32
Processingof ground-basedGNSS Processingof ground-basedGNSS data toproducenear real-time(NRT) troposphericzenith data toproducenear real-time(NRT) troposphericzenith pathdelays(ZTD) pathdelays(ZTD) Jan Douša Jan Douša   (jan.dousa (jan.dousa @pecny.cz @pecny.cz ) ) Geodetic Observatory Pecn Geodetic Observatory Pecn ý, ý, Research Institute of Geodesy, Topography and Cartography, Research Institute of Geodesy, Topography and Cartography, The The Czech Republic Czech Republic E-GVAP Workshop E-GVAP Workshop November 6, 2008 November 6, 2008

Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

Processing of ground­based GNSS Processing of ground­based GNSS 

data to produce near real­time (NRT) tropospheric zenith data to produce near real­time (NRT) tropospheric zenith 

path delays (ZTD)path delays (ZTD)

Jan Douša   Jan Douša     (jan.dousa([email protected]@pecny.cz))

Geodetic Observatory PecnGeodetic Observatory Pecný,ý,

Research Institute of Geodesy, Topography and Cartography,Research Institute of Geodesy, Topography and Cartography,

The The Czech RepublicCzech Republic

E­GVAP Workshop E­GVAP Workshop November 6, 2008November 6, 2008

Page 2: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 2

OutlineOutline

• introduction to GNSSintroduction to GNSS

• the concept of GNSS contribution to meteorologythe concept of GNSS contribution to meteorology

• different GNSS processing approaches  (PPP x Network)different GNSS processing approaches  (PPP x Network)

• general aspects of the network processing (in brief)general aspects of the network processing (in brief)

• the requirements and features of near real­time (NRT) solutionthe requirements and features of near real­time (NRT) solution

• some some results and comparisonsresults and comparisons

• historhistorical viewical view

Page 3: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 3

GNSS ­ Global Navigation Satellite SystemsGNSS ­ Global Navigation Satellite Systems

• GPS NAVSTARGPS NAVSTAR  – – NNAVAVigation igation SSystem using ystem using TTiming iming AAnd nd RRanginganging

The United States’ military serviceThe United States’ military service  

((1972, 1972, fully operationalfully operational  since since 1994)1994)

                                • GLONASSGLONASS –  – GLOGLObalnaja balnaja NANAvigacionnaja vigacionnaja SSputnikovaja putnikovaja SSistemaistema

Russian (the Soviet Union’) military serviceRussian (the Soviet Union’) military service  

(1978, (1978, scheduled for restoration by 2010scheduled for restoration by 2010))

                                  • GALILEOGALILEO ­ European Space Agency (ESA) ­ European Space Agency (ESA)

European commercial service European commercial service 

(1999,  (1999,  scheduled to be fully operational by scheduled to be fully operational by 20201313))

                                  

DORIS (France),  COMPASS or Beidou (China), QZSS (Japan), IRNSS (India) DORIS (France),  COMPASS or Beidou (China), QZSS (Japan), IRNSS (India) 

Page 4: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 4

Satellite tracks projected onto the surfaceSatellite tracks projected onto the surface• GPS GPS – 31 (32) satellites / 6 orbital planes / 11h 58min– 31 (32) satellites / 6 orbital planes / 11h 58min• GLONASSGLONASS – 21 (24) satellites / 3 orbital planes / 11h 15min  – 21 (24) satellites / 3 orbital planes / 11h 15min • GalileoGalileo – 27 (30) satellites / 3 planes – 27 (30) satellites / 3 planes

Page 5: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 5

basic GNSSbasic GNSSobservablesobservables

GPS oscillator with fundamental GPS oscillator with fundamental frequency 10.23 MHz multiplied byfrequency 10.23 MHz multiplied by154x ­> 1575.42 MHz  (L1)154x ­> 1575.42 MHz  (L1)120x ­> 1227.60 MHz  (L2)120x ­> 1227.60 MHz  (L2)

­ code pseudorangecode pseudorangethe measure of the transit time from satellite to receiver using autocorrelation of received and replicated signal (the the measure of the transit time from satellite to receiver using autocorrelation of received and replicated signal (the time is coded in signal) time is coded in signal) 

            observablesobservables: :  C1 = L1  C1 = L1 CC/A/A, ,  P1 = L1 P(Y) P1 = L1 P(Y), ,   P2P2 = L2 P(Y)   and many others in future = L2 P(Y)   and many others in future  ≈≈  1m absolute positioning for civil usage1m absolute positioning for civil usage

