47
PRINCÍPIOS DE AERAÇÃO Luciano Vieira

PRINCÍPIOS DE AERAÇÃO - Luciano

Embed Size (px)

Citation preview

Page 1: PRINCÍPIOS DE AERAÇÃO - Luciano

PRINCÍPIOS DE AERAÇÃO

Luciano Vieira

Page 2: PRINCÍPIOS DE AERAÇÃO - Luciano

Introdução

• A aeração é fundamental em um grande número de processos de tratamento de esgotos.

Objetivo da Aeração

• Fazer com que o líquido (deficiente em O2) receba o O2 da fase gasosa. Dessa forma, o líquido terá uma quantidade satisfatória de O2 na fase líquida.

Porque aerar artificialmente?• O O2 é um gás que se dissolve mal no meio líquido;

• Aerando, haverá um aumento na taxa de fornecimento de O2 equivalente ao consumido pelas bactérias.

Page 3: PRINCÍPIOS DE AERAÇÃO - Luciano

Processos de tratamento de lodo que utilizam a aeração artificial

• Digestão aeróbia.

Processos de tratamento de esgotos que utilizam a aeração artificial

• Lagoas aeradas;

• Lodos ativados e suas variantes;

• Biofiltros aerados.

Page 4: PRINCÍPIOS DE AERAÇÃO - Luciano

São duas formas principais de se produzir a aeração artificial

• Aeração por ar difuso introduzir ar ou oxigênio no líquido;

• Aeração superficial ou mecânica causar um grande turbilhonamento, expondo o líquido, na forma de gotículas, ao ar e ocasionando a entrada do ar atmosférico no meio líquido.

Page 5: PRINCÍPIOS DE AERAÇÃO - Luciano

Fundamentos da transferência de gases

1) Concentração de saturação de um gás

Concentração de um gás na fase líquida é igual a fase gasosa, ou seja, os fluxos passam a ser de igual magnitude.

Page 6: PRINCÍPIOS DE AERAÇÃO - Luciano

As condições de saturação nas duas fases são proporcionais a estas velocidades

Sendo:

Kg e Kl = constante de proporcionalidade

Cg = concentração do gás na fase gasosa (mg L-1)

Cs = concentração do gás na fase líquida (mg L-1)

No equilíbrio

Sendo:

Vg = velocidade de absorção;

Vl = velocidade de liberação.

Vg = Vl

KgCg = KlCl

Page 7: PRINCÍPIOS DE AERAÇÃO - Luciano

Observação: Quanto maior a temperatura, menor a solubilidade do gás no meio líquido. A maior agitação das moléculas na água faz com que os gases tendam a passar para a fase gasosa.

Fazendo Kg/Kl = KD, tem-se:

Sendo:

KD = coeficiente de distribuição (dependente da natureza do gás, do líquido e da temperatura).

Cs = KD Cg(1)

Page 8: PRINCÍPIOS DE AERAÇÃO - Luciano

Desenvolvendo (2), fazendo em (1) e corrigindo Pv:

Sendo:

dv = distribuição volumétrica do O2 no ar atmosférico (ar = 21% O2)

PM = peso molecular do oxigênio (32 g mol-1)

Pa = pressão atmosférica (101,325 Pa nas CNTP)

Pv = pressão de vapor da água

Cg Lei Universal dos gases

Sendo:

p = pressão parcial do gás na fase gasosa (Pa);V = volume ocupado na fase gasosa (m³);n = número de moles do gás no volume V (mol/m³);R = constante universal (8,3143 J/Kmol);T = temperatura (K).

pV = nRT

Cs = KD dv (Pa-Pv) PM (R T)-1

(2)

(3)

Page 9: PRINCÍPIOS DE AERAÇÃO - Luciano

Pressão de Vapor

Sendo:

Pv = pressão atual de vapor (kPa);e’s = pressão máxima de vapor à temperatura de bulbo úmido (tu) do psicrômetro (kPa);Ts = temperatura de bulbo seco ou temperatura do ar (ºC);P = pressão atmosférica (kPa);A = coeficiente do instrumento (0,00067ºC -1 para psicrômetro aspirado e 0,0008ºC-1 para

psicrômetro não aspirado).

