. 6). Commonly, the ITZ contains the

    highest CH contents and a higher porosity than the rest of thecement paste[46].

    The reduction of the cement content and the addition of lime-stone powder generally did not increase the expansion rates of

    the mortars, despite the increase of the w/c-ratio (compare Eco IIvs. Ref II and Eco III vs. Ref III inFig. 4). Elevatedw/c-ratio resultedin weaker and potentially more porous cementitious matrixeswhich were more vulnerable for SO4

    2 ion penetration followed

    by the formation of expansive phases [47]. In contrary, the reducedcement clinker content combined with limestone and fly ash led to

    an increased resistance against sulfate attack (e.g. Ref III

    compared to Ref III). It is suggested that the low w/p-ratios resulted

    in a reduced connected porosity and fly ash has effectively reduced

    the CH content[48,49].

    4.2. Mineralogical and hydrogeochemical aspects

    Gp, Bas, and in one case Ett were found to be the mainexpansive alteration products after 200 days of sulfate exposure.These phases are considered to have caused the expansion of themortars and subsequently led to their damage. Although still

    debated in the literature, this study clearly indicates that Gp iscreating expansion [22,23,50]. This is confirmed by the positive

    linear correlation between the expansion of the mortars andtheir corresponding total gains of sulfate mineral phases, as

    Fig. 5. XRD patterns of Ref I (top) and Eco III (bottom) mortars after immersion in 30 g l1 Na2SO4and saturated Ca(OH)2solution for 200 days, respectively. The differencediffractograms, shown in the inserted boxes, indicate mineral gains and losses related to mineral precipitation versus dissolution during sulfate exposure. The calculated D-

    sulfate and D-carbonate values are reported inTable 2.

    F. Mittermayr et al. / Cement & Concrete Composites 55 (2015) 364373 369

    http://-/?-
  • 8/10/2019 Pr42. Mittermayr Et Al. 2015

    7/10

    illustrated in Fig. 7. Ref II was the only mortar where Ett was

    formed. This mix had also the highest expansion of 4.78 mm/m, which was due to the more destructive effect of Ett compared

    to Gp [51]. The generally good performance of CEM III/B isconsidered to be attributed to a denser microstructure and the

    reducing conditions in the pore solutions due to high amounts

    of BFS [48,52,53].Despite potentially favorable conditions for TSA such as high

    limestone content in the Eco mixes, low temperature of 8 C andthe usage of highly sulfate-loaded experimental solutions, no

    Slag

    Slag

    Gp

    cra

    ckin

    g

    c

    r

    c

    k

    i

    n

    g

    Cccsecec

    zQ

    zQ

    27575 m 42525 m

    200 m00 m

    375 m75 m

    Eco IIIco IIINaa

    2

    SOO4

    Ref Ief INaa

    2

    SOO4

    Ref IIIef IIINaa

    2

    SOO4

    Eco IIco IINaa

    2

    SOO4

    Qzz

    Qzz

    Qzz

    Qzz

    Qzz

    Qzz

    Qzz

    Pore Ccore Cc

    Gpp

    Gpp

    Cal

    Ccsec

    Fspsp

    Qzz

    Gp

    Ccsec crack

    samplesurface

    s

    m

    p

    e

    s

    samplesurface

    s

    m

    p

    e

    s

    samplesurface

    samples

    urface

    s

    m

    p

    e

    s

    Cccsecec

    Ccsec

    Cccsecec

    Cal

    Pore Gp

    Gp

    Ccsec

    inte

    nse

    cra

    ckin

    g

    i

    n

    t

    e

    n

    s

    e

    c

    r

    c

    k

    i

    n

    g

    gnikcarc

    esnetni

    r

    e

    s

    n

    e

    t

    n

    i

    g

    n

    i

    k

    Gpp

    Gp

    Ref IIef IINaa

    2

    SOO4

    375 m75 m

    samples

    urface

    s

    m

    p

    e

    s

    Eco IIco IICa(OH)a OH)

    2

    375 m75 m

    samplesurface

    s

    m

    p

    e

    s

    leached

    zone

    l

    e

    c

    h

    e

    d

    z

    o

    n

    e

    Cccsecec

    Qzz

    Qzz

    Qzz

    Qzz

    Cal

    Cccsecec

    leachedzonee chedzone

    Fig. 6. Back-scattered electron images of Ref I, II, III and Eco II, III obtained after 200 days of exposure in 30 g l1 Na2SO4solution. Eco II, stored in saturated Ca(OH)2solution,

    is shown for comparison. Mineral phases identified by EDX: (Gp): gypsum, (Cal): calcite, (Ccsec): secondary calcium carbonate, (Qz): quartz, (Fsp): feldspar (Slag): blast

    furnace slag grains. Note that the mortar damage degree is mainly attributed to intense cracking, leaching and widely coincided with the visual degree of damage (Fig. 1).

    370 F. Mittermayr et al. / Cement & Concrete Composites 55 (2015) 364373

  • 8/10/2019 Pr42. Mittermayr Et Al. 2015

    8/10

    evidence for Tha formation was found in any of the samples. The

    lack of Tha can be explained by (i) its slow reaction rates, (ii) thechemical composition and the evolution of the experimental solu-tion, which promoted the precipitation of other Ca-sulfates and Ca-carbonate minerals, and (iii) the role of polycarboxylate-ethersuperplasticizer (PCE). In the following these assumptions are

    elucidated.In contrast to Tha formation, large amounts of neo-formed

    CaCO3polymorphs (Cal and Vtr) were identified. These carbonatesare commonly found in association with high pH solutions (up to

    13) that occur in e.g. tunnel drainages[54]. Tha is stable at highpH but also at lower pH values (down to about pH 8) but it possessslow reaction kinetics and is therefore known to occur particularlyduring the last stages of sulfate attack[27,32,55,56]. In the present

    study, the 200 days of sulfate exposure were possibly not sufficient

    to trigger Tha formation.Another critical point is that under real field exposure condi-

    tions, pure sodium sulfate solutions are never present. In natural

    surroundings, mixtures of solutions containing different aqueouscomplexes, speciations and dissolved cations and anions are con-sidered to have decisive effects on Tha formation and sulfate attackin general[55,5759]. Furthermore, cyclic events such as multiple

    drying and wetting cycles induce strong enrichments in major andtrace element concentrations within the interstitial and pore solu-tions. Such processes typically enhance the formation of destruc-tive mineral phases such as Tha and thus result in the more

    rapid degradation of concrete, as demonstrated by thermodynamiccalculations, lab experiments and field observations [47,48,55].

    We can only speculate about the pore solution compositions

    and crucial ion content of Ca2+

    , SO42

    , CO32

    , and silica, which arerequired for Tha precipitation, but it is evident that Ca-sulfate min-erals and carbonate minerals were formed and Tha formation wassuppressed. For this reason, the absence of Tha in our samples is

    expected to be also attributed to the evolution of the chemicalcomposition of the experimental solution (i.e. ion leaching, -fixa-tion and changes in pH). Additionally the formation of CaCO3poly-morphs such as Cal, aragonite and Vtr[6062]and Tha[6366]is

    strongly influenced by organic substances. In our case, it is sug-gested that the PCE used in the Eco-mixtures had played an impor-tant role on controlling CaCO3versus Tha formation.

