16
Universidad Nacional Autónoma de México Facultad de Química Laboratorio de Termodinámica DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES R Viloria Torres Diego Sebastián

Practica Term Odin a Mica

Embed Size (px)

DESCRIPTION

practica

Citation preview

Page 1: Practica Term Odin a Mica

Universidad Nacional Autónoma de México

Facultad de Química

Laboratorio de Termodinámica

DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES R

Viloria Torres Diego Sebastián

Page 2: Practica Term Odin a Mica

DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES R

Objetivo

Determinar experimentalmente la constante universal de los gases R y el volumen molar del hidrógeno.

Introducción

Un gas ideal, es un gas hipotético formado por partículas puntuales, sin atracción ni repulsión entre ellas y cuyos choques son perfectamente elásticos. La energía cinética es directamente proporcional a la temperatura en un gas ideal. La presión (P), volumen (V) y la temperatura (T) están relacionados por la ley del gas ideal, donde (n) es el número de moles y R la constante de los gases.

PV=nRT

La constante universal de los gases ideales (R) es una constante física que relaciona entre sí diversas funciones de estado termodinámicas, estableciendo esencialmente una relación entre la energía, la temperatura y la cantidad de materia.

Este valor constante es utilizado en la ecuación de estado de los gases ideales, que combina las leyes de Avogadro, de Gay Lussac y la ley de Charles.

La ley de Avogadro indica que en condiciones de presión y temperatura constantes, el volumen de un gas está relacionado directamente con el número de moles de dicho gas.

La ley de Gay Lussac, si mantenemos constante el volumen y el número de moles de un gas, un aumento de temperatura causará un aumento en la presión. De la misma manera, un descenso de temperatura es responsable de un descenso en la presión de dicho gas.

La ley de Charles predice que en si mantenemos constante la presión de un gas, un aumento en la temperatura causará un aumento en el volumen del gas. De la combinación de estas leyes, surge la ecuación general de los gases ideales.

El valor de R depende de las unidades con las cuales se esté trabajando:

Constante Universal de los Gases Ideales

Page 3: Practica Term Odin a Mica

Hipótesis

Las condiciones en las que se estén trabajando, como la temperatura y presión influirán en la determinación de los datos.

El volumen estimado que ocupará el gas ideal debe ser de aproximadamente 22.4 L/mol

Materiales

-

- 1 Tubo de desprendimiento. - - 1 Pinza de tres dedos-

- 1 Jeringa de 3 mL con aguja - - 3 soportes

universales-

- 1 Tapón de #0 - - 1 Pipeta Pasteur-

- 2 Mangueras de látex (aprox. 50 cm)

- - 1 Tapón de #000-

- 1 Bureta de 50 mL sin llave - - 1 Vaso de pp de 250 mL-

- 1 Termómetro (0.1 °C) - - 1 Vidrio de reloj

-

- 1 Embudo de vidrio - - Balanza digital-

- 2 Pinzas para bureta - -

Reactivos

HCl (ácido clorhídrico), Mg (magnesio), H2o (agua).

Aplicación del Lenguaje Termodinámico

Sistema seleccionado: reacción entre Mg con HCl para dar H2

Sustancia/s del sistema: Mg, HCl, H2O, H2, MgCl2

Número de componentes: Cinco

Número de fases Dos, homogénea y heterogénea

Tipo de paredes: Tubo de desprendimiento que conforma una pared rígida.

Propiedades intensivas: Temperatura (T), densidad (ρ), presión (P)

Propiedad extensiva: Masa (m), Volumen (V)

Proceso realizado: Proceso isotérmico

Clasificación del sistema:

Interacción con el entorno: Es un sistema aislado/cerrado

Fases que lo integran: 2, terminó siendo heterogéneo

Page 4: Practica Term Odin a Mica

Manejo y Toxicidad

Ácido Clorhídrico

Fórmula HCl

Masa molar 36.45 g/mol

Punto de ebullición (°C) 321 K (48 °C)

Punto de fusión (°C) 247 K (-26 °C)

Solubilidad Soluble en agua, alcoholes, éter y benceno. Insoluble en hidrocarburos.