Pv = e’s – A . P . (Ts – Tu)

e’s = 0,6108 . 10(7,5 .T / 237,5 + T)

Page 10: PRINCÍPIOS DE AERAÇÃO - Luciano

Valores para pressão de vapor da água (Pv)

Page 11: PRINCÍPIOS DE AERAÇÃO - Luciano

EXEMPLO 1

Page 12: PRINCÍPIOS DE AERAÇÃO - Luciano

Levando em consideração a influência da altitude na solubilidade de um gás (Maior altitude menor pressão

atmosférica)

Sendo:

fH = fator de correção da concentração de saturação de OD pela altitude;

C’s = concentração de saturação na altitude H (mg.L-1)

H = altitude (m)

Utilizando regressão em função da temperatura

Cs = 14,652 – 4,1022 .10-1.T(ºC) + 7,99.10-3.T²(ºC) – 7,7774.10-5.T³(ºC)

fH = C’s.(Cs)-1 = (1-H.(950)-1)(Qasim, 1995)

Page 13: PRINCÍPIOS DE AERAÇÃO - Luciano

Sendo:

γ = fator de redução na solubilidade ( = 1 para água pura);

Csal = concentração de sais dissolvidos (mg Cl-.L-1)

Influência da Salinidade

γ = 1 – 9.10-6.Csal

(Pöpel, 1979)

Page 14: PRINCÍPIOS DE AERAÇÃO - Luciano

Concentração de saturação de oxigênio (mg.L-1)

Page 15: PRINCÍPIOS DE AERAÇÃO - Luciano

Mecanismos da transferência de gases da fase gasosa para fase líquida

1) Difusão Molecular

Tendência de qualquer substância de se espalhar uniformemente pelo espaço disponível.

Lei de Fick (Pöpel, 1979)

dM/dt = -D.A.∂C/∂x

Sendo:

D = coeficiente de difusão molecular (m².s-1)

A= área superficial (m²)

X = distância da interface (m)

∂C/∂x = gradiente de concentração (g(m³.m)-1)

Page 16: PRINCÍPIOS DE AERAÇÃO - Luciano

Observação:• Para um determinado gás, apenas o gradiente de

concentração determina a taxa por unidade de área.

• O sinal de negativo indica que a direção de difusão é oposta ao gradiente de concentração positivo.

Page 17: PRINCÍPIOS DE AERAÇÃO - Luciano

Duas teorias bastante utilizadas para explicar o mecanismo da transferência de gases são

(Pöpel, 1979):

• Teoria dos filmes Na interface gás-líquido existem dois filmes, um filme gasoso e um filme líquido;

• Teoria da Penetração Os filmes não estão estagnados. São elementos de fluido que são momentaneamente expostos à face gasosa na interface do líquido.

Page 18: PRINCÍPIOS DE AERAÇÃO - Luciano

• Taxa de absorção do gás:

dM/dt = A.(Cs-Co).√D.(¶.t)-1

• Profundidade de penetração do gás:

xp = æ.D.t

Sendo:

M = massa de gás absorvida através da área A durante o tempo t (g);

A = área interfacial de exposição (m²);

t = tempo de exposição (s);

Co = concentração inicial do gás no seio da massa líquida (g.m-3);

Xp = profundidade de penetração do gás na massa líquida (m).

Page 19: PRINCÍPIOS DE AERAÇÃO - Luciano

Mecanismos da transferência de gases da fase gasosa para fase líquida

1) Difusão turbulenta

A turbulência é caracterizada por oscilações e turbilhonamentos, que transportam partículas de fluido de uma camada para outra.

Observação:

• O movimento turbilhonante pode ser definido apenas probabilisticamente;

• A difusão turbulenta é extremamente superior à difusão molecular.

Page 20: PRINCÍPIOS DE AERAÇÃO - Luciano

EXEMPLO 2

Page 21: PRINCÍPIOS DE AERAÇÃO - Luciano

Cinética da Aeração

• Em condições estacionárias: D, t podem ser constantes Kl;

• A e área específica(A.V-1) também são constantes Kla.

Sendo:

Kla = coeficiente de transferência de oxigênio (s-1)

Page 22: PRINCÍPIOS DE AERAÇÃO - Luciano

Cinética da Aeração

Sendo:

dC/dt = taxa de mudança da concentração de oxigênio (g.m-3.s)

C = concentração em um tempo t qualquer (g.m-3)

Observação: Quanto menor a concentração de oxigênio (C), ou maior o déficit de oxigênio (Cs-C), maior a taxa de transferência de oxigênio (dC/dt).

Page 23: PRINCÍPIOS DE AERAÇÃO - Luciano

Cinética da Aeração

Integrando-se a equação anterior em t=0 a t=t e C=0 a C=C:

Page 24: PRINCÍPIOS DE AERAÇÃO - Luciano

Cinética da Aeração

No estado estacionário a taxa de consumo de oxigênio pelas bactérias é igual à taxa de produção pelo sistema de aeração (dC/dt=r)

Page 25: PRINCÍPIOS DE AERAÇÃO - Luciano

Cinética da Aeração

Page 26: PRINCÍPIOS DE AERAÇÃO - Luciano

Cinética da Aeração

Page 27: PRINCÍPIOS DE AERAÇÃO - Luciano

Fatores de influência na transferência de oxigênio

a) Influência da temperatura:

Page 28: PRINCÍPIOS DE AERAÇÃO - Luciano

Fatores de influência na transferência de oxigênio

b) Influência da concentração de oxigênio dissolvido:

Page 29: PRINCÍPIOS DE AERAÇÃO - Luciano

Fatores de influência na transferência de oxigênio

c) Influência das características do esgoto e do reator:

Influência em Csw

Os valores de β variam de 0,70 a 0,98, sendo que o valor de 0,95 é freqüentemente adotado (Metcalf & Eddy, 1991).