    PCEs are well known to strongly attach to positively charged

    cement particles but also interact with negatively charged ionssuch as SO4

    2 in the pore solution, thereby affecting e.g. Ett forma-

    tion during early hydration[6770]. Lothenbach et al.[53]did notfind Tha in CEM III/B-SiO2 based paste samples after 3.5 years

    where PCE was used, even though Tha formation was predictedby thermodynamic modeling. Blanco-Varela et al. [64] investigated

    the effect of organic admixtures during Tha synthesis. In the fourexperiments where PCEs were used, Tha was inhibited while otherorganics favored its formation.

    Since in our experiments all mortar specimens were placed

    together in the same containers with Na2SO4 and Ca(OH)2 solu-tions, it is assumable that organic molecules from the PCE werepresent in the solutions and pore fluids during the whole immer-sion period[53]. In these highly alkaline immersion solutions evensmall amounts of organics can affect dissolved silica speciation

    [7173]. For example partial removal of aqueous silica from theexperimental solution by adsorption onto organic molecules mighthave interfered with the formation of Tha. Additionally the forma-tion of CaCO3 polymorphs has acted as a competing reaction for

    Tha precipitation that lowered the Ca2+ and CO32 concentration

    in the experimental solution. Consequently it seems doubtful thatdissolution of limestone filler can occur, which would serve as apotential carbonate source for Tha formation, because we had

    found neo-formations of CaCO3 [28,74,75].

    4.3. Exposure classification and application

    The prediction of the performance of concrete in real practiceexposure based on laboratory-controlled accelerating tests on mor-tar specimens could be associated with some uncertainties. Poten-

    tial variations are, for example, the higher SO42 concentrations

    and/or thedefinedtemperature profileusedin conventionalacceler-ating tests, which commonly leads to the formation of mineralphases othersthan that observed in the field andconsequently non-

    comparable expansion rates and deterioration mechanisms. Thus,the suitability for accurate prediction of the sulfate resistance ofconcrete based on accelerating tests is challenging and should beverified. The results presented in the previouschapters indicatethat

    Gp andin particular Ett were thedriving forces for the deteriorationinthepresenceof sulfate-richsolutions, as seenin Figs.1and7.Their

    formation is known to cause severe damage on concrete structures.Portland and Portland slag cement based mixtures Ref I, Ref II

    and Ref II exhibited a generally low resistance against sulfateattack. Thus, the application of these mixtures in highly sulfateloaded environments is not recommended. However, the applica-

    tion in low sulfate environments (XA1) with 200 < SO426

    600 mg l1 is acceptable according to DIN EN 206-1/DIN 1045-2.The cement-reduced mortar Eco II had shown a better sulfate resis-tance than the reference mortar Ref II with w/c= 0.60. According to

    the equivalent performance concept for concrete properties(DIN EN 206-1), a mixture like Eco II, with a w/p-ratio lower than0.35, a compressive strength of more than 40 N/mm2 and a lime-stone content lower than 35% of powder, should be acceptable

    for exposure class XA1.

    In spite of a higher w/c-ratio than specified by the SVA-guideline[44]Ref III, Eco III and Eco III-28d developed less than 0.5 mm/mexpansion and thus passed the test. Consequently, these concretes

    are suggested to withstand moderate sulfate attack (XA2) with sul-fate concentrations from 600 < SO4

    26 3000 mgl1, according to

    DIN 1045-2/EN 206-1. Since the expansion rates of Eco III andEco III-28d were exceptionally low, concretes with such a paste

    composition (w/p6 0.35; slagP 40% of powder; limestone6 35%of powder; fcP 45 N/mm

    2) are probably suitable for applicationin concrete structures that can be exposed to severe sulfate attack(XA3), with concentrations from 3000 < SO4

    26 6000mg l1.

    5. Conclusion

    Based on the results from cement-reduced eco-friendly mortars(Eco II and Eco III) and reference mixes the following conclusions

    R = 0.90

    0.0

    0.5

    1.0

    1.5

    4.5

    5.0

    -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5

    -expan

    sion[mm/m]

    -sulfate phases [wt.%]

    4.78 mm/m

    ettringite + gypsum attack

    gypsum

    andb

    assani

    teattac

    k

    Ref I Ref II

    Ref II* Eco II

    Ref III Ref III*

    Eco III Eco III-28d

    Fig. 7. Relation between the maximum expansion rates(D-expansion rate obtainedafter 91 days) of sulfate exposure and the total gain and loss of sulfate minerals (D-

    sulfate phases after 200 days) in the respective mortar mixes (seeTable 2).

    F. Mittermayr et al. / Cement & Concrete Composites 55 (2015) 364373 371

    http://-/?-
  • 8/10/2019 Pr42. Mittermayr Et Al. 2015

    9/10

    and recommendations for cement-reduced eco-friendly concretecan be drawn:

    (i) A good correlation between expansion rate and visual dam-ages was observed for all specimens, whereas assessing thedamage levels by means of residual compressive strengthwas not beneficial.

    (ii) Elevated D-sulfate phase values correlated linearly withincreasing D-expansion rates for samples that containedGp and Bas. The appearance of both Ett and Gp caused amuch higher expansion.

    (iii) Despite of potentially ideal conditions such as the presenceof limestone fines in the eco-mixes, the low temperatureof 8 C and immersion of the samples in highly sulfate-bearing solutions, no Tha was detected after 200 days of

    reaction time. This is believed to be related to the evolutionof the experimental solutions, the slow reaction kinetics ofTha formation, the competing effect of Cal and Vtr precipita-tion, and/or the presence of organic molecules originating

    from the PCE-based superplasticizer.(iv) The cement-reduced mortars Eco II and Eco III showed less

    expansion after 91 days of exposure in 30 g l1 sodium sul-

    fate solution compared to their corresponding referencemortars. However, the expansion rates of BFS-based mortarmixes were significantly lower than those of the CEM I andCEM II/A-S based mortars.

    (v) Eco-friendly concretes with high limestone powder contents

    but low water (w/p6 0.35) and cement clinker content areappropriate for application in environments with low sulfateconcentrations (XA1), according to DIN 1045-2/EN 206-1.The application of BFS-based limestone-rich mortars with

    loww/p-ratio (w/p6 0.35) in moderate sulfate-loaded envi-ronments (XA2) is possible and a sufficient durability ofthese concretes even under severe conditions (XA3) is alsoachievable, especially after a prolonged curing period.

    Acknowledgement

    The authors greatly acknowledge the helpful comments by JosefTritthart.

    References

    [1]Humphreys M, Mahasenan M. Toward a sustainable cement industry. WorldBusiness Council for Sustainable Development; 2002.

    [2]Schneider M, Romer M, Tschudin M, Bolio H. Sustainable cement productionpresent and future. Cem Concr Res 2011;41(7):64250.

    [3] Proske T, Hainer S, Rezvani M, Graubner CA. Eco-friendly concretes withreduced water and cement contents mix design principles and laboratorytests. Cem Concr Res 2013;51:3846.

    [4]Stark J. Recent advances in the field of cement hydration and microstructure

    analysis. Cem Concr Res 2011;41(7):66678.[5]Lothenbach B, Scrivener K, Hooton RD. Supplementary cementitious materials.Cem Concr Res 2011;41(12):124456.