RiesgosIngestión Puede producir gastritis, quemaduras, gastritis hemorrágica, edema, necrosis.

Se recomienda beber agua o leche y NO inducir el vómito

Inhalación Puede producir irritación, edema y corrosión del tracto respiratorio, bronquitis crónica. Se recomienda llevar a la persona a un lugar con aire fresco, mantenerla caliente y quieta. Si se detiene la respiración practicar reanimación cardio pulmonar

Page 5: Practica Term Odin a Mica

Piel Puede producir quemaduras, úlceras, irritación. Retirar de la zona afectada toda la vestimenta y calzados y lavar con agua abundante durante al menos 20 minutos.

Ojos Puede producir necrosis en la córnea, inflamación en el ojo, irritación ocular y nasal, úlcera nasal. Lavar el o los ojos expuestos con abundante agua durante al menos 15 minutos.

Manipulación

Ventilación local y general resistente a la corrosión, para asegurar que la concentración no exceda los límites de exposición ocupacional. Debe disponerse de duchas y estaciones lavaojos.

Protección de los ojos y rostro Gafas de seguridad resistente a químicos con protección lateral. Guantes, bata y zapato cerrado. Los materiales resistentes son: neopreno,

nitrilo/polivinil cloruro, polietileno clorado, viton/neopreno, caucho natural.

Hidrógeno (gas)

Fórmula H2

Masa molar 2,01 g/mol

Punto de ebullicón (°C) -252.78 °C

Punto de fusión (°C) -259.2 °C

RiesgosIngestión Es una manera poco probable de exposición. Este producto es gaseoso a

presión y temperaturas normales.

Inhalación Asfixiante. Los efectos son debidos a la falta de Oxígeno. Concentraciones moderadas pueden causar dolor de cabeza, vértigo, somnolencia, excitación, exceso de salivación, vómito y pérdida de conciencia. La falta de oxígeno puede ser fatal.

Piel Ninguno actualmente conocido.

Ojos Ninguno actualmente conocido.

Page 6: Practica Term Odin a Mica

Manipulación

Utilice el producto sólo en áreas bien ventiladas. Utilizar equipo autónomo de respiración si la ventilación es inadecuada. No ingresar en

áreas de almacenamiento y espacios confinados si no se encuentran adecuadamente ventiladas.

Proteja los cilindros contra los daños físicos. Mantenga alejado del calor, chispas y llamas. El control de fugas debe ser realizado con agua jabonosa, nunca con fuego. No fumar o beber durante el manipuleo del producto.

Page 7: Practica Term Odin a Mica

Procedimiento Experimental

Armar el equipo, verificando que no existan fugas

Medir la temperatura ambiente (Tamb) y presión

barométrica (Patm)

Doblarla en 4 partes una tira de Mg y pesarla para obtener

la masa inicial (m1)

Asegurar que no existan burbujas de aire en la bureta y

mangueras

Llenar la jeringa con HCl 3M (nos servirá tres experimentos) e insertar la aguja en el tapón del

tubo.

Colocar el magnesio en el tubo y el tapón con la jeringa

Medir el volumen inicial en la bureta (V1)

Inyectar aproximadamente 0.5 mL de HCl

Llenar la bureta hasta que el agua cubra el vástago del embudo

Esperar a que la reacción finalice y que el gas alcance el equilibrio con la

temperatura ambiente (Tamb)

Mover el embudo para igualar el nivel del agua con el nivel

de la bureta

Desconectar el tubo recuperar el Mg que no reacciono.

Obtener la masa final (m2)

1

2 3 4

5

6 7 8

9

10 11

Repetir el experimento 2 veces y registrar los datos.

