18
Probing Physics beyond the Standard Model via Precision Particle Physics Daisuke Nomura (野村大輔) Lunch seminar at YITP, April 16, 2014 D. Nomura (YITP) Probing bsm physics via precision particle physics April 16, 2014 1 / 18

Probing Physics beyond the Standard Model via Precision ...lunch.seminar/files/140416_Nomura.pdf · Probing Physics beyond the Standard Model via Precision Particle Physics Daisuke

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Probing Physics beyond the Standard Model via Precision ...lunch.seminar/files/140416_Nomura.pdf · Probing Physics beyond the Standard Model via Precision Particle Physics Daisuke

Probing Physics beyond the Standard Modelvia Precision Particle Physics

Daisuke Nomura (野村大輔)

Lunch seminar at YITP, April 16, 2014

D. Nomura (YITP) Probing bsm physics via precision particle physics April 16, 2014 1 / 18

Page 2: Probing Physics beyond the Standard Model via Precision ...lunch.seminar/files/140416_Nomura.pdf · Probing Physics beyond the Standard Model via Precision Particle Physics Daisuke

Lots of ways to search for (more) fundamental theory ofelementary particles:

String/M theory

Cosmology

Model building

Physics at colliders, e.g. LHC, ILC, . . .

Precision particle physics...

D. Nomura (YITP) Probing bsm physics via precision particle physics April 16, 2014 2 / 18

Page 3: Probing Physics beyond the Standard Model via Precision ...lunch.seminar/files/140416_Nomura.pdf · Probing Physics beyond the Standard Model via Precision Particle Physics Daisuke

Precision particle physics

Assuming a well-established theory (e.g. theStandard Model), calculate physical observables atlow energies as precisely as possible. Compare themwith experiments.

If there is a significant deviation between theory andexp., it may be a hint for new physics.

If the precision is high enough, we can infer physicsat higher enegies without using high energyexperiments like LHC & ILC.

Typical observables: the anomalous magneticmoment of the muon (the muon g − 2), flavorviolation (b → sγ, µ → eγ, · · · )

D. Nomura (YITP) Probing bsm physics via precision particle physics April 16, 2014 3 / 18

Page 4: Probing Physics beyond the Standard Model via Precision ...lunch.seminar/files/140416_Nomura.pdf · Probing Physics beyond the Standard Model via Precision Particle Physics Daisuke

Article in “Nikkei Science” April 2014 Issue

D. Nomura (YITP) Probing bsm physics via precision particle physics April 16, 2014 4 / 18

Page 5: Probing Physics beyond the Standard Model via Precision ...lunch.seminar/files/140416_Nomura.pdf · Probing Physics beyond the Standard Model via Precision Particle Physics Daisuke

Muon g − 2: introduction

D. Nomura (YITP) Probing bsm physics via precision particle physics April 16, 2014 5 / 18

Page 6: Probing Physics beyond the Standard Model via Precision ...lunch.seminar/files/140416_Nomura.pdf · Probing Physics beyond the Standard Model via Precision Particle Physics Daisuke

Introduction: Standard Model prediction for muon g − 2

QED contribution 11 658 471.808 (0.015) Kinoshita & Nio, Aoyama et al

EW contribution 15.4 (0.2) Czarnecki et al

Hadronic contributions

LO hadronic 694.9 (4.3) HLMNT11

NLO hadronic −9.8 (0.1) HLMNT11

light-by-light 10.5 (2.6) Prades, de Rafael & Vainshtein

Theory TOTAL 11 659 182.8 (4.9)

Experiment 11 659 208.9 (6.3) world avg

Exp − Theory 26.1 (8.0) 3.3 σ discrepancy

(in units of 10−10. Numbers taken from HLMNT11, arXiv:1105.3149)

n.b.: hadronic contributions:. .

. .

had.

LO

µ

had.

NLO

µγ

had.

l-by-l

µ

D. Nomura (YITP) Probing bsm physics via precision particle physics April 16, 2014 6 / 18

Page 7: Probing Physics beyond the Standard Model via Precision ...lunch.seminar/files/140416_Nomura.pdf · Probing Physics beyond the Standard Model via Precision Particle Physics Daisuke

Introduction for ahad,LOµ

The diagram to be evaluated:

.

