79
PROYECTO FIN DE GRADO BUQUE PESQUERO ARRASTRERO CONGELADOR 1200 m 3 CUADERNO 10 “Planta propulsora y auxiliares” Autor: Alejandro Mariño González. DNI: 32717336-C Grado en propulsión y servicios del buque. Tutor: Marcos Míguez González

PROYECTO FIN DE GRADO - ruc.udc.es

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PROYECTO FIN DE GRADO - ruc.udc.es

PROYECTO FIN DE GRADO

BUQUE PESQUERO ARRASTRERO CONGELADOR 1200 m3

CUADERNO 10

“Planta propulsora y auxiliares”

Autor: Alejandro Mariño González.

DNI: 32717336-C

Grado en propulsión y servicios del buque.

Tutor: Marcos Míguez González

Page 2: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 2

RPA

DEPARTAMENTO DE INGENIERÍA NAVAL Y OCEÁNICA

GRADO EN INGENIERÍA DE PROPULSIÓN Y SERVICIOS DEL BUQUE

CURSO 2.015-2016

PROYECTO NÚMERO: 16-12P

TIPO DE BUQUE: BUQUE PESQUERO ARRASTRERO CONGELADOR

CLASIFICACIÓN, COTA Y REGLAMENTOS DE APLICACIÓN: Bureau Veritas, Torremolinos,

MARPOL.

CARACTERÍSTICAS DE LA CARGA: 1200 m3 DE CAPACIDAD DE BODEGA.

VELOCIDAD Y AUTONOMÍA: 13,5 NUDOS EN CONDICIONES DE SERVICIO. 85% DE MCR

Y 10% DE MARGEN DE MAR. AUTONOMÍA 60 DÍAS.

SISTEMAS Y EQUIPOS DE CARGA / DESCARGA: CAPACIDAD DE CONGELACION TOTAL

DE 60 T/DIA EN TÚNELES Y ARMARIOS DE CONGELACIÓN

PROPULSIÓN: UNA ÚNICA LÍNEA DE EJES ACCIONADA POR UN MOTOR DE 4 TIEMPOS Y

HÉLICE CPP.

TRIPULACIÓN Y PASAJE: 30 TRIPULANTES.

OTROS EQUIPOS E INSTALACIONES: HÉLICE TRANSVERSAL EN PROA. LOS HABITUALES

EN ESTE TIPO DE BUQUE.

Page 3: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 3

ÍNDICE.

1. SELECCIÓN DEL MOTOR….………………………………………………Pág.4

2. SELECCIÓN DE LA REDUCTORA Y PTO…………………...…………Pág.5

3. LINEA DE EJES…………………………………………………………………..Pág.5

4. SISTEMA DE COMBUSTIBLE………………………………………………Pág.6

5. SISTEMA DE REFRIGERACIÓN DEL MOTOR……………………… Pág.14

6. SISTEMA DE LUBRICACIÓN DEL MOTOR…………………..……….Pág.17

7. SISTEMA DE AIRE DE ARRANQUE……………………………………… Pág.21

8. COMPROBACIÓN AUTONOMÍA…………………………………………Pág.23

9. VENTILACIÓN CÁMARA DE MÁQUINAS…………………………….. Pág.24

10. ANEXO1 : PLANO CÁMARA DE MÁQUINAS

11. ANEXO 2: PROJECT GUIDE MOTOR WARTSILA 9L26.

Page 4: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 4

1) SELECCIÓN DEL MOTOR.

Se seleccionará el motor del buque en base a la potencia necesaria para

alcanzar una velocidad de 13,5 nudos al 85% del MCR y un margen de mar

del 10% que ha sido calculada en el CUADERNO 6 mediante el programa

Navcad.

Esta potencia mínima requerida es igual a 2760,7 Kw.

Se debe de escoger un motor diésel de 4T acoplado a única línea de ejes tal

y como se especifica en la R.P.A.

Por lo tanto comparemos dos motores del mercado que puedan aportar

como mínimo la potencia mínima requerida.

Se utilizará la Project Guide de los motores WARTSILA Y CATERPILLAR para

obtener información.

En la siguiente tabla se compararán dos motores que cumplen este

requisito:

Motor Dimensiones (mm)

Nº Cilindros

Potencia(Kw) rpm Consumo(g/Kw·h) Peso (t)

WARTSILA 9L26

5507 x 1912 x 3380

9 3060 1000 186 25,1

CATERPILLAR 9M25C

6719 x 2315 x 3913

9 3000 750 184 29,6

Tabla 1: Comparación entre los motores WARTSILA 9L26 Y CATERPILLAR

9M25C.