    [6] Hugot A. Flugaschemarkt der Zukunft. Flugasche im Beton: NeueAnwendungen; BVK/VGB Fachtagung. Frankfurt am Main: VGB PowerTechService; 2008. p. 18.

    [7] Mller C. Stellung von Zement in der Nachhaltigkeitsbewertun von Gebuden.Nachhaltiger Beton, Werkstoff, Konstruktion und Nutzung. Karlsruhe; 2012. p.258.

    [8]Moir GK, Kelham S. Developments in the manufacture and use of Portlandlimestone cement. ACI SP 1997;172:797820.

    [9] Graubner C-A, Garrecht H, Proske T, Spitzbarth R, Hainer S, MorsyM. Ecologicalconcretes for the manufacture of reinforced concrete structural elements Part 2 Application-orientated mixture development, concrete characteristicsand assessment of sustainability. Concr Plant Int 2011;6:249.

    [10] Bonavetti VL, Donza HA, Menendez G, Gabrera OA, Irassar EF. Limestone fillercement in low w/c concrete rational use of energy. Cem Concr Res2003;33:86571.

    [11] Antoni M, Rossen J, Martirena F, Scrivener K. Cement substitution by a

    combination of metakaolin and limestone. Cem Concr Res 2012;42(12):157989.

    [12] LothenbachB, LeSaout G, Gallucci E, Scrivener K. Influence of limestone on thehydration of Portland cements. Cem Concr Res 2008;38(6):84860.

    [13] Graubner C-A, Garrecht H, Proske T, Hainer S, Jakob M. Stahlbetonbauteile ausKlinkerreduziertem kobeton-Technische Innovation zur Realisierungnachhaltiger Betonbauwerke. Beton Stahlbetonbau 2012;6:40113.

    [14] DIN EN 206-1. Concrete Part 1: Specification, performance, production andconformity; 2001.

    [15] DIN 1045-2. Concrete, reinforced and prestressed concrete structures Part 2:Concrete specification, properties, production and conformity applicationrules for DIN EN 206-1; 2008.

    [16] Stark J, Wicht B. Schadensmachanismus des Sulfatangriffs auf Beton. In:Finger-Institut-f.-Baustoffkunde-d.-Bauhaus-Universitt-Weimar FA, editor.Dauerhaftigkeit Von Beton: Der Baustoff Als Werkstoff, 1st ed. Basel:Birkhuser; 2001. p. 11947.

    [17] Menndez E, Matschei T, Glasser FP. Sulfate attack on concrete. In: AlexanderM, Bertron A, De Belie N, editors. Performance of cement-based materials inaggressive aqueous environments. Dordrecht: Springer; 2013. p. 774.

    [18] Kunther W, Lothenbach B, Scrivener KL. On the relevance of volume increasefor the length changes of mortar bars in sulfate solutions. Cem Concr Res2013;46:239.

    [19] Mllauer W, Beddoe RE, Heinz D. Sulfate attack expansion mechanisms. CemConcr Res 2013;52:20815.

    [20] Verbeck GJ. Field and laboratory studies of the sulphate resistance of concrete.In: Performance of concrete a symposium in honour of ThorbergurThorvaldson. Toronto, Canada: Research and Development Laboratories ofthe Portland Cement Association; 1967. p. 11324.

    [21] Bertolini L, Elsener B, Pedeferri P, Polder RB. Corrosion of steel in concrete:prevention, diagnosis, repair. Weinheim: Wiley-VCH Verlag GmbH & Co.;2005.

    [22] Santhanam M, Cohen MD, Olek J. Effects of gypsum formation on theperformance of cement mortars during external sulfate attack. Cem ConcrRes 2003;33(3):32532.

    [23] Bellmann F, Mser B, Stark J. Influence of sulfate solution concentration on theformation of gypsum in sulfate resistance test specimen. Cem Concr Res2006;36(2):35863.

    [24] Skaropoulou A, Tsivilis S, Kakali G, Sharp JH, Swamy RN. Thaumasite form ofsulfate attack in limestone cement mortars: a study on long term efficiency ofmineral admixtures. Constr Build Mater 2009;23:233845.

    [25] Gutteridge W, Dalziel J. The effect of the secondary component on thehydration of Portland cement: Part 1. A fine non-hydraulic filler. Cem ConcrRes 1990;5:77882.

    [26] Matschei T, Lothenbach B, Glasser FP. The role of calcium carbonate in cementhydration. Cem Concr Res 2007;37(4):5518.

    [27] Irassar EF. Sulfate attack on cementitious materials containing limestonefillera review. Cem Concr Res 2009;39(3):24154.

    [28] Justnes H. Thaumasite formed by sulfate attack on mortar with limestonefiller. Cem Concr Compos 2003;25(8):9559.

    [29] Ramezanianpour AM, Hooton RD. Sulfate resistance of Portland-limestonecements in combination with supplementary cementitious materials. MaterStruct/Mater Constr 2013;46(7):106173.

    [30] Schmidt T, Lothenbach B, Romer M, Neuenschwander J, Scrivener K. Physicaland microstructural aspects of sulfate attack on ordinary and limestoneblended Portland cements. Cem Concr Res 2009;39(12):111121.

    [31] Hartshorn SA, Sharp JH, Swamy RN. Thaumasite formation in Portlandlimestone cement pastes. Cem Concr Res 1999;29:133140.

    [32] Schmidt T, Lothenbach B, Romer M, Scrivener K, Rentsch D, Figi R. Athermodynamic and experimental study of the conditions of thaumasiteformation. Cem Concr Res 2008;38(3):33749.

    [33] Lee ST, Hooton RD, Jung HS, Park DH, Choi CS. Effect of limestone filler on thedeterioration of mortars and pastes exposed to sulfate solutions at ambienttemperature. Cem Concr Res 2008;38:6876.

    [34] Romer M, Holzer L, Pfiffner M. Swiss tunnel structures: concrete damage byformation of thaumasite. Cem Concr Compos 2003;25(8):11117.

    [35] Rodrigues A, Duchesne J, Fournier B, Durand B, Rivard P, Shehata M.Mineralogical and chemical assessment of concrete damaged by theoxidation of sulfide-bearing aggregates: importance of thaumasite formation

    on reaction mechanisms. Cem Concr Res 2012;42(10):133647.[36] Mittermayr F, Bauer C, Klammer D, Boettcher ME, Leis A, Escher P, et al.

    Concrete under sulphate attack: an isotope study on sulphur sources. IsotEnviron Health Stud 2012;48(1):10517.

    [37] Lukas W. Betonzerstrung durch SO3 Angriff unter Bildung von Thaumasitund Woodfordit. Cem Concr Res 1975;5(5):50317.

    [38] Leemann A, Loser R. Analysisof concrete in a vertical ventilation shaft exposedto sulfate-containing groundwater for 45 years. Cem Concr Compos2011;33(1):7483.

    [39] Iden IK, Hagelia P. C, O and S isotopic signatures in concrete which havesuffered thaumasite formation and limited thaumasite form of sulfate attack.Cem Concr Compos 2003;25(8):83946.