.

.

.

had.

µ

pQCD not useful. Use the dispersionrelation and the optical theorem.

.

.

.

.

had.

=∫

ds

π(s−q2)Im

had.

2 Im

had.

=∑

∫ 2

had.

ahad,LOµ =

m2µ

12π3

∫ ∞

sth

ds1sK̂(s)σhad(s)

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

1 10

J/ψ ψ(2S) ϒ

√s (GeV)

(2 α

2/

3 π

2)

K(s

) R

(s)

× 1

01

0

0.2 –0.2 1 10√s (GeV)

• Weight function K̂(s)/s = O(1)/s=⇒ Lower energies more important=⇒ π+π− channel: 73% of total ahad,LO

µ

D. Nomura (YITP) Probing bsm physics via precision particle physics April 16, 2014 7 / 18

Page 8: Probing Physics beyond the Standard Model via Precision ...lunch.seminar/files/140416_Nomura.pdf · Probing Physics beyond the Standard Model via Precision Particle Physics Daisuke

Included Hadronic Final States����������� � ��������������������������� �!"�#�$�#��%�#�&(')&+* ,.-0/21436587�9�5:;9�5<�=�9�,.->/21+?A@�,.BC3658D;=�9�EF1 :G3�H�I�=�9J,.->/21 ����KL��MON 3�HP59

H�H�=�9 NQM 5R3�H�S;=�9 NQM HT3�H�U�=�9FV � BW3�H�X�9�H�7�=�9 MY� 1Z3�H�:�9�H�<[=69\, �2] 1^/F?1 � ,_3�H�D;=�9 ��MON ?AH`3�5I�9(5;59aS�I;=

& b�c ] E N 3�SP589aS�H;=d c ] E N 3�S�H;9aS�S;=69 ��MYN ?AH`3eS;U�9aS�X;9aS;7;=& ' & * &ab E N 3�H�H;=�9 NQM 5.3eS;:;=�9 NQM Hf3eS�<[=69 ��MYN ?AHf3658I;9g5S;9�S�U�9�S�D;=�9 ] E N 3�U�I�9�Uh5=69

��MON 3eU�H;=i ' i * MO� 143eH�:[=69),.-0/21j3�U�S�=�9kV � Bl3�H�7[=69 NQM 5m3eU;U�=69 NQM Hn3�U�X�9�U;7�=69 ��MON 3eH;H�=69

��MON ?oHO3�S�U;=�9 ] E N 3�U�:�=i bp i bq NQM 5�3eU;<;=�9 ��MON ?AH`3�5I�9(5U;9aU�D;=�9 ] E N 3�U�:�=& ' & * &ab$&ab M S�Er3eX�I;=69 NQM Hs3eXh58=�9t,.-0/21r3�X�H�=�9 ��MON ?oHu3�X�S;=�9 ] E N 3eX�U;=69t, �2] 1^/F?

1 � ,_3�X�X;=�9�cPcvH`3�X�7�=�9 MO� 1w3eX�:;=xny{z & b�c}|~&ab E N�����K 1 �����F] 3eH�H;=69 NQM H�3�XP5=�9 ��MON ?oH�3�X�S;9mX�<;=69 ] E N 3�X�D�9�7;I�=69

E N 3e7h58=& ' & * & ' & * E N 3eH�H;=69 M S�E�3eX;I�=69 ��MON 3�7�H[=69 NQM 5L3�7�S�9P7�U[=69 NQM H�3eXP5�=69�,.-0/21�3e7;X�=69