­ phase pseudorangephase pseudorangethe measure of the phase difference btw. received and replicated carrier frequencythe measure of the phase difference btw. received and replicated carrier frequency

observables: observables: L1, L2L1, L2 and others in future and others in futuresubcentimeter­level relative positioningsubcentimeter­level relative positioning

­ doppler datadoppler datathe measure of doppler shift due to a mutual motion of satellite and receiverthe measure of doppler shift due to a mutual motion of satellite and receiver

Page 6: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 6

Error sources for GNSSError sources for GNSS

SatellitesSatellites:: e ephphemeriemeriss, , clocks, differencial code biasesclocks, differencial code biases(AS(AS­antispoofing­antispoofing, , S/S/AA­selective availability­selective availability before 2000) before 2000)

ReceiversReceivers::  clocksclocks, , phase center offsets and variations, differencial code phase center offsets and variations, differencial code biasesbiases

EnvironmentEnvironment::  troposphere, ionosphere, multipath, Earth’s kinematicstroposphere, ionosphere, multipath, Earth’s kinematicsProcessingProcessing::  cycle­slips in phases, model errors cycle­slips in phases, model errors 

→→  EliminationEliminationby observable differencesby observable differencesby introducing precise models and productsby introducing precise models and products

Page 7: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 7

Parameters in GNSS mathematical modelParameters in GNSS mathematical model

thus we have to handle somehow these parameters in GNSS processing:thus we have to handle somehow these parameters in GNSS processing:

• satellite and receiver positionsatellite and receiver position• satellite and receiver clock correctionssatellite and receiver clock corrections• Earth orientation parameters and geocenter coordinatesEarth orientation parameters and geocenter coordinates• satellite and receiver code differential biassatellite and receiver code differential bias• satellite and receiver phase center offsets and patternssatellite and receiver phase center offsets and patterns• troposphere effecttroposphere effect• ionosphere effectionosphere effect• ambiguitiesambiguities

Page 8: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 8

Observable differencesObservable differences

to eliminate some of the errors in mathematical GPSto eliminate some of the errors in mathematical GPS model model, we often create, we often create  and use differences from the and use differences from the original observablesoriginal observables::

­ single­differencesingle­difference (SD) (SD) –  – difference between two stationsdifference between two stations ( (baseline generationbaseline generation)), which, which  eliminates the eliminates the satellite clock errors observed at both stationssatellite clock errors observed at both stations

­­ double­differencedouble­difference (DD) (DD) – –  difference between two SDs difference between two SDs ( (measurement to two satellites from the single measurement to two satellites from the single baselinebaseline)), which eliminates, which eliminates  reciever clock errorsreciever clock errors

­ tripple­differencetripple­difference (TD) (TD) – diferen – diferences between two ces between two DD DD in different epochs, which is useful to detect in different epochs, which is useful to detect the phase skips (e.g. when signal from satellite was discontinued)the phase skips (e.g. when signal from satellite was discontinued)

­­ the original observables we often call asthe original observables we often call as  zero­differencezero­difference (ZD) (ZD)

Page 9: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 9

GPS­meteorology conceptGPS­meteorology concept

GPS x NWP

we knowwe know precise receiver and orbit positions,  precise receiver and orbit positions, we we eliminateeliminate i ionosonospherephere   effect (receiver and satellite clock  effect (receiver and satellite clock error), error), we introducewe introduce (PCVs, OCTIDE, ...) (PCVs, OCTIDE, ...) 

we estimate:  we estimate:  zenith path tropospheric delay (receiver zenith path tropospheric delay (receiver and satellite clocks)and satellite clocks)

Page 10: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 10

GPS observation equationGPS observation equationBasic GPS carrier phase observable (scale to distance):Basic GPS carrier phase observable (scale to distance):

LLrereccsatsat =  = σσrecrec

satsat +  c* +  c*δδsatsat + c* + c*δδrecrec +  + λλ*n*nrecrecsatsat +  + ∆∆IONION + +  ∆∆TRP   TRP   + + εεrerecc

satsat

  

σσrecrecsat      sat      .. .. receiver­satellite distance in vacuum receiver­satellite distance in vacuum 