Page 8: Practica Term Odin a Mica

Tabla 1. Datos experimentales

1 2 3

Temperatura ambiente (°C) 23.3°C 24.4°C 24.4°C

Temperatura ambiente (K) 296.45 K 296.76 K 296.76 K

Presión atmosférica (hPa) 779.93 hPa 779.93 hPa 779.93 hPa

Presión atmosférica (atm) 0.77 atm 0.77 atm 0.77 atm

Masa de Mg antes de la reacción (g) 0.0183g 0.0167g 0.0182g

Masa de Mg después de la reacción (mL) 0g(reacciono todo) 0g (reacciono todo) 0g (reacciono todo)

Volumen inicial antes de la reacción (mL) 12.3 14.3 14.5

Volumen final después de la reacción (mL) 37.5 36.4 38.2

Conversión de Celsius (°C) a Kelvin (K)

273.15+23.3=296.45K

273.15+24.4=296.76K

273.15+24.4=296.76K

PresiónatmosféricaCd .deMéxico=0.77atm

Conociendo que1atm=1013.25hPa (hectoPascal )

Tenemos : 0.77×1013.25=779.93hPa≈780hPa

Page 9: Practica Term Odin a Mica

Producción del Gas Ideal

Mg (s) + 2 HCl (aq) → MgCl2 (aq) + H2 (g)

Partimos de la reacción entre el Mg y el HCl para obtener como producto el H 2, el cual fue nuestro gas ideal. Mantuvo las propiedades y se comportó de manera adecuada a la temperatura y presión en las que se estaban trabajando.

Tabla 2. Resultados del experimento

1 2 3

Volumen de H2 desprendido (mL) 25.2 mL 22.1 mL 23.7 mL

Volumen de H2 desprendido (L) 0.025L 0.022L 0.023L

Masa de Mg que reaccionó (g) 0.0187g 0.0167g 0.0182g

Cantidad de sustancia de Mg que reaccionó (mol) 7.4x10-4 mol 6.8x10-4 mol 7.48x10-4 mol

Cantidad de sustancia de H2 que se formó (mol) 7.4x10-4 mol 6.8x10-4 mol 7.48x10-4 mol

Presión de vapor del agua a la T de trabajo (mmHg) 21.37 mmHg 22.77 mmHg 22.77 mmHg

Presión de vapor del agua a la T de trabajo (atm) 0.028 atm 0.029 atm 0.029 atm

Presión parcial del H2 (atm) 0.74 atm 0.74 atm 0.74 atm

Mg(s)+HCl (aq) MgCl2

H2(gas ideal)

El H2

desplaza el volumen de agua debido a que ejerce una presión

Page 10: Practica Term Odin a Mica

Constante Universal R experimental (Latm/molK) 0.084 0.080 0.076

Volumen H 2desprendido(observando la Tabla 1)

37.5−12.3=25.2mL→25.21000

=0.025L

36.4−14.3=22.1mL→22.11000

=0.022 L

38.2−14.5=23.7mL→23.3/1000=0.023 L

Cantidad de sus tan cia deMgque reaccionó (mol )

MasaMg inicial (g )→0.0183 g⇔0.0167 g⇔0.0182g

MasamolarMg=24.35 gmol

0.0183 g( 1mol24.35 )=7.4 x10−4molMg

0.0167 g( 1mol24.35 )=6.8 x10−4molMg

0.0182 g( 1mol24.35

)=7.48 x 10−4molMg

Una vez obteniendo los datos anteriores, calcularemos la presión de vapor de agua (mmHg) a partir de su temperatura (°C).

Para eso nos apoyamos en la tabla siguiente:

Temperatura (°C) Pvapor de agua (mm Hg)16 13.517 14.518 15.519 16.520 17.521 18.722 19.323 21.124 22.4

Page 11: Practica Term Odin a Mica

25 23.826 25.227 26.728 28.329 30.0

Nuestras temperaturas fueron las siguientes

23.3°C 24.4°C 24.4°C

Teniendo que:

23→21.123 .3→21 .37 mmHg

24→22.424 .4→22 .77 mmHg

Convirtiendo demmHgaatm

Sabemosque1atm=760mmHg

21.37mmHg( 1atm760mmHg )=0.028atm

22.77mmHg( 1atm760mmHg

)=0.029atm

Presion parcial delH 2 (atm )