cPc}HO3�7�7;=�9 ��MON ?oHY3�X�S�9^7�:�9a7�<[=69 ] E N 3�X�U�=�9a, � ] 1^/F?A1 � ,�3eX;X�=&(')&+*)&+'k&+*)& b MO� 1W3eX�:[=69 M S�Ew3eX�I;=69 ��MYN 3�H�H�9 7�H;=69�cPc}H`3eX�7;=& ' & * &ab$&abo&ab M S�Ew3�X�I�=xny{z & b�c}|~& ' & * NQM HY3eS;<;=�9 ��MON ?AH`3�7�D�=�9 NQM 5�3e:�I[=&(')&+*)&+'k&+*)&+')&(* M S�Ew3�X�I�=�9 ��MON 3e7�H;=69 NQM 5�3�:P5=�9 NQM H`3�:�H�=&(')&+*)&+'k&+*)& b & b M S�Ew3�X�I�=�9 ��MON 3e7�H;=69 NQM H`3�:�H�=�9�cPc}HO3�X�7;=�9 MO� 1w3eX;:�=& ' & * &ab$&abo&ab�&ab �������$���6� ? ���6�8���#Kd & ' & * NQM HY3e:;S;=�9 ��MON ?AH`3�7�D�=i ' i * &ab NQM HY3e:;U;9a:�X[=i bp & i NQM 5�3e:;7;=�9 NQM H`3e:�U;9 :�X�=i bp�� NQM 5�3e:;:;=& ' & * i ' i * NQM HY3e:;U;=�v�� B � EF� ��� 3�:�<�9^:�D�=�9 NQM H`3e<�I[9a<P5=�9 NQM 5�3�<�H�=���� B � EF� ��� 3�:�<�9^<�S�=����%6� y~� H ����� | cPc}HO3�<�U;=�9 MO� 1w3e<;X�=69 M S�Ew3e<�7[=69aV�1 � /�,�E(?A1 EF@���V�1 � /G,.Ew3e<;:�=����%6� y~� H ����� | V �(] 3�<�<�9.<�D�=�9 ���{�������� V ��� 3eD�I;9�Dh59.D�H�=�9G- � E 1 3�D�S;=�9 MON ?05�3eD;U�=69

N 1 ]�� 3�D�X�=�9 � - � ,�3eD;7�=69 ���F] V�3eD�:[=69 NQ� �FM 3eD;<;=

@ �� �6� 5¡ � �����#�������#�����F����KY�$�#!"����#��%#�#� !"���t�����n¢ ' ¢ * K���������£��� !"���t������K���¤�����#���L����%#�¥��$�e¦��G����K�������6��%6¥�����¦h�L%A���������6�2����¥��$�#K��6�������6�m�����;e��������� @ ���.�$�#%#������$� ? �;������^�$�6�m!"�$���w��MYN ?AH`3658I;= �$¥�������$�#K���������6�m���$��¦��6�;¥�����R��¥� ���6�$���#KYK������!"��� & ' & * 365;5=69�& ' & * &abf3�5S�= ����K i bp i bq 3�5U;= �

:�7

����������� ����� ��������������������������� ��! �#"$� ��������������������������� ��!%'&�(*),+ -/.0 132 &4(*) �65879 ! %:&4(*),+ -/.0 132 &4(*) �;5879 !

