36
PROPIEDADES DE LA RADIACION PROPIEDADES DE LA RADIACION ELECTROMAGNETICA ELECTROMAGNETICA V an H olde,Fig. 10.1

PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Embed Size (px)

DESCRIPTION

PROPIEDADES DE LA RADIACION ELECTROMAGNETICA. ESPECTRSOCOPIA Estudia la interacción entre la radiación electromagnética y la materia, con aplicaciones en química , física, astronomía, etc.. - PowerPoint PPT Presentation

Citation preview

Page 1: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

PROPIEDADES DE LA RADIACION PROPIEDADES DE LA RADIACION

ELECTROMAGNETICAELECTROMAGNETICA

Van Holde, Fig. 10.1

Page 2: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

ESPECTRSOCOPIA

Estudia la interacción entre la radiación electromagnética y la materia, con aplicaciones en química, física, astronomía, etc..

El análisis espectral en el cual se basa, permite detectar la absorción o emisión de radiación electromagnética a ciertas longitudes de onda, y relacionar éstas con los niveles de energía implicados en una transición cuántica.

Page 3: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA
Page 4: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Naturaleza Naturaleza onduladoria de onduladoria de

la luzla luz

La E se transporta en el espacio, por medio de la radiación electromagnética

todas las formas de energía se mueven en forma de ondas y todas viajan en el vacio a la misma velocidad

(c = 3.0 x 10 8 m/s)

La luz desde el sol, la energía ocupada para calentar alimentos en hornos de microondas, el calor radiante de las estufas eléctricas, los rayos X en medicina, etc., son ejemplos de la radiación electromagnética

Van Holde, Fig. 10.1

Page 5: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Parámetros ondulatoriosParámetros ondulatorios

longitud de onda mide la distancia que hay entre dos máximos vecinos (m, cm, nm, pm)

frecuencia El N° de veces que se repite el máximo de la onda que se propaga en una dirección, "cada 1 segundo" (herts ciclos/segundo)

número de onda : inverso de la longitud de onda (cm –1)

Page 6: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

1.    Estas tres características de la radiación como onda (c) se relacionan entre sí de la siguiente manera:

(1/s) · (m) = c(m/s) = 3.108(m/s) (1/s) · (m) = c(m/s) = 2,9979·108(m/s) Ejemplo: La luz amarilla del espectro solar, o bien de una lámpara que contiene gas Sodio, tiene una longitud de onda = 589 nm. ¿A qué frecuencia corresponde?

R//. 5,1·1014(1/s , Hz ó ciclos/s)

Ecuación general de la energía: E = h = hc/

h (cte. Planck) = 6.63·10-34 J.s Cuál es la energía que un átomo absorbe de la luz amarilla de = 589 nm

R// E = 3.37·10-19 J

Page 7: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Superposición de ondasSuperposición de ondasCuando dos o mas ondas atraviesan la misma región del espacio, se produce un desplazamiento igual a la suma de los desplazamientos causados por las ondas individuales.

Page 8: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Velocidad de propagaciónVelocidad de propagación

En cualquier medio, la propagación de la radiación disminuye Debido a la interacción entre el campo electromagnético de la radiación y los electrones de los átomos y moléculas presentes

-La frecuencia de la radiación lo determina la fuente y permanece invariable.– La velocidad de la radiación y su longitud de onda dependen de la composición del medio que atraviesa.

Page 9: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

INDICE DE REFRACCION

El grado de flexión o refracción que hay en la interface entre dos materiales de distintas densidades es bastante predecible, y depende del índice de refracción de cada material.

El índice de refracción mide la interacción de la radiación con la materia

La relación de la velocidad de propagación de la luz en el vacio entre la velocidad de propagación de la luz en determinado material

vc

n

Page 10: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Formas de EnergíaFormas de EnergíaLas distintas radiaciones afectan a la materia en mayor o menor grado, dependiendo de su energía.

Ej. La exposición del cuerpo humano a la radiación IR, puede causar quemaduras por calor o enrojecimientos de la piel.

La radiación UV/VIS, produce un color café o bronceado por el sol, dependiendo del tiempo de exposición.

