43
6.3 BJT Modeling N + N P I C I B I E C B E (a) V BE >0 V BE <0 V BC <0 V BC >0 I C I B I E I F R I R F I F I R α α C B E (b) Figure 6.21 Principal Ebers-Moll Model Injection Version

Principal Ebers-Moll Model

  • Upload
    others

  • View
    15

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Principal Ebers-Moll Model

6.3 BJT Modeling

N + NPIC

I B

IE

C

B

E

(a)

VBE>0

VBE<0

VBC<0

VBC>0

IC

I B

IE IF

R IR

F IF

IR

α

α C

B

E(b)

Figure 6.21

Principal Ebers-Moll Model

Injection Version

Page 2: Principal Ebers-Moll Model

Figure 6.22 Transport Version

N + NPIC

I B

IE

C

B

E

(a)

IC

I B

IE

ICC / F

IEC

IEC / R

ICC

α α C

B

E

Page 3: Principal Ebers-Moll Model

Injection Version

( 1)VBE

tVF ESI I e= − (6.16)

( 1)VBC

tVR CSI I e= − (6.17)

VBE>0

VBE<0

VBC<0

VBC>0

IC

I BIE IF

R IR

F IF

IR

α

α C

B

E

( 1) ( 1)VV BCBE

t tV VC F F R F ES CSI I I I e I eα α= − = − − −

( 1) ( 1)VV BCBE

t tV VE F R R ES R CSI I I I e I eα α= − + = − + −

(6.18)

(6.19)B C EI I I= − − (6.20)

Page 4: Principal Ebers-Moll Model

Transport Version

( 1)VBE

tVCC SI I e= − (6.21)

( 1)VBC

tVEC SI I e= − (6.22)

( 1) ( 1)VV BCBE

t tV VEC SC CC S

R R

I II I I e e

α α= − = − − −

( 1) ( 1)VV BCBE

t tV VCC SE EC S

F F

I II I e I e

α α−

= + = − − + −(6.23)

(6.24)B C EI I I= − − (6.25)

IC

I BIE

ICC / F

IEC

IEC / R

ICC

α α C

B

E

Page 5: Principal Ebers-Moll Model

IC

I B

IE

ICC / F

IEC

IEC / R

ICC

α α C

B

E

IC

IB

IE

I?1

I?2

I CT

=I CC

-I EC

C

B

E

SPICE Version

Figure 6.22

Figure 6.23

Page 6: Principal Ebers-Moll Model

?1EC

C CC CC ECR

II I I I I

α= − = − −

?111 1 ECR

EC ECR R R

II I I

αα α β −

∴ = − = =

(6.28)

? 2CC

E EC CC ECF

II I I I I

α= − + = − + −

? 211 1 CCF

CC CCF F F

II I I

αα α β −

∴ = − = =

(6.29)

Page 7: Principal Ebers-Moll Model

ECC CC EC

R

II I I

β= − −

Terminal currents are

CCE CC EC

F

II I I

β= − + −

B C EI I I= − −

(6.30)

where

( 1)VBE

tVCC SI I e= − (6.21)

( 1)VBC

tVEC SI I e= − (6.22)

Page 8: Principal Ebers-Moll Model

Substitute (6.21) & (6.22) into (6.30)

1( 1) 1 ( 1)VV BCBE

t tV VC S S

R

I I e I eβ

= − − + −

(6.31)11 ( 1) ( 1)

VV BCBE

t tV VE S S

F

I I e I eβ

= − + − + −

1 1( 1) ( 1)VV BCBE

t tV VB S S

F R

I I e I eβ β

= − + −

Page 9: Principal Ebers-Moll Model

For normal active mode

1( 1) 1 ( 1)VV BCBE

t tV VC S S

R

I I e I eβ

= − − + −

11 ( 1) ( 1)VV BCBE

t tV VE S S

F

I I e I eβ

= − + − + −

1 1( 1) ( 1)VV BCBE

t tV VB S S

F R

I I e I eβ β

= − + −

0≈

0≈

C

F

= −0≈

C

F

=

(6.32)