    [40] Crammond NJ. The thaumasite form of sulfate attack in the UK. Cem ConcrCompos 2003;25(8):80918.

    [41] De Weerdt K, Justnes H, Geiker MR. Changes in the phase assemblage ofconcrete exposed to sea water. Cem Concr Compos 2014;47:5363.

    [42] DIN EN 196-1. Methods of testing cement Part 1: Determination of strength;2005.

    [43] DIN1015-3. Methods of test for mortar for masonry Part 3: Determinationofconsistence of fresh mortar (by flow table); 2007.

    372 F. Mittermayr et al. / Cement & Concrete Composites 55 (2015) 364373

    http://refhub.elsevier.com/S0958-9465(14)00182-6/h0380http://refhub.elsevier.com/S0958-9465(14)00182-6/h0380http://refhub.elsevier.com/S0958-9465(14)00182-6/h0380http://refhub.elsevier.com/S0958-9465(14)00182-6/h0010http://refhub.elsevier.com/S0958-9465(14)00182-6/h0010http://refhub.elsevier.com/S0958-9465(14)00182-6/h0015http://refhub.elsevier.com/S0958-9465(14)00182-6/h0015http://refhub.elsevier.com/S0958-9465(14)00182-6/h0015http://refhub.elsevier.com/S0958-9465(14)00182-6/h0020http://refhub.elsevier.com/S0958-9465(14)00182-6/h0020http://refhub.elsevier.com/S0958-9465(14)00182-6/h0020http://refhub.elsevier.com/S0958-9465(14)00182-6/h0025http://refhub.elsevier.com/S0958-9465(14)00182-6/h0025http://refhub.elsevier.com/S0958-9465(14)00182-6/h0040http://refhub.elsevier.com/S0958-9465(14)00182-6/h0040http://refhub.elsevier.com/S0958-9465(14)00182-6/h0045http://refhub.elsevier.com/S0958-9465(14)00182-6/h0045http://refhub.elsevier.com/S0958-9465(14)00182-6/h0045http://refhub.elsevier.com/S0958-9465(14)00182-6/h0045http://refhub.elsevier.com/S0958-9465(14)00182-6/h0050http://refhub.elsevier.com/S0958-9465(14)00182-6/h0050http://refhub.elsevier.com/S0958-9465(14)00182-6/h0050http://refhub.elsevier.com/S0958-9465(14)00182-6/h0050http://refhub.elsevier.com/S0958-9465(14)00182-6/h0050http://refhub.elsevier.com/S0958-9465(14)00182-6/h0050http://refhub.elsevier.com/S0958-9465(14)00182-6/h0050http://refhub.elsevier.com/S0958-9465(14)00182-6/h0055http://refhub.elsevier.com/S0958-9465(14)00182-6/h0055http://refhub.elsevier.com/S0958-9465(14)00182-6/h0055http://refhub.elsevier.com/S0958-9465(14)00182-6/h0060http://refhub.elsevier.com/S0958-9465(14)00182-6/h0060http://refhub.elsevier.com/S0958-9465(14)00182-6/h0065http://refhub.elsevier.com/S0958-9465(14)00182-6/h0065http://refhub.elsevier.com/S0958-9465(14)00182-6/h0065http://refhub.elsevier.com/S0958-9465(14)00182-6/h0065http://refhub.elsevier.com/S0958-9465(14)00182-6/h0085http://refhub.elsevier.com/S0958-9465(14)00182-6/h0085http://refhub.elsevier.com/S0958-9465(14)00182-6/h0085http://refhub.elsevier.com/S0958-9465(14)00182-6/h0090http://refhub.elsevier.com/S0958-9465(14)00182-6/h0090http://refhub.elsevier.com/S0958-9465(14)00182-6/h0090http://refhub.elsevier.com/S0958-9465(14)00182-6/h0090http://refhub.elsevier.com/S0958-9465(14)00182-6/h0095http://refhub.elsevier.com/S0958-9465(14)00182-6/h0095http://refhub.elsevier.com/S0958-9465(14)00182-6/h0100http://refhub.elsevier.com/S0958-9465(14)00182-6/h0100http://refhub.elsevier.com/S0958-9465(14)00182-6/h0100http://refhub.elsevier.com/S0958-9465(14)00182-6/h0100http://refhub.elsevier.com/S0958-9465(14)00182-6/h0105http://refhub.elsevier.com/S0958-9465(14)00182-6/h0105http://refhub.elsevier.com/S0958-9465(14)00182-6/h0105http://refhub.elsevier.com/S0958-9465(14)00182-6/h0110http://refhub.elsevier.com/S0958-9465(14)00182-6/h0110http://refhub.elsevier.com/S0958-9465(14)00182-6/h0110http://refhub.elsevier.com/S0958-9465(14)00182-6/h0115http://refhub.elsevier.com/S0958-9465(14)00182-6/h0115http://refhub.elsevier.com/S0958-9465(14)00182-6/h0115http://refhub.elsevier.com/S0958-9465(14)00182-6/h0120http://refhub.elsevier.com/S0958-9465(14)00182-6/h0120http://refhub.elsevier.com/S0958-9465(14)00182-6/h0120http://refhub.elsevier.com/S0958-9465(14)00182-6/h0125http://refhub.elsevier.com/S0958-9465(14)00182-6/h0125http://refhub.elsevier.com/S0958-9465(14)00182-6/h0125http://refhub.elsevier.com/S0958-9465(14)00182-6/h0130http://refhub.elsevier.com/S0958-9465(14)00182-6/h0130http://refhub.elsevier.com/S0958-9465(14)00182-6/h0135http://refhub.elsevier.com/S0958-9465(14)00182-6/h0135http://refhub.elsevier.com/S0958-9465(14)00182-6/h0135http://refhub.elsevier.com/S0958-9465(14)00182-6/h0140http://refhub.elsevier.com/S0958-9465(14)00182-6/h0140http://refhub.elsevier.com/S0958-9465(14)00182-6/h0145http://refhub.elsevier.com/S0958-9465(14)00182-6/h0145http://refhub.elsevier.com/S0958-9465(14)00182-6/h0145http://refhub.elsevier.com/S0958-9465(14)00182-6/h0150http://refhub.elsevier.com/S0958-9465(14)00182-6/h0150http://refhub.elsevier.com/S0958-9465(14)00182-6/h0150http://refhub.elsevier.com/S0958-9465(14)00182-6/h0155http://refhub.elsevier.com/S0958-9465(14)00182-6/h0155http://refhub.elsevier.com/S0958-9465(14)00182-6/h0160http://refhub.elsevier.com/S0958-9465(14)00182-6/h0160http://refhub.elsevier.com/S0958-9465(14)00182-6/h0160http://refhub.elsevier.com/S0958-9465(14)00182-6/h0165http://refhub.elsevier.com/S0958-9465(14)00182-6/h0165http://refhub.elsevier.com/S0958-9465(14)00182-6/h0165http://refhub.elsevier.com/S0958-9465(14)00182-6/h0170http://refhub.elsevier.com/S0958-9465(14)00182-6/h0170http://refhub.elsevier.com/S0958-9465(14)00182-6/h0175http://refhub.elsevier.com/S0958-9465(14)00182-6/h0175http://refhub.elsevier.com/S0958-9465(14)00182-6/h0175http://refhub.elsevier.com/S0958-9465(14)00182-6/h0175http://refhub.elsevier.com/S0958-9465(14)00182-6/h0180http://refhub.elsevier.com/S0958-9465(14)00182-6/h0180http://refhub.elsevier.com/S0958-9465(14)00182-6/h0180http://refhub.elsevier.com/S0958-9465(14)00182-6/h0185http://refhub.elsevier.com/S0958-9465(14)00182-6/h0185http://refhub.elsevier.com/S0958-9465(14)00182-6/h0185http://refhub.elsevier.com/S0958-9465(14)00182-6/h0185http://refhub.elsevier.com/S0958-9465(14)00