Los rayos X produce daño profundo en los tejidos y posible cáncer de la piel o interno.

Page 11: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Espectro electromagnéticoPresenta las diferentes formas de energía con sus longitudes de onda y frecuencia características

Page 12: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Rangos de R ayos - 0 .001 - 0 .01 nm /núcleo

R ayos - X .01 -10 nm / e internos

U V 10 - 400 nm / e valencia

V isible 400 - 800 nm / e valencia

IR 800 - 10 6 nm / vib racion

M icroondas 10 6 - 10 8 nm / rotación

R adio 10 8 - 10 11 nm / sp in nucleo

Page 13: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

10-10 10-8 10-6 10-4 10-2 100 102

longitud de onda (cm)

rayos rayos x UV VIS IR -ondas radio

Espctroscopía UV:

cromóforos

Espectroscopía IR:

grupos funcionales

Espectroscopía RMN: átomos individuales y su entorno

La espectrometría de masa es una técnica diferente ya que por lo

general no involucra interacción de la materia con energía

electromagnética.

Page 14: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Radiación Visible

Ondas luminosas capaces de estimular el ojo humano; los demás rayos no pueden ser percibidos por la visión humana.

Estos rayos visibles toman colores definidos, su descomposición se realiza con la ayuda de cuerpos cristalinos.

Page 15: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Colores absorbidos y reflejadosColores absorbidos y reflejados

Page 16: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Longitud de onda y el colorLongitud de onda y el color

Violeta: 400-420 nm

Indigo: 420-440 nm

Azul: 440 -490 nm

Verde: 490-570 nm

Amarillo: 570-585 nm

Naranja: 585-620 nm

Rojo: 620-780 nm

Page 17: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Los colores vienen determinados por la frecuencia de la onda electromagnética, siendo la luz "blanca" una mezcla de todas las frecuencias.

La luz  blanca que llega al prisma se refracta y emerge formando una serie de bandas de colores diferentes.

Este fenómeno se denomina dispersión o descomposición de la luz. 

Page 18: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Los colores que observamos son los reflejados

Colores complementarios:

Absorción a 420-430 nm: se ve amarillo

Absorción a 500-520 nm: se ve rojo

Absorción total: se ve negro

Reflexión total: se ve blanco

Page 19: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Formas de interacción de la Formas de interacción de la radiación con la materiaradiación con la materia

Page 20: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Efecto fotoelectricoEfecto fotoelectrico

cuando la luz incide sobre una superficie metálica, la superficie emite electrones.

El resultado de esto es que existe una mínima frecuencia de luz bajo la cual ningún e- abandona la superficie iluminada. Solo cuando fotones de radiación de suficiente energía hv chocan la superficie metálica

Si la energía del fotón h es muy pequeña, ningún electrón se libera

Ecin.=1/2me(vele)2 =h - Eenlace

Page 21: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

La luz como partículaLa luz como partículaLa luz se comporta como una partícula golpeando electrones fuera del átomo A esta partícula elemental se le llama fotón. El fotón se entiende como un paquete de energía electromagnética o luz. Éste fue propuesto por Albert Einstein para explicar el efecto fotoeléctrico. La energía para cierta longitud de onda se pude expresar J / fotón o cuanto

Page 22: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Absorción y emisión de luzAbsorción y emisión de luzPlanck (1901) planteó que existían niveles de energía muy definidos dentro del átomo, que el proceso de absorción de la energía involucraba a los electrones externos al núcleo y que alguno de ellos eran transportados a niveles superiores debido a la excitación por la luz (Proceso de Absorción de luz) y que al regresar a su estado fundamental, devolvía esa misma energía en forma luminosa (Proceso de Emisión de luz)

Page 23: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Absorción de la RadiaciónAbsorción de la Radiación

Incrementa la energía de un átomo o molécula La absorción de un fotón promueve a un átomo o

molécula de su estado basal o un nivel excitado La absoción de luz UV/Vis promueve a los

electrones externos a otro de mayor energía

– 1s2 + h 1s12s1

Page 24: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Absorción de la RadiaciónAbsorción de la Radiación