Page 10: Principal Ebers-Moll Model

Example 6.6 Ebers-Moll Model for a PNP BJT

IC

IB

IE

I CT

= I CC

-I EC

C

B

E

EC

R

CC

F

P +P

N

IC

IB

IE

C

B

E

Page 11: Principal Ebers-Moll Model

1( 1) 1 ( 1)VV CBEB

t tV VC S S

R

I I e I eβ

= − − + −

11 ( 1) ( 1)VV CBEB

t tV VE S S

F

I I e I eβ

= − + − + −

1 1( 1) ( 1)VV CBEB

t tV VB S S

F R

I I e I eβ β

= − + −

Page 12: Principal Ebers-Moll Model

1( 1) 1 ( 1)VV CBEB

t tV VC S S

R

I I e I eβ

= − − + −

11 ( 1) ( 1)VV CBEB

t tV VE S S

F

I I e I eβ

= − + − + −

1 1( 1) ( 1)VV CBEB

t tV VB S S

F R

I I e I eβ β

= − + −

0≈For normal active mode

0≈

C

F

= −

C

F

=

0≈

Page 13: Principal Ebers-Moll Model

Example 6.7 Ebers-Moll for Inverse Active Mode

1( 1) 1 ( 1)VV BCBE

t tV VC S S

R

I I e I eβ

= − − + −

11 ( 1) ( 1)VV BCBE

t tV VE S S

F

I I e I eβ

= − + − + −

1 1( 1) ( 1)VV BCBE

t tV VB S S

F R

I I e I eβ β

= − + −

0≈

0≈

0≈E

R

=

(6.31)

E

R

= −

Page 14: Principal Ebers-Moll Model

Example 6.8 Fundamental BJT Parameters

0.90353.30.72−5.00.492.6−5.00.80

IC(mA)IB(µA)VBC(V)VBE(V)

Calculate R, , and S FI β βSolution

490 188.52.6

CF

B

II

β = = =Forward current gain

900 353.3 1.55353.3

C BER

B B

I III I

β− −

= = = =

Reverse current gain

Page 15: Principal Ebers-Moll Model

And from (6.32)

( 1)VBE

tVC SI I e= −

( 1)VBE

tVC SnI n I e = −

VBE

tVC SnI nI e= +

5 0.80(4.9 10 )0.02585

40.87

BES C

t

VnI nI n

V−∴ = − = × −

= −181.78 10 ASI −= ×

BEt

VVe≈

Page 16: Principal Ebers-Moll Model

IC

IB

IE

C

B

E

SPICE Ebers-Moll Model

EC

R

CC

F

CT

CC EC

II I= −

C

B

E

Q1 3 2 1 BJTNAME.MODEL BJTNAME NPN(BF=100 CJC=20pf CJE=20pf IS=1E-16)

C B E

Substrate

CCS

Page 17: Principal Ebers-Moll Model

P+

N +

P+

substrate emitter base collector

Page 18: Principal Ebers-Moll Model

Second Order Effects

N + NPC

B

E

wbase

VBE0.7V VCB>>VBE

VCE VCB≅

(b)

+ +

+

(a) IC

VCE VCB≅|VA |

1Co

CE o

Ig

V r∆

= =∆

slope

Early EffectEarly

Voltage

Page 19: Principal Ebers-Moll Model

Base Width Modulation Effect

From (3.16)

2 pnS E i

base A emitter D

DDI A qn

w N w N

= +

(6.34)

C SI I∝Butincrease VCB

B C

Page 20: Principal Ebers-Moll Model

IC

VCE VCB≅|VA |

( 0 ) ( )C BC C BC

A A BC

I V I VV V V

==

+(6.35)

Using similar triangles rule

0 0 1A BC BCS S S

A A

V V VI I I

V V +

= = +

(6.36)