182-6/h0190http://refhub.elsevier.com/S0958-9465(14)00182-6/h0190http://refhub.elsevier.com/S0958-9465(14)00182-6/h0190http://refhub.elsevier.com/S0958-9465(14)00182-6/h0195http://refhub.elsevier.com/S0958-9465(14)00182-6/h0195http://refhub.elsevier.com/S0958-9465(14)00182-6/h0195http://refhub.elsevier.com/S0958-9465(14)00182-6/h0200http://refhub.elsevier.com/S0958-9465(14)00182-6/h0200http://refhub.elsevier.com/S0958-9465(14)00182-6/h0205http://refhub.elsevier.com/S0958-9465(14)00182-6/h0205http://refhub.elsevier.com/S0958-9465(14)00182-6/h0205http://refhub.elsevier.com/S0958-9465(14)00182-6/h0205http://refhub.elsevier.com/S0958-9465(14)00182-6/h0200http://refhub.elsevier.com/S0958-9465(14)00182-6/h0200http://refhub.elsevier.com/S0958-9465(14)00182-6/h0195http://refhub.elsevier.com/S0958-9465(14)00182-6/h0195http://refhub.elsevier.com/S0958-9465(14)00182-6/h0195http://refhub.elsevier.com/S0958-9465(14)00182-6/h0190http://refhub.elsevier.com/S0958-9465(14)00182-6/h0190http://refhub.elsevier.com/S0958-9465(14)00182-6/h0190http://refhub.elsevier.com/S0958-9465(14)00182-6/h0190http://refhub.elsevier.com/S0958-9465(14)00182-6/h0185http://refhub.elsevier.com/S0958-9465(14)00182-6/h0185http://refhub.elsevier.com/S0958-9465(14)00182-6/h0185http://refhub.elsevier.com/S0958-9465(14)00182-6/h0180http://refhub.elsevier.com/S0958-9465(14)00182-6/h0180http://refhub.elsevier.com/S0958-9465(14)00182-6/h0180http://refhub.elsevier.com/S0958-9465(14)00182-6/h0175http://refhub.elsevier.com/S0958-9465(14)00182-6/h0175http://refhub.elsevier.com/S0958-9465(14)00182-6/h0175http://refhub.elsevier.com/S0958-9465(14)00182-6/h0175http://refhub.elsevier.com/S0958-9465(14)00182-6/h0170http://refhub.elsevier.com/S0958-9465(14)00182-6/h0170http://refhub.elsevier.com/S0958-9465(14)00182-6/h0165http://refhub.elsevier.com/S0958-9465(14)00182-6/h0165http://refhub.elsevier.com/S0958-9465(14)00182-6/h0165http://refhub.elsevier.com/S0958-9465(14)00182-6/h0160http://refhub.elsevier.com/S0958-9465(14)00182-6/h0160http://refhub.elsevier.com/S0958-9465(14)00182-6/h0160http://refhub.elsevier.com/S0958-9465(14)00182-6/h0155http://refhub.elsevier.com/S0958-9465(14)00182-6/h0155http://refhub.elsevier.com/S0958-9465(14)00182-6/h0150http://refhub.elsevier.com/S0958-9465(14)00182-6/h0150http://refhub.elsevier.com/S0958-9465(14)00182-6/h0150http://refhub.elsevier.com/S0958-9465(14)00182-6/h0145http://refhub.elsevier.com/S0958-9465(14)00182-6/h0145http://refhub.elsevier.com/S0958-9465(14)00182-6/h0145http://refhub.elsevier.com/S0958-9465(14)00182-6/h0140http://refhub.elsevier.com/S0958-9465(14)00182-6/h0140http://refhub.elsevier.com/S0958-9465(14)00182-6/h0135http://refhub.elsevier.com/S0958-9465(14)00182-6/h0135http://refhub.elsevier.com/S0958-9465(14)00182-6/h0130http://refhub.elsevier.com/S0958-9465(14)00182-6/h0130http://refhub.elsevier.com/S0958-9465(14)00182-6/h0125http://refhub.elsevier.com/S0958-9465(14)00182-6/h0125http://refhub.elsevier.com/S0958-9465(14)00182-6/h0125http://refhub.elsevier.com/S0958-9465(14)00182-6/h0120http://refhub.elsevier.com/S0958-9465(14)00182-6/h0120http://refhub.elsevier.com/S0958-9465(14)00182-6/h0120http://refhub.elsevier.com/S0958-9465(14)00182-6/h0115http://refhub.elsevier.com/S0958-9465(14)00182-6/h0115http://refhub.elsevier.com/S0958-9465(14)00182-6/h0115http://refhub.elsevier.com/S0958-9465(14)00182-6/h0110http://refhub.elsevier.com/S0958-9465(14)00182-6/h0110http://refhub.elsevier.com/S0958-9465(14)00182-6/h0110http://refhub.elsevier.com/S0958-9465(14)00182-6/h0105http://refhub.elsevier.com/S0958-9465(14)00182-6/h0105http://refhub.elsevier.com/S0958-9465(14)00182-6/h0105http://refhub.elsevier.com/S0958-9465(14)00182-6/h0100http://refhub.elsevier.com/S0958-9465(14)00182-6/h0100http://refhub.elsevier.com/S0958-9465(14)00182-6/h0100http://refhub.elsevier.com/S0958-9465(14)00182-6/h0100http://refhub.elsevier.com/S0958-9465(14)00182-6/h0095http://refhub.elsevier.com/S0958-9465(14)00182-6/h0095http://refhub.elsevier.com/S0958-9465(14)00182-6/h0090http://refhub.elsevier.com/S0958-9465(14)00182-6/h0090http://refhub.elsevier.com/S0958-9465(14)00182-6/h0090http://refhub.elsevier.com/S0958-9465(14)00182-6/h0085http://refhub.elsevier.com/S0958-9465(14)00182-6/h0085http://refhub.elsevier.com/S0958-9465(14)00182-6/h0085http://refhub.elsevier.com/S0958-9465(14)00182-6/h0065http://refhub.elsevier.com/S0958-9465(14)00182-6/h0065http://refhub.elsevier.com/S0958-9465(14)00182-6/h0065http://refhub.elsevier.com/S0958-9465(14)00182-6/h0060http://refhub.elsevier.com/S0958-9465(14)00182-6/h0060http://refhub.elsevier.com/S0958-9465(14)00182-6/h0055http://refhub.elsevier.com/S0958-9465(14)00182-6/h0055http://refhub.elsevier.com/S0958-9465(14)00182-6/h0055http://refhub.elsevier.com/S0958-9465(14)00182-6/h0050http://refhub.elsevier.com/S0958-9465(14)00182-6/h0050http://refhub.elsevier.com/S0958-9465(14)00182-6/h0050http://refhub.elsevier.com/S0958-9465(14)00182-6/h0045http://refhub.elsevier.com/S0958-9465(14)00182-6/h0045http://refhub.elsevier.com/S0958-9465(14)00182-6/h0045http://refhub.elsevier.com/S0958-9465(14)00182-6/h0045http://refhub.elsevier.com/S0958-9465(14)00182-6/h0040http://refhub.elsevier.com/S0958-9465(14)00182-6/h0040http://refhub.elsevier.com/S0958-9465(14)00182-6/h0025http://refhub.elsevier.com/S0958-9465(14)00182-6/h0025http://refhub.elsevier.com/S0958-9465(14)00182-6/h0020http://refhub.elsevier.com/S0958-9465(14)00182-6/h0020http://refhub.elsevier.com/S0958-9465(14)00182-6/h0015http://refhub.elsevier.com/S0958-9465(14)00182-6/h0015http://refhub.elsevier.com/S0958-9465(14)00182-6/h0015http://refhub.elsevier.com/S0958-9465(14)00182-6/h0010http://refhub.elsevier.com/S0958-9465(14)00182-6/h0010http://refhub.elsevier.com/S0958-9465(14)00182-6/h0380http://refhub.elsevier.com/S0958-9465(14)00182-6/h0380
  • 8/10/2019 Pr42. Mittermayr Et Al. 2015