      ((receiverreceiver and and satellite coordinates satellite coordinates))c       c          .. speed of light.. speed of lightδδsatsat, , δδrec rec   .. .. satellite and receiver clocksatellite and receiver clock errors errors

λλ                 .. wavelength of the carrier phase.. wavelength of the carrier phasennrecrec

sat       sat       .. unknown initial phase .. unknown initial phase ambiguitiesambiguities

∆∆IONION     .. ionospheric (slant) delay.. ionospheric (slant) delay

∆∆TRPTRP                      .. .. tropospheric (slant) path delaytropospheric (slant) path delay

∆∆TRPTRP    = = mmffhh(z) * ZHD + (z) * ZHD + mmffww(z) *(z) *  ZWDZWD (z = zenith distance)(z = zenith distance)

ZTD ZTD       = ZHD + ZWD= ZHD + ZWDZTD ZTD [m][m]    ­ ­   Zenith Total DelayZenith Total Delay        (usually site & time­dependent parameters)(usually site & time­dependent parameters)

mmffww  //  hh                ­ ­  mapping function        mapping function       (wet / hydrostatic)(wet / hydrostatic)

LLklklijij = L = Lklkl

i i – L– Lklklj   j   = ( L= ( Lkk

i i – L– Llli  i  ) – ( L) – ( Lkk

j j – L – L llj j ))   double differences in network sol.   double differences in network sol.

← satellite and receiver position need satellite and receiver position need to be accurately knownto be accurately known

← eliminated using double-differences eliminated using double-differences (estimated in PPP !!!) (estimated in PPP !!!)

← need to be resolved integer or floatneed to be resolved integer or float← first-order eliminated infirst-order eliminated in

the ’ionospherthe ’ionospheree-free’ combination-free’ combination

Page 11: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 11

Least Squares AdjustmentLeast Squares Adjustment

GPS „distance“ GPS „distance“ measurements measurements 

(code and/or phase)(code and/or phase)

stochastic informationstochastic informationunknown unknown parametersparameters

•  coordinatescoordinates

•  ambiguitiesambiguities

•  ztd‘sztd‘s

• after linearization

• user usually knows the models for the orbits, tides, etc.

Observations:Observations:

residualsresiduals

Page 12: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 12

Normal Equations (NEQsNormal Equations (NEQs))

normalnormal  equationequation

parameter estimationparameter estimation

minimizing the residuals:     minimizing the residuals:     e‘ P e e‘ P e   min. min.

parameters of interest  (coordinates,      parameters of interest  (coordinates,                   troposphere, ...)             troposphere, ...)

parameters to be eliminated (ambiguities)parameters to be eliminated (ambiguities)

Page 13: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 13

Sequential Adjustment: IdeaSequential Adjustment: Idea

often applied in two ways:often applied in two ways:

- time domain time domain

(sequential solutions)(sequential solutions)

- space domain space domain

(network clusters)(network clusters)

Processing of sequential Processing of sequential solutions :solutions :

identical identical with processing all with processing all observations in a common observations in a common adjustment, if there are no adjustment, if there are no correlationscorrelations of the original of the original observationsobservations

time

Page 14: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 14

Processing strategies & softwareProcessing strategies & software

PPP approach:

Epos - Epos - GFZGFZ

Gipsy - Gipsy - NGAANGAA

Network approach:

Gipsy - Gipsy - ASI ASI

Bernese - Bernese - BKG, GOP, KNMI, LTP, ROB, METO, SGNBKG, GOP, KNMI, LTP, ROB, METO, SGN

• Large NEQ

• Increasing CPU with incr. number of sites/parameters

• Correlations btw stations are ignored

• Use of external products (orbits, clocks)

Disadvantages

• Correlations between parameters of all stations are taken into account

• Independence of external products (except for small networks)

• Small NEQ

• Keeping CPU with increasing number of sites / parameters (e.g. ZTD every 15 min, estimation of gradients)

• Investigations of site dependent effect

Advantages

Network using double differences Precise Point positioning (PPP)

Page 15: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 15

PPP processing strategy PPP processing strategy (example GFZ)(example GFZ)

Part 1 - Network orbit improvement:

Adjustment of precise orbits & clocks Global network : ~20 IGS+German sites Input orbits: GFZ 3h Ultra-rapid (pred.)