Page 21: Principal Ebers-Moll Model

Example 6.9 Early Effect

CI increases from 1.0 mA 1.1 mACEV is increased from 5.0 V 10.0 Vwhen

Calculate the Early voltage and the dynamic output resistance of this BJT.Solution

11 (0) 1 CB

C CA

VI I

V

= +

22 (0) 1 CB

C CA

VI I

V

= +

Page 22: Principal Ebers-Moll Model

The solution can be expressed as

22 1

1

2

1

1

CCB CB

CA

C

C

IV VIV

II

=

2CE BEV V−1CE BEV V−

( )( )

9.3 4.3(1.1) 45.7 V0.1AV −= =

1 C Co

o CE CB

dI dIg

r dV dV= = ≈

The dynamic output conductance is

Page 23: Principal Ebers-Moll Model

0(0)1 1

BEt

VCBV C

So CB A A

V Id I er dV V V

= + =

(0)A

oC

Vr

I∴ =

IC

VCE VCB≅|VA |

slope

Page 24: Principal Ebers-Moll Model

11 (0) 1 CB

C CA

VI I

V

= +

From the measurement

1

1

1(0) 0.914 mA4.311 45.7

CC

CB

A

IIVV

∴ = = = ++

45.7 50 k(0) 0.914A

oC

Vr

I= = = Ω

Page 25: Principal Ebers-Moll Model

Parasitic Resistances

IC

I B

IE

C

B

EBasic Model

rE

rB

rC

Page 26: Principal Ebers-Moll Model

ICT

C

B

E

rB

rC

rE

CdC CsC

CdE CsE

CdS

DC

DE

Large Signal and Small Signal Equivalent Circuits

Figure 6.27 Large Signal Equivalent Circuit

Depletion(junction)

Stored(diffusion)

Page 27: Principal Ebers-Moll Model

Figure 6.28 Small Signal Equivalent Circuit

ICT

C

B

E

rB

rC

rE

CdC CsC

CdE CsE

CdS

DC

DE

CB

E

rB

CoC

C rC

rE

π

µ

ππ

g mvπr

+v ro

Normal Active Mode

Page 28: Principal Ebers-Moll Model

Example 6.10 Transconductance and input resistance

0.492.6−5.00.80IC(mA)IB(µA)VBC(V)VBE(V)

From example 6.8 calculate and mg rπ

Solution1BE BE

C t t

V VV V

m S SBE BE t

dI dg I e I edV dV V

= = =

= IC

30.49 10 18.95 mA/V0.02586

Cm

t

Ig

V

−×∴ = = =

Page 29: Principal Ebers-Moll Model

1

CB C

BE BE FF F

m

BE

dV dVr

dIdI dI gdV

πβ

β β= = = =

188.5 9.95 k1895

F

m

rgπβ

∴ = = = Ω

CB

E

rB

CoC

C rC

rE

µ

ππ

+v ro

9.95 krπ = Ω 18.95 mAmg v vπ π=

Page 30: Principal Ebers-Moll Model

Second Order Effects: Gummel-Poon Level in SPICEβ

ln[IC (A) ]-12 -10 -8 -6 -4

60

80

100

120

140

160

IC (A)10 -5 10 -4 10 -3 10 -2

F

Ebers-Moll model

experimental data

Figure 6.29 Current gain is a function of IC

low level

high level

Page 31: Principal Ebers-Moll Model

1 1( 1) ( 1)VV BCBE

t tV VB S S

F R

I I e I eβ β

= − + − (6.31)

2

4 00

00 ( 1)( 1)

( 1 ( 1))

VBE

EL t

VBC

C

VBE

t

VBC

t L t

V n VS

n VS

SB

FM

VS

RM

II C I e

C I e

e

Ie

β

β

= − +

+ −

−+(6.37)