    10/10

    [44] Breitenbcher R, Heinz D, Lipus K, Paschke J, Thielen G, Urbonas L, et al.German Building Authority (DIBt) Sachstandbericht Sulfatangriff aufBeton. Berlin: Deutscher Ausschuss fr Stahlbeton; 2006.

    [45] Bellmann F, Stark J. The role of calcium hydroxide in the formation ofthaumasite. Cem Concr Res 2008;38(10):115461.

    [46] Scrivener K, Crumbie A, Laugesen P. The interfacial transition zone (ITZ)between cement paste and aggregate in concrete. Interface Sci2004;12(4):41121.

    [47] Lothenbach B, Bary B, Le Bescop P, Schmidt T, Leterrier N. Sulfate ingress inPortland cement. Cem Concr Res 2010;40(8):121125.

    [48] Gruyaert E, Van den Heede P, Maes M, De Belie N. Investigation of theinfluence of blast-furnace slag on the resistance of concrete against organicacid or sulphate attack by means of accelerated degradation tests. Cem ConcrRes 2012;42(1):17385.

    [49] DeSchutter G, Ye G, Audenaert K, Bager D, Baroghel-Bouny V, Bellmann F, et al.Final report of RILEM TC 205-DSC: durability of self-compacting concrete.Mater Struct/Mater Constr 2008;41(2):22533.

    [50] Tian B, Cohen MD. Does gypsum formation during sulfate attack on concretelead to expansion? Cem Concr Res 2000;30(1):11723.

    [51] Bassuoni MT, Nehdi ML. Resistance of self-consolidating concrete to sulfuricacid attack with consecutive pH reduction. Cem Concr Res 2007;37(7):107084.

    [52] Brown P, Hooton RD, Clark B. Microstructural changes in concretes withsulfate exposure. Cem Concr Compos 2004;26(8):9939.

    [53] Lothenbach B, Le Saout G, Ben Haha M, Figi R, Wieland E. Hydration of a low-alkali CEM III/BSiO2cement (LAC). Cem Concr Res 2012;42(2):41023.

    [54] Rinder T, Dietzel M, Leis A. Calcium carbonate scaling under alkalineconditions Case studies and hydrochemical modelling. Appl Geochem2013;35:13241.

    [55] Mittermayr F, Baldermann A, Kurta C, Rinder T, Klammer D, Leis A, et al.Evaporationa key mechanism for the thaumasite form of sulfate attack. CemConcr Res 2013;49:5564.

    [56] Gruyaert E, Maes M, De Belie N. Performance of BFS concrete: k-value conceptversus equivalent performance concept. Constr Build Mater 2013;47:44155.

    [57] Kunther W, Lothenbach B, Scrivener KL. Deterioration of mortar barsimmersed in magnesium containing sulfate solutions. Mater Struct/MaterConstr 2013:19.

    [58] Sotiriadis K, Nikolopoulou E, Tsivilis S, Pavlou A, Chaniotakis E, Swamy RN. Theeffect of chlorides on the thaumasite form of sulfate attack of limestonecement concrete containing mineral admixtures at low temperature. ConstrBuild Mater 2013;43:15664.

    [59] Maes M, De Belie N. Resistance of concrete and mortar against combinedattack of chloride and sodium sulphate. Cem Concr Compos 2014;53:5972.

    [60] Niedermayr A, Khler SJ, Dietzel M. Impacts of aqueous carbonateaccumulation rate, magnesium and polyaspartic acid on calcium carbonateformation (640 C). Chem Geol 2013;340:10520.

    [61] Carbonates DietzelM. In: Reitner J, Thiel V, editors. Encyclopedia ofgeobiology. Dordrecht: Springer; 2011. p. 2616.

    [62] Mann S. Biomineralization. New York: Oxford University Press; 2001.[63] Aguilera J, Varela MTB, Vzquez T. Procedure of synthesis of thaumasite. Cem

    Concr Res 2001;31(8):11638.[64] Blanco-Varela MT, Carmona-Quiroga PM, Sez del Bosque IF, Martnez-

    Ramrez S. Role of organic admixtures on thaumasite precipitation. Cem

    Concr Res 2012;42(7):9941000.[65] Martinez-Ramirez S, Blanco-Varela MT, Rapazote J. Thaumasite formation in

    sugary solutions: effect of temperature and sucrose concentration. ConstrBuild Mater 2011;25(1):219.

    [66] Hagelia P. PhD thesis: deterioration mechanisms and durability of sprayedconcrete for rock support in tunnels. Delft, TU Delft; 2011.

    [67] Ferrari L, Bernard L, Deschner F, Kaufmann J, Winnefeld F, Plank J.Characterization of polycarboxylate-ether based superplasticizer on cementclinker surfaces. J Am Ceram Soc 2012;95(7):218995.

    [68] Ferrari L, Kaufmann J, Winnefeld F, Plank J. Impact of particle size oninteraction forces between ettringite and dispersing comb-polymers in variouselectrolyte solutions. J Colloid Interface Sci 2014;419:1724.

    [69] Plank J, Zhimin D, Keller H, Hssle Fv, Seidl W. Fundamental mechanisms forpolycarboxylate intercalation into C3A hydrate phases and the role of sulfatepresent in cement. Cem Concr Res 2010;40(1):4557.

    [70]Fan W, Stoffelbach F, Rieger J, RegnaudL, Vichot A, Bresson B, et al. A newclassof organosilane-modified polycarboxylate superplasticizers with low sulfatesensitivity. Cem Concr Res 2012;42(1):16672.

    [71] Belton DJ, Deschaume O, Patwardhan SV, Perry CC. A solution study of silicacondensation and speciation with relevance to in vitro investigations ofbiosilicification. J Phys Chem B 2010;114(31):994755.