<>=�? �6@A��BDCA! EGFH�I�KJLEGF�E�� EGF�EMENJLE�F�E�E EGF;��KJLEGFOEP� EGFOE�EKJLEGFOE�E< = ? �6Q��R:��! �GF�SMEKJLEGFH�IS EGF��MTNJLE�F�EP� �GFOS�EKJLEGF;�S EGFO��TKJLEGFOEP�<VUW<DX �6@A��BVCA! �GF��MTKJLEGF�EMS EGF�EM�NJLE�F�E�E �GFO��TKJLEGFOE�S EGFOE��KJLEGFOE�E<VUW<DX �6Q��IR:��! SME��GFOY�ZKJLSGFOE�� �M�GF��M[KJLEGF��M[ S�E��GFO��ZKJLSGFOE�� ���GFOS�[\J8EGFO��[<VUW<DXW<]= �^@A��BVCA! EGF�E��_JLEGF�EME EGF�EMENJLE�F�E�E EGFOEP�_JLEGFOE�E EGFOE�EKJLEGFOE�E< U < X < =`�^Q��R:�M! ��TGFO���\J8EGFO[�E �GF��M�NJLE�F�E�Z ��YGFOE��\J8EGFO[�E �GFOS��KJLEGFOE�Za ? �^@A��BVCA! EGF�EMEKJLEGF�EME EGF�EMENJLE�F�E�E EGFOE�EKJLEGFOE�E EGFOE�EKJLEGFOE�Ea ? �^Q��Rb��! EGF�YM�KJLEGF�EM� EGF�EM[NJLE�F�E�E EGFOY��KJLEGFOE�� EGFOE�[KJLEGFOE�Ec U c X �P� FOT��\J8EGFOY�T �GF�E��VJLE�FH��� ���GFO��S\J8EGFOY�Y �GFO���KJLEGF;���c =d c =e ��GF;�T\J8EGFO�P� � F�YMTNJLE�F�E�� ��GFO��E\J8EGFO��� � FOZ�EKJLEGFOE��� <DU � <VX TGFH�ITKJLEGF��M� � F��MYNJLE�F�E�Y ��GFOY�Y\J8EGFOY�T �GFOE��KJLEGFO�P�<VUW<DX � <>= [GF�Y��_JLEGF�TM� � F�ZMTNJLE�FH�� ��EGFOS�S\Jf� FO��� SGFOSP�_JLEGFO��S� < U � < X < = EGF��MTKJLEGF�EM� EGF�EMTNJLE�F�EP� �GFOZ�SKJLEGFO��S EGFO[�[KJLEGFOE�[< U < X$� < = EGF�EM[KJLEGF�EM[ EGF�EM�NJLE�F�E�� � F;�[KJLEGFO��� EGFO�P�_JLEGF;�E� <DU � <VX EGF�EMEKJLEGF�EME EGF�EMENJLE�F�E�E EGFO���KJLEGFOE�� EGFOE�[KJLEGFOEP�� <DU � <VX � <]= EGFH�I�KJLEGF�EM� EGF�EM�NJLE�F�EP� �GFO���KJLEGFO��[ � FO���KJLEGF;���<VUW<DX � <>= �^�g�ih���j��g��! EGF�EMEKJLEGF�EME EGF�EMENJLE�F�E�E EGF;��KJLEGF;�� EGFOE�SKJLEGFOE�Sc U c X < = EGF�EMEKJLEGF�EME EGF�EMENJLE�F�E�E EGFO��[KJLEGFOE�Y EGF;�EKJLEGFOE��c =d c =e <]= �6����h��ij��g��! EGF�EMEKJLEGF�EME EGF�EMENJLE�F�E�E EGFO��[KJLEGFOE�Y EGF;�EKJLEGFOE��c =d <Dk cml EGF�EMSKJLEGF�EM� EGF�E��VJLE�F�E�E � FOE�EKJLEGF;��� EGFO���KJLEGFOE��c =e < k c l �6����h��ij��g��! EGF�EMSKJLEGF�EM� EGF�E��VJLE�F�E�E � FOE�EKJLEGF;��� EGFO���KJLEGFOE��conc <p< �^�g�ih���j��g��! EGF�EMEKJLEGF�EME EGF�EMENJLE�F�E�E �GFOT��KJq� FO��� � FO���KJLEGFO��Zr �6s <]=4? ! <]= EGF�TM�KJLEGF�EM� EGFH�I�NJLE�F�E�E EGFOZ��KJLEGFOE�� EGF;�YKJLEGFOEP�r �6s <]=4? ! <DUG<DX EGF�E��_JLEGF�EME EGF�EMENJLE�F�E�E EGFOE�YKJLEGFOEP� EGFOE��KJLEGFOE�Ea �;s <]=�? ! <DUW<DX EGF�EMYKJLEGF�E�� EGF�EM�NJLE�F�E�E EGFO��[KJLEGFOE�Y EGF;�SKJLEGFOE��t �;s �������� h����:Rb� Q�! EGF�EMTKJLEGF�EMT EGF�E��VJLE�F�EP� EGFOE�TKJLEGFOE�T EGFOEP�_JLEGFOEP�u nu EGF�EMEKJLEGF�EME EGF�EMENJLE�F�E�E EGFOE��KJLEGFOEP� EGFOE��KJLEGFOE�Ev nv EGF�EMEKJLEGF�EME EGF�EMENJLE�F�E�E EGFOE�YKJLEGFOE�� EGFOE��KJLEGFOEP�w$xy{ziy}| YGF��MEKJLEGF��M� ZGF�[MENJLE�F�SP� YGFO��EKJLEGFO��� ZGFO[�EKJLEGFOSP�~ �i� ���LT��V! EGFH�IEKJLEGF�EME � FH�ITNJLE�F�E�� EGF;�EKJLEGFOE�E � F;�TKJLEGFOE�������g���i������� Y��GFO[�T\J8�GFOT�Z [M�GF�YMSKJq� F�YM� ���GFOE�S\Jf� F;�� ZP� FO[�Y\Jf� FOS��j���@A� �GFH�M�_JLEGF�EME ��MSGF��M�KJ8EGF;�S �GF;���_JLEGFOE�E ���SGFO���KJLEGF;�S�i��� TM[��GFO��ZKJLSGFOZ�Z ��YMSGF�SM�KJf� FOZ�S T�[�TGF;�SKJLSGFOT�Z ��Y�TGFO[�EKJq� FOY�Y