Cuando el HCl absorbe radiación IR aumenta su energía vibracional

Cuando el H2O absorbe radiación de microondas aumenta su energía rotacional e

H2O + h H2O

H Cl + h H Cl

Page 25: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Absorción AtómicaAbsorción Atómica

Los átomos absorben radiación a longitudes de onda definidas

Producen espectros simples (pocos picos, bien definidios)

Los electrones externos del átomo se promueven a mayores niveles de nergía (niveles excitados)

Page 26: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Absorción molecularAbsorción molecular Espectro es más complejo La E asociada a las bandas de una molécula se

forma por: Etot = Eelectrónica + Evibracional + E rotacional

La Eelectrónica proviene de los distintos estados energéticos de los distintos electrones enlazantes

La E vibracional proviene del elevado número de vibraciones interatómicas de las moléculas

La E rotacional se produce por los distintos movimientos de rotación de las molécula (muchos)

Page 27: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Absorcion – Niveles de EnergiaAbsorcion – Niveles de Energia

E

N

E

R

G

Y

Nivel electronico

UV/Vis

nivel rotacional

Microondas

Nivel vibracional

IR

Page 28: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Espectro ContínuoEspectro Contínuo: : Muestra la mayor Muestra la mayor absorción en un rango de longitudes de ondaabsorción en un rango de longitudes de onda

Page 29: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Absorción por campo magnéticoAbsorción por campo magnético

Se produce cuando electrones o núcleos de ciertos elementos se someten a intensos campos magnéticos

Los núcleos utilizan ondas de radio de 30 a 500 MHz

Los electrones absorben microondas de 9500 MHz

Las técnicas que estudian la absorción por campos magnéticos son la RMN y RSE

Page 30: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

EMISIÓN DE LA RADIACIÓNEMISIÓN DE LA RADIACIÓN Fenómeno que ocurre cuando las

partículas excitadas se relajan a niveles de menor energía, cediendo dicha energía en forma de fotones.

Page 31: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

La excitación puede producirse por:Bombardeo de electrones (emitiéndose rayos X)Exposición a chispas de corriente alterna o al calor de una llama, arco u horno (emitiéndose radiación UV, vis o IR)Irradiación con un haz de radiación electromagnética (emitiéndose radiación fluorescente)Reacción química exotérmica (que produce quimioluminiscencia)

Page 32: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Espectro de emisiónEspectro de emisión

Cuando una muestra "devuelve" en forma de líneas discretas las ondas absorbidas forma un espectro de líneas bien

definidas, discretas y separadas entre sí por regiones negras.

El Sodio, en una placa fotográfica "negra" emite luz de color amarillo (=589nm)

La sal de Potasio K, emíte dos líneas espectrales, rojo y azul.

Page 33: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Espectro de líneasEspectro de líneas

Page 34: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

Procesos de RelajaciónProcesos de RelajaciónEl tiempo de vida media de un átomo o molécula excitada por absorción de radiación

es breve debido a que experimenta varios procesos de relajación para llegar al estado fundamental.

– Relajación No Radiactiva: Supone perdida de energía en forma de energía cinética por colisiones en una serie de pasos pequeños.

Aumento ligero de temperatura.

Page 35: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

– Relajación Fluorescente o Fosforescente Son importantes procesos de emisión donde

las partículas excitadas por la absorción de radiación electromagnética vuelven asu estado fundamental emitiendo radiación.

- Fluorescencia de resonancia

Proceso en el que la radiación emitida tiene la misma frecuencia que la radiación empleada para la excitación

Se produce en átomos en estado gaseoso

Page 36: PROPIEDADES DE LA RADIACION ELECTROMAGNETICA

TAREATAREA ¿Que es dispersión de la radiación /Indique los

diferentes tipos de dispersión y sus características, ejemplifique cada una?

¿Que elementos presentan color en la región visible, indique la longitud de onda para cada uno?

Defina y ejemplifique: Difracción, Polarización, Reflexión, Refracción.

¿Qué es teoría del color y sus aplicaciones?