    [72] Belton DJ, Deschaume O, Perry CC. An overview of the fundamentals of thechemistry of silica with relevance to biosilicification and technologicaladvances. FEBS J 2012;279(10):171020.

    [73] Dietzel M, Letofsky-Papst I. Stability of magadiite between 20 and 100 C.Clays Clay Miner 2002;50(5):65766.

    [74] Torres SM, Lynsdale CJ, Swamy RN, Sharp JH. Microstructure of 5-year-oldmortars containing limestone filler damaged by thaumasite. Cem Concr Res2006;36(2):38494.

    [75] Thomas MDA, Rogers CA, Bleszynski RF. Occurrences of thaumasite inlaboratory and field concrete. Cem Concr Compos 2003;25(8):104550.

    F. Mittermayr et al. / Cement & Concrete Composites 55 (2015) 364373 373

    http://refhub.elsevier.com/S0958-9465(14)00182-6/h0220http://refhub.elsevier.com/S0958-9465(14)00182-6/h0220http://refhub.elsevier.com/S0958-9465(14)00182-6/h0220http://refhub.elsevier.com/S0958-9465(14)00182-6/h0225http://refhub.elsevier.com/S0958-9465(14)00182-6/h0225http://refhub.elsevier.com/S0958-9465(14)00182-6/h0230http://refhub.elsevier.com/S0958-9465(14)00182-6/h0230http://refhub.elsevier.com/S0958-9465(14)00182-6/h0230http://refhub.elsevier.com/S0958-9465(14)00182-6/h0230http://refhub.elsevier.com/S0958-9465(14)00182-6/h0235http://refhub.elsevier.com/S0958-9465(14)00182-6/h0235http://refhub.elsevier.com/S0958-9465(14)00182-6/h0240http://refhub.elsevier.com/S0958-9465(14)00182-6/h0240http://refhub.elsevier.com/S0958-9465(14)00182-6/h0240http://refhub.elsevier.com/S0958-9465(14)00182-6/h0240http://refhub.elsevier.com/S0958-9465(14)00182-6/h0245http://refhub.elsevier.com/S0958-9465(14)00182-6/h0245http://refhub.elsevier.com/S0958-9465(14)00182-6/h0245http://refhub.elsevier.com/S0958-9465(14)00182-6/h0250http://refhub.elsevier.com/S0958-9465(14)00182-6/h0250http://refhub.elsevier.com/S0958-9465(14)00182-6/h0255http://refhub.elsevier.com/S0958-9465(14)00182-6/h0255http://refhub.elsevier.com/S0958-9465(14)00182-6/h0255http://refhub.elsevier.com/S0958-9465(14)00182-6/h0260http://refhub.elsevier.com/S0958-9465(14)00182-6/h0260http://refhub.elsevier.com/S0958-9465(14)00182-6/h0265http://refhub.elsevier.com/S0958-9465(14)00182-6/h0265http://refhub.elsevier.com/S0958-9465(14)00182-6/h0265http://refhub.elsevier.com/S0958-9465(14)00182-6/h0265http://refhub.elsevier.com/S0958-9465(14)00182-6/h0270http://refhub.elsevier.com/S0958-9465(14)00182-6/h0270http://refhub.elsevier.com/S0958-9465(14)00182-6/h0270http://refhub.elsevier.com/S0958-9465(14)00182-6/h0275http://refhub.elsevier.com/S0958-9465(14)00182-6/h0275http://refhub.elsevier.com/S0958-9465(14)00182-6/h0275http://refhub.elsevier.com/S0958-9465(14)00182-6/h0280http://refhub.elsevier.com/S0958-9465(14)00182-6/h0280http://refhub.elsevier.com/S0958-9465(14)00182-6/h0285http://refhub.elsevier.com/S0958-9465(14)00182-6/h0285http://refhub.elsevier.com/S0958-9465(14)00182-6/h0285http://refhub.elsevier.com/S0958-9465(14)00182-6/h0290http://refhub.elsevier.com/S0958-9465(14)00182-6/h0290http://refhub.elsevier.com/S0958-9465(14)00182-6/h0290http://refhub.elsevier.com/S0958-9465(14)00182-6/h0290http://refhub.elsevier.com/S0958-9465(14)00182-6/h0295http://refhub.elsevier.com/S0958-9465(14)00182-6/h0295http://refhub.elsevier.com/S0958-9465(14)00182-6/h0295http://refhub.elsevier.com/S0958-9465(14)00182-6/h0300http://refhub.elsevier.com/S0958-9465(14)00182-6/h0300http://refhub.elsevier.com/S0958-9465(14)00182-6/h0300http://refhub.elsevier.com/S0958-9465(14)00182-6/h0300http://refhub.elsevier.com/S0958-9465(14)00182-6/h0300http://refhub.elsevier.com/S0958-9465(14)00182-6/h0305http://refhub.elsevier.com/S0958-9465(14)00182-6/h0305http://refhub.elsevier.com/S0958-9465(14)00182-6/h0310http://refhub.elsevier.com/S0958-9465(14)00182-6/h0310http://refhub.elsevier.com/S0958-9465(14)00182-6/h0315http://refhub.elsevier.com/S0958-9465(14)00182-6/h0315http://refhub.elsevier.com/S0958-9465(14)00182-6/h0315http://refhub.elsevier.com/S0958-9465(14)00182-6/h0320http://refhub.elsevier.com/S0958-9465(14)00182-6/h0320http://refhub.elsevier.com/S0958-9465(14)00182-6/h0320http://refhub.elsevier.com/S0958-9465(14)00182-6/h0325http://refhub.elsevier.com/S0958-9465(14)00182-6/h0325http://refhub.elsevier.com/S0958-9465(14)00182-6/h0325http://refhub.elsevier.com/S0958-9465(14)00182-6/h0335http://refhub.elsevier.com/S0958-9465(14)00182-6/h0335http://refhub.elsevier.com/S0958-9465(14)00182-6/h0335http://refhub.elsevier.com/S0958-9465(14)00182-6/h0340http://refhub.elsevier.com/S0958-9465(14)00182-6/h0340http://refhub.elsevier.com/S0958-9465(14)00182-6/h0340http://refhub.elsevier.com/S0958-9465(14)00182-6/h0345http://refhub.elsevier.com/S0958-9465(14)00182-6/h0345http://refhub.elsevier.com/S0958-9465(14)00182-6/h0345http://refhub.elsevier.com/S0958-9465(14)00182-6/h0350http://refhub.elsevier.com/S0958-9465(14)00182-6/h0350http://refhub.elsevier.com/S0958-9465(14)00182-6/h0350http://refhub.elsevier.com/S0958-9465(14)00182-6/h0355http://refhub.elsevier.com/S0958-9465(14)00182-6/h0355http://refhub.elsevier.com/S0958-9465(14)00182-6/h0355http://refhub.elsevier.com/S0958-9465(14)00182-6/h0360http://refhub.elsevier.com/S0958-9465(14)00182-6/h0360http://refhub.elsevier.com/S0958-9465(14)00182-6/h0360http://refhub.elsevier.com/S0958-9465(14)00182-6/h0365http://refhub.elsevier.com/S0958