C��M��g��S��A@AhM�:Rb��������Rb�gh����VRbh�Rb����Q�����j�� ���i�ghM�����g�IR:��h������6��!A����Q��^S�!K����h��qR:��������Q����$�gQ�����������������g�i�

Y�[

D. Nomura (YITP) Probing bsm physics via precision particle physics April 16, 2014 8 / 18

Page 9: Probing Physics beyond the Standard Model via Precision ...lunch.seminar/files/140416_Nomura.pdf · Probing Physics beyond the Standard Model via Precision Particle Physics Daisuke

Important Channels

Contributions for√s < 1.8GeV:

channel HLMNT11 Davier et al ’10 diffπ+π− 505.65 ± 3.09 507.80 ± 2.84 −2.15π+π−π0 47.38 ± 0.99 46.00 ± 1.48 1.38K+K− 22.09 ± 0.46 21.63 ± 0.73 0.46π+π−2π0 18.62 ± 1.15 18.01 ± 1.24 0.612π+2π− 13.50 ± 0.44 13.35 ± 0.53 0.15K0

SK0L 13.32 ± 0.16 12.96 ± 0.39 0.36

π0γ 4.54 ± 0.14 4.42 ± 0.19 0.12...

......

...Sum 634.28 ± 3.53 633.93 ± 3.61 0.35

table taken from HLMNT11D. Nomura (YITP) Probing bsm physics via precision particle physics April 16, 2014 9 / 18

Page 10: Probing Physics beyond the Standard Model via Precision ...lunch.seminar/files/140416_Nomura.pdf · Probing Physics beyond the Standard Model via Precision Particle Physics Daisuke

π+π− channel: Low Energy Tail

0

50

100

150

200

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44

σ0 (e+e- →

π+π- )

[nb]

√s [GeV]

New FitBaBar (09)KLOE (10)

CMD-2 (06)SND (06)

OLYA-VEPP2TOF-VEPP 2M

NA7CMD-VEPP 2M

ChPT

D. Nomura (YITP) Probing bsm physics via precision particle physics April 16, 2014 10 / 18

Page 11: Probing Physics beyond the Standard Model via Precision ...lunch.seminar/files/140416_Nomura.pdf · Probing Physics beyond the Standard Model via Precision Particle Physics Daisuke

π+π− channel: New Radiative Return Data

0

200

400

600

800

1000

1200

1400

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

σ0 (e+e- →

π+π- )

[nb]

√s [GeV]

BaBar (09)New Fit

KLOE (10)KLOE (08)

D. Nomura (YITP) Probing bsm physics via precision particle physics April 16, 2014 11 / 18

Page 12: Probing Physics beyond the Standard Model via Precision ...lunch.seminar/files/140416_Nomura.pdf · Probing Physics beyond the Standard Model via Precision Particle Physics Daisuke

π+π− channel: Zoom-In at ρ-ω Region

600

700

800

900

1000

1100

1200

1300

1400

0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82

σ0 (e+e- →

π+π- )

[nb]

√s [GeV]

BaBar (09)New Fit

KLOE (10)KLOE (08)

CMD-2 (07)SND (06)

CMD-2 (04)

D. Nomura (YITP) Probing bsm physics via precision particle physics April 16, 2014 12 / 18

Page 13: Probing Physics beyond the Standard Model via Precision ...lunch.seminar/files/140416_Nomura.pdf · Probing Physics beyond the Standard Model via Precision Particle Physics Daisuke