CPU (Linux PC): ~6 to 8 minutes

Part 2 - PPP Analysis:

Estimation of trop. parameters Large set of parameters possible (high sampling rate, trop. gradients)

NEW: ‚slant delays‘ estimation CPU (Linux PC): <5 min for 220 sites

courtesy of Galina Dick (GFZ)courtesy of Galina Dick (GFZ)

GFZ EPOS SoftwareGFZ EPOS Software

Page 16: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 16

General network processing stepsGeneral network processing steps

• creating data batches (x­hourly or sliding window)creating data batches (x­hourly or sliding window)• data quality checkdata quality check• single point positioning for rough receisingle point positioning for rough receiverver clock synchroniz clock synchronizationation• network design by double differencing (clusters possible)network design by double differencing (clusters possible)• data screening for phase cycle­slips, ambiguities set updata screening for phase cycle­slips, ambiguities set up• iterative site & satelliteiterative site & satellite  quality check and outliers rejectionquality check and outliers rejection• ionosphere product & ambiguity resolutionionosphere product & ambiguity resolution• reference frame realireference frame realizzation & coordinate estimationation & coordinate estimation• ZTD product generationZTD product generation

Page 17: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 17

Network processing strategy Network processing strategy (example GOP)(example GOP)

• pre­processingpre­processing is based on two­hours data batches is based on two­hours data batches                    1 hour redundancy with the previous run  ­ easier ambiguity resolution, 1 hour redundancy with the previous run  ­ easier ambiguity resolution,    ­ coordinates also for regularly ‘late’ RINEX ( > 30min )­ coordinates also for regularly ‘late’ RINEX ( > 30min )

• normal equations (NEQ) normal equations (NEQ) – 1h for ZTD and 2h for coordinates– 1h for ZTD and 2h for coordinates• processingprocessing  in clustersin clusters of the network of the network• coordinates coordinates are combined from last 28 days using 2h­NEQs with ambiguity fixed, free­are combined from last 28 days using 2h­NEQs with ambiguity fixed, free­

network solution, IGS05 reference framenetwork solution, IGS05 reference frame• ZTD productZTD product based on last 12h stacking of 1h­NEQs based on last 12h stacking of 1h­NEQs• ionosphere product ionosphere product for ambiguity resolutionfor ambiguity resolution

Page 18: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 18

GOP processing schemeGOP processing scheme

Page 19: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 19

Ambiguity resolution in near real­timeAmbiguity resolution in near real­time• initial phase ambiguities represent a huge number ( > 90% !) of necessarilly estimated initial phase ambiguities represent a huge number ( > 90% !) of necessarilly estimated 

parameters in mathematical GPS modelparameters in mathematical GPS model• in network solution, they can be resolved for integer numbers, which has strong impact in network solution, they can be resolved for integer numbers, which has strong impact 

for the coordinate estimation in short­time data­span for the coordinate estimation in short­time data­span • ambituity resolution depends on time­window and baseline lenghtambituity resolution depends on time­window and baseline lenght• in GOP solution, for example, the ambiguities are resolved for in GOP solution, for example, the ambiguities are resolved for 70% in total70% in total  within   within 

two­hour data batch applying two­step approach (two­hour data batch applying two­step approach (wide­lane ambiguitieswide­lane ambiguities at  at Melbourne­Wubbenna phase+code linear combination resolved in 80­90% and Melbourne­Wubbenna phase+code linear combination resolved in 80­90% and narrow­narrow­lane ambiguitieslane ambiguities at ionosphere­free phase linear combination resolved with 70%  at ionosphere­free phase linear combination resolved with 70% success) success) 

• resolved ambiguities are introduced ‘as known’ at least for the official coordinate resolved ambiguities are introduced ‘as known’ at least for the official coordinate estimation (estimation (North/East/UpNorth/East/Up  coordinate repeatability improved from 10/10/25mm to coordinate repeatability improved from 10/10/25mm to 6/6/16mm6/6/16mm) ) 

• a positive bias of aprox. 1mm observed in ZTD solutions btw ambituity free and fix a positive bias of aprox. 1mm observed in ZTD solutions btw ambituity free and fix solution !solution !