-9465(14)00182-6/h0365http://refhub.elsevier.com/S0958-9465(14)00182-6/h0365http://refhub.elsevier.com/S0958-9465(14)00182-6/h0365http://refhub.elsevier.com/S0958-9465(14)00182-6/h0370http://refhub.elsevier.com/S0958-9465(14)00182-6/h0370http://refhub.elsevier.com/S0958-9465(14)00182-6/h0370http://refhub.elsevier.com/S0958-9465(14)00182-6/h0370http://refhub.elsevier.com/S0958-9465(14)00182-6/h0375http://refhub.elsevier.com/S0958-9465(14)00182-6/h0375http://refhub.elsevier.com/S0958-9465(14)00182-6/h0375http://refhub.elsevier.com/S0958-9465(14)00182-6/h0375http://refhub.elsevier.com/S0958-9465(14)00182-6/h0375http://refhub.elsevier.com/S0958-9465(14)00182-6/h0370http://refhub.elsevier.com/S0958-9465(14)00182-6/h0370http://refhub.elsevier.com/S0958-9465(14)00182-6/h0370http://refhub.elsevier.com/S0958-9465(14)00182-6/h0365http://refhub.elsevier.com/S0958-9465(14)00182-6/h0365http://refhub.elsevier.com/S0958-9465(14)00182-6/h0365http://refhub.elsevier.com/S0958-9465(14)00182-6/h0360http://refhub.elsevier.com/S0958-9465(14)00182-6/h0360http://refhub.elsevier.com/S0958-9465(14)00182-6/h0360http://refhub.elsevier.com/S0958-9465(14)00182-6/h0355http://refhub.elsevier.com/S0958-9465(14)00182-6/h0355http://refhub.elsevier.com/S0958-9465(14)00182-6/h0355http://refhub.elsevier.com/S0958-9465(14)00182-6/h0350http://refhub.elsevier.com/S0958-9465(14)00182-6/h0350http://refhub.elsevier.com/S0958-9465(14)00182-6/h0350http://refhub.elsevier.com/S0958-9465(14)00182-6/h0345http://refhub.elsevier.com/S0958-9465(14)00182-6/h0345http://refhub.elsevier.com/S0958-9465(14)00182-6/h0345http://refhub.elsevier.com/S0958-9465(14)00182-6/h0340http://refhub.elsevier.com/S0958-9465(14)00182-6/h0340http://refhub.elsevier.com/S0958-9465(14)00182-6/h0340http://refhub.elsevier.com/S0958-9465(14)00182-6/h0335http://refhub.elsevier.com/S0958-9465(14)00182-6/h0335http://refhub.elsevier.com/S0958-9465(14)00182-6/h0335http://refhub.elsevier.com/S0958-9465(14)00182-6/h0325http://refhub.elsevier.com/S0958-9465(14)00182-6/h0325http://refhub.elsevier.com/S0958-9465(14)00182-6/h0325http://refhub.elsevier.com/S0958-9465(14)00182-6/h0320http://refhub.elsevier.com/S0958-9465(14)00182-6/h0320http://refhub.elsevier.com/S0958-9465(14)00182-6/h0320http://refhub.elsevier.com/S0958-9465(14)00182-6/h0315http://refhub.elsevier.com/S0958-9465(14)00182-6/h0315http://refhub.elsevier.com/S0958-9465(14)00182-6/h0310http://refhub.elsevier.com/S0958-9465(14)00182-6/h0305http://refhub.elsevier.com/S0958-9465(14)00182-6/h0305http://refhub.elsevier.com/S0958-9465(14)00182-6/h0300http://refhub.elsevier.com/S0958-9465(14)00182-6/h0300http://refhub.elsevier.com/S0958-9465(14)00182-6/h0300http://refhub.elsevier.com/S0958-9465(14)00182-6/h0300http://refhub.elsevier.com/S0958-9465(14)00182-6/h0295http://refhub.elsevier.com/S0958-9465(14)00182-6/h0295http://-/?-http://refhub.elsevier.com/S0958-9465(14)00182-6/h0290http://refhub.elsevier.com/S0958-9465(14)00182-6/h0290http://refhub.elsevier.com/S0958-9465(14)00182-6/h0290http://refhub.elsevier.com/S0958-9465(14)00182-6/h0290http://-/?-http://refhub.elsevier.com/S0958-9465(14)00182-6/h0285http://refhub.elsevier.com/S0958-9465(14)00182-6/h0285http://refhub.elsevier.com/S0958-9465(14)00182-6/h0285http://-/?-http://refhub.elsevier.com/S0958-9465(14)00182-6/h0280http://refhub.elsevier.com/S0958-9465(14)00182-6/h0280http://-/?-http://refhub.elsevier.com/S0958-9465(14)00182-6/h0275http://refhub.elsevier.com/S0958-9465(14)00182-6/h0275http://refhub.elsevier.com/S0958-9465(14)00182-6/h0275http://-/?-http://refhub.elsevier.com/S0958-9465(14)00182-6/h0270http://refhub.elsevier.com/S0958-9465(14)00182-6/h0270http://refhub.elsevier.com/S0958-9465(14)00182-6/h0270http://-/?-http://refhub.elsevier.com/S0958-9465(14)00182-6/h0265http://refhub.elsevier.com/S0958-9465(14)00182-6/h0265http://refhub.elsevier.com/S0958-9465(14)00182-6/h0265http://-/?-http://refhub.elsevier.com/S0958-9465(14)00182-6/h0260http://refhub.elsevier.com/S0958-9465(14)00182-6/h0260http://-/?-http://refhub.elsevier.com/S0958-9465(14)00182-6/h0255http://refhub.elsevier.com/S0958-9465(14)00182-6/h0255http://refhub.elsevier.com/S0958-9465(14)00182-6/h0255http://-/?-http://refhub.elsevier.com/S0958-9465(14)00182-6/h0250http://refhub.elsevier.com/S0958-9465(14)00182-6/h0250http://-/?-http://refhub.elsevier.com/S0958-9465(14)00182-6/h0245http://refhub.elsevier.com/S0958-9465(14)00182-6/h0245http://refhub.elsevier.com/S0958-9465(14)00182-6/h0245http://-/?-http://refhub.elsevier.com/S0958-9465(14)00182-6/h0240http://refhub.elsevier.com/S0958-9465(14)00182-6/h0240http://refhub.elsevier.com/S0958-9465(14)00182-6/h0240http://refhub.elsevier.com/S0958-9465(14)00182-6/h0240http://-/?-http://refhub.elsevier.com/S0958-9465(14)00182-6/h0235http://refhub.elsevier.com/S0958-9465(14)00182-6/h0235http://-/?-http://refhub.elsevier.com/S0958-9465(14)00182-6/h0230http://refhub.elsevier.com/S0958-9465(14)00182-6/h0230http://refhub.elsevier.com/S0958-9465(14)00182-6/h0230http://-/?-http://refhub.elsevier.com/S0958-9465(14)00182-6/h0225http://refhub.elsevier.com/S0958-9465(14)00182-6/h0225http://-/?-http://refhub.elsevier.com/S0958-9465(14)00182-6/h0220http://refhub.elsevier.com/S0958-9465(14)00182-6/h0220http://refhub.elsevier.com/S0958-9465(14)00182-6/h0220http://-/?-