BE leakage emission coefficient

BC leakage emission coefficient

BE leakage saturation

current coefficient

BC leakage saturation

current coefficient

mid-current value

Page 32: Principal Ebers-Moll Model

Gummel-Poon Charge Control Model

0

0 0( 1) ( 1)VV BCBE

t t

EBT B dE BE dC BC

C

V VB BF S R S

BT BT

AQ Q C V C V

AQ Q

I e I eQ Q

τ τ

= + +

+ − + −

(6.38)depletion charge

stored charge

A EqN A

The collector current (FA) can be expressed as

0BE

t

VVS

Cb

II e

q≈ (6.39)

0

BT

B

QQ (6.40)

Page 33: Principal Ebers-Moll Model

Define the following parameters

0 0B BKF KR

F R

Q QI I

τ τ= =

0 0B BEA B

dC C dE

Q QAV V

C A C= =

(6.41)

(6.42)

bq can be expressed as

( )21 21 1

2

41 1 4

2 2 2b

q qq qq q

+= + ≈ + + (6.43)

Page 34: Principal Ebers-Moll Model

where

111

1

BCBE

BCBEB A

B A

VVq

VVV VV V

= + + ≈− −

(6.44)

and

0 02 ( 1) ( 1)

VV BCBE

t tV VS S

KF KR

I Iq e e

I I= − + − (6.45)

Page 35: Principal Ebers-Moll Model

Complete Gummel-Poon Model

02 0

04 0

( 1) ( 1)

( 1) ( 1)

V VBE BE

t EL t

V VBC BC

t CL t

V n VSB S

FM

V n VSS

RM

II e C I e

Ie C I e

β

β

= − + −

+ − + −

0

04 0( 1) ( 1)

BCBEt t

V VBC BC

t CL t

VVV VS

Cb

V n VSS

RM

II e e

qI

e C I eβ

= −

− − − −

Page 36: Principal Ebers-Moll Model

0

02 0( 1) ( 1)

BCBEt t

V VBE BE

t EL t

VVV VS

Eb

V n VSS

FM

II e e

qI

e C I eβ

= − −

− − − −

(6.46)

GPEM

Page 37: Principal Ebers-Moll Model

6.4 SPICE Parameters

Ebers-Moll Parameters

Gummel-Poon Parameters

Parasitic Element Related Parameters

Table 6.4

Table 6.5

Table 6.6

Page 38: Principal Ebers-Moll Model

Parameter Measurement

VBE (V)0.0 0.2 0.4 0.6 0.8

ln[ I

C(A

)],

ln[ I B

(A)]

-40

-35

-30

-25

-20

-15

-10

-5

ln Fβ

ln IS0

IS0 = 7.7 x 10 -16 A

F = 141.2β

slope

= 1/ Vt

10 A

1 mA

µ

IC

IB

VCE = 5V

IS0 & β Measurement

Page 39: Principal Ebers-Moll Model

VCE (V)

-80 -60 -40 -20 0 20

I C(mA

)

0

2

4

6

8

10

12

14

VCE (V)0 5 10 15

I C(m

A)

0

4

8

12IB=100 Aµ

80 Aµ

60 Aµ

40 Aµ

20 AµVA

Early Voltage Measurement

Page 40: Principal Ebers-Moll Model

6.5 Parasitic Elements not Included in Device Models

P-type substrate

P+

N + buried layer

P+

substrate emitter base collector

P

N-epiN+

N+

E

S C

B

Parasitic substrate PNP

Page 41: Principal Ebers-Moll Model

P-type substrate

P+ P+

substrate (V− ) isolationV +

N-epi

N+P

A BΩ4k

4pF

14pF

75

Ω

Ω

5

Parasitic capacitances in the base-diffusion resistor

Page 42: Principal Ebers-Moll Model

P-type substrate

P+ P+

substrate (V- )

N-epi

N+P

A B

C

CP

RP

Parasitic elements in the base-collector capacitor

Page 43: Principal Ebers-Moll Model

P-type substrate

P+ P+

substrate (V− )

N-epi

N+P

A C

CP

D

Parasitic elements in the base-collector diode