Page 20: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 20

NRT coordinate solutionsNRT coordinate solutionsThe coordinates, which are ‘fixed’ or ‘tightly constrained’ in NRT ZTD solution should be as The coordinates, which are ‘fixed’ or ‘tightly constrained’ in NRT ZTD solution should be as 

good as possible ( good as possible ( ≈≈ 3:1 for CRD:ZTD) 3:1 for CRD:ZTD)example:  GOP solution for the coordinatesexample:  GOP solution for the coordinates• the coordinates are based on ambiguity fixed solution using last 28 days of two­hourly the coordinates are based on ambiguity fixed solution using last 28 days of two­hourly 

NEQs, the solution is updated every hour.NEQs, the solution is updated every hour.• the coordinates are expressed in local datum close to the last ITRF realization by IGS the coordinates are expressed in local datum close to the last ITRF realization by IGS 

(currently IGS05) by applying the Helmert transformation (fidutial stations are (currently IGS05) by applying the Helmert transformation (fidutial stations are iteratively checked)iteratively checked)

Page 21: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 21

Troposphere model – Bernese GPS softwareTroposphere model – Bernese GPS software

Slant tropospheric path delays = wet + dry (hydrostatic) are mapped into zenith using a Slant tropospheric path delays = wet + dry (hydrostatic) are mapped into zenith using a mapping function (mf) mapping function (mf) 

SSPPD   =  D   =  mmffHH(z)(z)  ZHD  +  ZHD  +  mmffWW(z)(z)  ZWD        [z = zenith distance]ZWD        [z = zenith distance]

where ZHD can be well a priori estimated if atmospheric pressure and station heiht+latitude are where ZHD can be well a priori estimated if atmospheric pressure and station heiht+latitude are 

known (e.g. Saastamoinen, 1972)known (e.g. Saastamoinen, 1972)

Because its variability, ZWD should be estimated for baselines > 20kmBecause its variability, ZWD should be estimated for baselines > 20km

Extended model could apply additionally the azimuthal dependency expressed as horizontal Extended model could apply additionally the azimuthal dependency expressed as horizontal 

tropospheric gradients (Gtropospheric gradients (GNN north, G north, GEE easth): easth):

SSPPD   =  D   =  mmffHH(z) ZHD  +  (z) ZHD  +  mmffWW(z)(z)  ZWD +ZWD +

  ∂∂  mfmfWW//∂∂ z [ G z [ GNN  cos(A) + Gcos(A) + GEE  sin(A)]      [A = azimuth]sin(A)]      [A = azimuth]

Constant or Constant or piece­wise linear functionpiece­wise linear function is is  applied for ZTDapplied for ZTD

Standard atmosphere (or in­situ atm. pres. measurement) for a priori ZHDStandard atmosphere (or in­situ atm. pres. measurement) for a priori ZHD

Dry and wet ‘Niell’ mf  (‘Global’ or ‘Vienna’ mf in future) Dry and wet ‘Niell’ mf  (‘Global’ or ‘Vienna’ mf in future) 

Page 22: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 22

Troposphere model – impact study exampleTroposphere model – impact study exampleSome impacts in past using older models:Some impacts in past using older models:  2.2. no a priori model (zero value) and dry Niell mapping function used for the total zenith delay estimated (used no a priori model (zero value) and dry Niell mapping function used for the total zenith delay estimated (used 

until May 2005).until May 2005).3.3. a priori ZHD based on standard atmosphere and wet­Niell mapping function estimating ZTD (hopefully a priori ZHD based on standard atmosphere and wet­Niell mapping function estimating ZTD (hopefully 

most of the ZWD).most of the ZWD).→ bias variablebias variable              in time and space in time and space 

Another site­dependentAnother site­dependentbias was introduced bias was introduced in 2006 due to changingin 2006 due to changingrelative relative →→ absolute absolutePhase Center VariationsPhase Center Variationsand Offsets model usedand Offsets model used(upto 5mm)(upto 5mm)

Page 23: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 23

TroposphericTropospheric product product (GOP example) (GOP example)

• ZTDs for every hour (HH:00 + HH:59)ZTDs for every hour (HH:00 + HH:59)• a linear trend is considered between the valuesa linear trend is considered between the values• coordinates are heavily constrained to our estimated values realizing the IGb00 coordinates are heavily constrained to our estimated values realizing the IGb00 

reference frame and written to the COST 716 format.reference frame and written to the COST 716 format.• ZTD product filtering:ZTD product filtering:

– Sites with less than 4 hours of data in ZTD solution are excluded from the productSites with less than 4 hours of data in ZTD solution are excluded from the product– Sites with less than 2 days of data in coordinate solution are excluded.  Sites with less than 2 days of data in coordinate solution are excluded.  