Rad. Rtn. Data (for π+π−) and Our Combined Result

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

(σ0 R

adR

et S

ets

- σ0 F

it)/σ

0 Fit

√s [GeV]

New FitBaBar (09)

New Fit (local χ2 inf)KLOE (08)KLOE (10)

D. Nomura (YITP) Probing bsm physics via precision particle physics April 16, 2014 13 / 18

Page 14: Probing Physics beyond the Standard Model via Precision ...lunch.seminar/files/140416_Nomura.pdf · Probing Physics beyond the Standard Model via Precision Particle Physics Daisuke

Results: ahad,LOµ , ahad,NLO

µ and ∆α(5)had(M

2Z)

aµhad,LO VP

∆α(5)had (M 2

Z)

value (error)2

0.6

0.9

1.42

∞rad.

mπ0.6

0.91.4

2∞

mπ 0.60.9

1.42

4

11

∞rad.

mπ 0.60.91.4

2

4

11

ahad,LOµ =(694.91 ± 3.72exp ± 2.10rad) × 10−10

ahad,NLOµ =(−9.84 ± 0.06exp ± 0.04rad) × 10−10

∆α(5)had(M

2Z) =(276.26 ± 1.16exp ± 0.74rad) × 10−4

D. Nomura (YITP) Probing bsm physics via precision particle physics April 16, 2014 14 / 18

Page 15: Probing Physics beyond the Standard Model via Precision ...lunch.seminar/files/140416_Nomura.pdf · Probing Physics beyond the Standard Model via Precision Particle Physics Daisuke

Full SM Result and Comparison with Other Groups

170 180 190 200 210

aµ × 1010 – 11659000

HMNT (06)

JN (09)

Davier et al, τ (10)

Davier et al, e+e– (10)

JS (11)

HLMNT (10)

HLMNT (11)

experiment

BNL

BNL (new from shift in λ)

D. Nomura (YITP) Probing bsm physics via precision particle physics April 16, 2014 15 / 18

Page 16: Probing Physics beyond the Standard Model via Precision ...lunch.seminar/files/140416_Nomura.pdf · Probing Physics beyond the Standard Model via Precision Particle Physics Daisuke

SUSY Contributions to Muon g − 2

Suppose that the 3.3 σ deviation is due to SUSY...Leading SUSY contributions in the mZ/mSUSY

expansion:. .

W̃ − H̃−

µL µRν̃µ

(a)

µL µ̃L

m2LR

µ̃R µR

(b)

B̃ H̃0

µL µRµ̃L

(c)

W̃ 0 H̃0

µL µRµ̃L

(d)

H̃0 B̃

µL µRµ̃R

(e)

In most cases, the χ̃±-ν̃ diagram (a) and/or the

B̃-µ̃L/R diagram (b) dominate. (Lopez-Nanopoulos-Wang,

Chattopadhyay-Nath, Moroi, · · · )D. Nomura (YITP) Probing bsm physics via precision particle physics April 16, 2014 16 / 18

Page 17: Probing Physics beyond the Standard Model via Precision ...lunch.seminar/files/140416_Nomura.pdf · Probing Physics beyond the Standard Model via Precision Particle Physics Daisuke

MSSM Contributions to Muon g − 2

x-axis: M2

(gaugino mass)

y-axis: ml̃

(slepton mass)

Figs from Cho,Hagiwara, Matsumoto,

and DN

D. Nomura (YITP) Probing bsm physics via precision particle physics April 16, 2014 17 / 18

Page 18: Probing Physics beyond the Standard Model via Precision ...lunch.seminar/files/140416_Nomura.pdf · Probing Physics beyond the Standard Model via Precision Particle Physics Daisuke

Summary

Precision particle physics: powerful way to approachfundamental theory

Muon g − 2: typical example

Hadronic contrib. to the muon g − 2: key toimprove the Standard Model prediction

≳ 3 σ discrepancy between experiment and theory=⇒ New Physics?(⇔ No new physics seen at the LHC so far. Whatdoes this mean?)

Two new experiments to measure the muon g − 2planned at J-PARC and Fermilab.

D. Nomura (YITP) Probing bsm physics via precision particle physics April 16, 2014 18 / 18