Page 12: Practica Term Odin a Mica

PH2=P total (atm )−PH 2O (atm )

PH2=0.77atm−0.028=0.742atm

PH2=0.77atm−0.029=0.741atm

PH2=0.77atm−0.029=0.741atm

Obteniendo laCons tan teUniversal Rexperimental

Partiendo de la Ecuación de los Gases Ideales:

PV=nRT

Despejando tenemos:

R=PVnT

Sustituyendo

RH2=(0.74 ) (0.025 )

( 7.4 X 10−4 ) (296.45 )=0.084

atm·Lmol·K

RH2=(0.74 ) (0.022 )

( 6.8 X10−4 ) (296.76 )=0.080

atm·Lmol·K

RH2=(0.74)(0.023)

(7.48 X 10−4)(296.76)=0.076

atm·Lmol·K

Análisis

Basándonos en los datos obtenidos por medio de la experimentación se puede afirmar la relación que tiene la temperatura con la presión, dando como resultado una ecuación de estado.

A lo largo del experimento estuvieron presentes diversos factores que pudieron influir en el comportamiento del sistema es debido a eso que se obtuvieron resultados ligeramente diferentes

Page 13: Practica Term Odin a Mica

en cada uno de los tres experimentos que realizamos. Nuestro gas H2, producto de una reacción química fue indispensable para lograr determinar la constante universal de los gases ideales R, ya que su interacción con sus alrededores y comportamiento fueron los de un gas ideal. Así pues fue como relacionamos la presión del sistema con la de sus alrededores y mediante un desarrollo matemático; apoyado por los conocimientos teóricos se logró determinar un valor cercano en los tres casos al propuesto oficialmente.

Usos industriales

La importancia de los gases en la industria se debe a su aplicación. El gas es un estado de agregación de la materia que podemos percibir pero que no podemos observar.

Para aumentar los procesos en la industria química y petroquímica, se utilizan las propiedades de los gases. Por ejemplo, se usan para control de los mismos (temperatura, parámetros operacionales) o para manejo de la seguridad en los procesos.

“Entre las aplicaciones de gases más comúnmente utilizadas en la industria química, podemos destacar las siguientes, que pasaremos más adelante a desarrollar: inertizado y “blanketing”; purgas; recuperación de compuestos orgánicos volátiles; regulación de temperatura y reacciones a muy baja temperatura; tratamiento de aguas y limpieza de superficies” (Frutos, 2004).

Para mejorar las condiciones humanas se utiliza la composición química de los gases para: preservar por más tiempo los alimentos en la industria alimenticia; la industria farmacéutica la usa en medicamentos para terapias respiratorias; la industria petroquímica se vale de ella para obtener recursos naturales del subsuelo y sólo por mencionar algunas aplicaciones.

Bibliografía

Cervantes Espinosa, Leticia. & et. al. (2006). Lenguaje termodinámico [PDF]. Departamento de fisicoquímica. Facultad de Química UNAM. Consultado el 25 de septiembre de 2015 en: http://depa.fquim.unam.mx/amyd/archivero/APUNTESLENGUAJETERMODINAMICO_12043.pdf

Frutos Arrizabalaga, Miguel. (2004). Los gases industriales en la industria petroquímica y química final. Interempresas.net. Consultado el 24 de septiembre de 2015 en: http://www.interempresas.net/Quimica/Articulos/10827-Los-gases-industriales-en-la-industria-petroquimica-y-quimica-final.html

Jones, J.B. y Dugan, R (2002). Ingeniería Termodinámica. Prentice Hall: México. Quinta Edición.

Levenspiel, O. (2010). Fundamentos de Termodinámica. Prentice Hall: México. Novena Edición.

Incropera, F.P y DeWitt, D.P. (1999). Fundamentos de Transferencia de Calor. Prentice Hall: México. Cuarta edición.

Page 14: Practica Term Odin a Mica

(s/a). (2012). Aplica las leyes de los gases [PDF]. Recuperado el 25 de septiembre de 2015 en: https://leerenalbatros.files.wordpress.com/2012/08/fisicoquc3admica.pdf