• ambiguity­free (AF) and ambiguity­fixed (AX) ZTD solutions are provided ambiguity­free (AF) and ambiguity­fixed (AX) ZTD solutions are provided (officially AF), both using the same a priori coordinates values (ambiguity­fixed).(officially AF), both using the same a priori coordinates values (ambiguity­fixed).

Page 24: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 24

Requirements:Requirements:hourly GNSS data (IGS, EPN, national,...)

precise orbits (IGS ultra­rapids, ...)precise orbits (IGS ultra­rapids, ...)

for PPP: precise satellite clocks, DCB bias

Features:Features:processing started every hour

usually ZTD at the edge of the processing window

correlation with respect to previous estimates (physical, via processing, possible constraints – depends on time­resolution)

Other important models:Other important models:ocean and Earth tides (station coordinate, geocentr, satellite orbits)

receiver and satellite phase center offsets and variations

troposphere mapping function

2­nd, 3­rd  order ionosphere

many others ­ especially

in precise orbit determination

NNear real­time ear real­time aspects of aspects of ZTDZTD estimation estimation

last hour

Page 25: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 25

GNSS hourly data ­ availabilityGNSS hourly data ­ availability

Page 26: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 26

predominantly IGS ultra­rapid orbits usedpredominantly IGS ultra­rapid orbits used

Requirements on predicted orbits for ZTDRequirements on predicted orbits for ZTD

errors in ZTD

2001

2008

Synthetic error in orbit positionSynthetic error in orbit position­ 1m in along­track­ 1m in cross­track­ 1m in radial  (mostly eliminated in DD)

Page 27: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 27

ZTD results ­ PPP vs NetworkZTD results ­ PPP vs Network

ZIMM and GOPE – one of the 12 ‘supersites’ZIMM and GOPE – one of the 12 ‘supersites’

Page 28: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 28

Some ZTD/PWV comparison at GOPSome ZTD/PWV comparison at GOP2001­2003 comparison2001­2003 comparisonNRT x post­processingNRT x post­processing

StdDev : StdDev :  4­7mm  4­7mm 

BBiasias : :    1­3mm1­3mm

Page 29: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 29

­ ­ weeklyweekly Sdev and Bias Sdev and Bias­ ­ GPS ZTD from GOP near real­time  GPS ZTD from GOP near real­time  ­ NWM Hirlam from DMI­ NWM Hirlam from DMI

StdDev:  8­16mm    (28mm)Bias:  upto 16mm     (25mm)       (strong seasonal variation)

ZTD comparisonZTD comparisonNRT GOP  NRT GOP  ××  HIRLAM (NWP)  HIRLAM (NWP)

Page 30: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 30

AC’s NRT AC’s NRT ZTD ZTD  x  post­processing @ GOP x  post­processing @ GOPztd differences ­ freqency & distribution functions (2004/2005)ztd differences ­ freqency & distribution functions (2004/2005)

     ACRI        ASI       BKG        GFZ        GOP       IEEC       LPT        NKG      NKGSBOR1

GOPE

HERS

POTS

WTZR

ONSA

MAR6

CAGL

MATE

Page 31: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 31

Hour x day plots (ztd differences)Hour x day plots (ztd differences)NRT NRT xx  post­processingpost­processing

Page 32: Processing of groundbased GNSS data to produce near real ...egvap.dmi.dk/workshop/2-processing-of-GNSS-data-Dousa.pdf1m in radial (mostly eliminated in DD) E GVAP Workshop, November

E­GVAP Workshop, November 6, 2008 32

Ground­based GPS­meteorologyGround­based GPS­meteorology(Europe)(Europe)

COST-716 Action (1998-2003):

"Exploitation of Ground-Based GPS for Operational Numerical Weather Prediction and Climate Applications“ 15 Institutions 7 ACs> 200 GPS sites

TOUGH (2003-2006):

„Targeting Optimal Use of GPS Humidity Measurements in Meteorology“ 15 Institutions (Coordinator DMI) 12 ACs > 400 GPS sites

E-GVAP (2006 - 2009):„The EUMETNET GPS Water Vapor Programme“

13 Institutions 10 ACs > 800 GPS sites