Page 30: PRINCÍPIOS DE AERAÇÃO - Luciano

Fatores de influência na transferência de oxigênio

c) Influência das características do esgoto e do reator:

Influência em Kla

Os valores de α variam de 0,6 a 1,2para aeração mecânica e de 0,4 a 0,8 para aeração por ar difuso (Metcalf & Eddy, 1991).

Page 31: PRINCÍPIOS DE AERAÇÃO - Luciano

Taxa de transferência de oxigênio no campo em condições padrão

Page 32: PRINCÍPIOS DE AERAÇÃO - Luciano

EXEMPLO 3

Page 33: PRINCÍPIOS DE AERAÇÃO - Luciano

Outros coeficientes de aeração

1) Eficiência de oxigenação

Page 34: PRINCÍPIOS DE AERAÇÃO - Luciano

Outros coeficientes de aeração

2) Potência Consumida

Page 35: PRINCÍPIOS DE AERAÇÃO - Luciano

Outros coeficientes de aeração

3) No caso de aeração por ar difuso, a potência requerida para os sopradores pode ser expressa (Pöpel, 1979):

Page 36: PRINCÍPIOS DE AERAÇÃO - Luciano

Outros coeficientes de aeração

4) Razão de utilização de oxigênio

De forma a levar em consideração a profundidade de imersão di, a razão de utilização de oxigênio pode ser relacionada a di (RUO. di

-1)(gO2.m-3.m).

Page 37: PRINCÍPIOS DE AERAÇÃO - Luciano

Outros coeficientes de aeração

5) Eficiência de transferência de oxigênio padrão

6) Densidade de potência

Page 38: PRINCÍPIOS DE AERAÇÃO - Luciano

EXEMPLO 4

Page 39: PRINCÍPIOS DE AERAÇÃO - Luciano

Sistemas de aeração mecânica

• Transferência do oxigênio atmosférico às gotas e finas películas de líquidos aspergidos no ar (≈ 60% da transferência total);

• Transferência do oxigênio na interface ar-líquido, onde as gotas em queda entram em contato com o líquido no reator (≈ 30% da transferência total);

• Transferência de oxigênio por bolhas de ar transportadas da superfície ao seio da massa líquida (≈ 10% da transferência total).

Page 40: PRINCÍPIOS DE AERAÇÃO - Luciano

Classificação dos aeradores mecânicos

Classificação em relação ao eixo de rotação:• Aeradores de eixo vertical

Baixa rotação, fluxo radial Alta rotação, fluxo axial

• Aeradores de eixo horizontal

Classificação com relação à fixação: • Aeradores fixos • Aeradores flutuantes

Page 41: PRINCÍPIOS DE AERAÇÃO - Luciano
Page 42: PRINCÍPIOS DE AERAÇÃO - Luciano

Sistemas de aeração por ar difuso

• O sistema é composto por difusores submersos no líquido, tubulações distribuídas de ar, tubulações de transporte de ar, sopradores e outras unidades por onde o ar passa. O ar é introduzido próximo ao fundo do tanque, e o oxigênio é transferido ao meio líquido à medida que a bolha se eleva à superfície.

Page 43: PRINCÍPIOS DE AERAÇÃO - Luciano

Classificação do sistema de aeração por ar difuso segundo a porosidade do

difusor

• Difusor poroso (bolhas finas e médias): prato, disco, domo, tubo (cerâmica, plástico, membrana flexível)

• Difusor não-poroso (bolhas grossas): tubos perfurados ou com ranhuras

• Outros sistemas: aeração por jatos, aeração por aspiração, tubo em U

Page 44: PRINCÍPIOS DE AERAÇÃO - Luciano
Page 45: PRINCÍPIOS DE AERAÇÃO - Luciano

http://www.unesp.br/prope/projtecn/MeioAmb/

Page 46: PRINCÍPIOS DE AERAÇÃO - Luciano

http://www.bigjohnaerators.com

Page 47: PRINCÍPIOS DE AERAÇÃO - Luciano

Obrigado!

Bibliografia consultada:

MARCOS VON SPERLING, Princípios do tratamento biológico de águas residuárias vol.2– Princípios básicos do tratamento de esgoto, DESA – UFMG, 1996. 211p.