Se aprecia que el peso del motor WARTSILA 9L26 es inferior al del

CATERPILLAR 9M25C. El consumo es ligeramente superior en el WARTSILA

9L26.

Se decide escoger el motor WARTSILA 9L26 atendiendo a los criterios de

peso y consumo.

Page 5: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 5

2) SELECCIÓN DE LA REDUCTORA Y PTO.

La relación de reducción entre el propulsor y el motor principal es de 7.

Se decide instalar una reductora LAF-5650 de la marca Reintjes, adaptada

para los buques de trabajo con propulsores de paso variable.

Posee un embrague para poder desacoplar el motor y la reductora.

También permite el desacoplamiento entre el propulsor y la reductora.

El rango de potencias oscila entre 500 y 6000 Kw.

El alternador escogido es de la marca STAMFORD modelo HCI634G de 750

kVA de potencia aparente lo que equivale a 600 kW de potencia activa, 50

Hz y un 94,5% de rendimiento.

3) LINEA DE EJES.

Según el reglamento BV,Pt C, Ch 1, Sec 7, [2.2.3], el diámetro mínimo del

eje se calcula con la siguiente expresión:

𝑑𝑝 = 𝐹 · 𝑘 · [𝑃

𝑛 · (1 − 𝑄4)·

560

𝑅𝑚 + 160]

1/3

donde:

k: factor cuyo valor depende de las diferentes disposiciones de los

acoplamientos de la hélice al eje, equivale a 1,26 para hélices de paso

controlable

P: potencia máxima continua en kW del motor = 3060 kW.

n: revoluciones por minuto del eje. Coinciden con las revoluciones por

minuto del propulsor, igual a 143 rpm.

Q: Porcentaje de diámetro del hueco interior del eje para alojar el

mecanismo de accionamiento del cambio de paso en la hélice, en este

caso se toma un valor de 0.4.

F: Factor que depende del tipo de propulsión. En este caso vale 100, por

llevar motor diésel.

Page 6: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 6

Rm: tensión mínima de fluencia. En este caso se utiliza acero con un valor

de 415 N/mm2.

𝑑𝑝 = 100 · 1,26 · [3060

143 · (1 − 0,44)·

560

415 + 160]

1/3

= 353 𝑚𝑚

Se dispone una chumacera de empuje marca Cedervall, autolubricada con

aceite y enfriada mediante agua. Los cojinetes están equipados con un

indicador del nivel de aceite y con un termómetro.

4) SISTEMA DE COMBUSTIBLE.

El motor diésel WARTSILA 9L26 está diseñado exclusivamente para utilizar

fuel oil pesado ( Las características de este tipo de combustible se

encuentran en la project guide del motor) aunque también podría operar

con diésel oil.

Tabla 2: Propiedades del combustible

Page 7: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 7

4.1) Cálculo del consumo de combustible HFO.

El consumo del motor se calcula teniendo en cuenta las horas de

funcionamiento del motor en los días de autonomía, el consumo del

motor facilitado por el catálogo del motor. Se debe calcular el consumo de

combustible para la situación de navegación libre y para el arrastre.

En navegación libre el motor trabajará al 85 % de MCR mientras que en

condición de arrastre el motor trabajará al 60 % de MCR

Se establece un margen de seguridad del 10%:

En navegación libre (20 dias):

𝑉[𝑚3] =𝑀𝐶𝑅[𝑘𝑊] · 𝐶𝑒 [

𝑔𝑘𝑊ℎ

] · [ℎ𝑜𝑟𝑎𝑠] · 1,1

𝜌 [𝑔

𝑚3]= 3060 · 186 ·

480 · 1.1

991 · 103= 303,25 𝑚3

En arrastre (40 dias):

𝑉[𝑚3] =𝑀𝐶𝑅[𝑘𝑊] · 𝐶𝑒 [

𝑔𝑘𝑊ℎ

] · [ℎ𝑜𝑟𝑎𝑠] · 1,1

𝜌 [𝑔

𝑚3]= 1836 · 186 ·

960 · 1.1

991 · 103= 363,9 𝑚3

En total se necesitan 667 m3 en tanques para poder almacenar el HFO.

4.2) Tratamiento del fuel oil pesado.

Debido a la elevada viscosidad del F.O, es fundamental llevar a cabo un

proceso de calentamiento durante su almacenamiento en los tanques.

Esto permitirá que el fuel oil consiga licuarse lo suficiente para ser

bombeado hacia los tanques de uso diario y posteriormente al motor

principal.

Este proceso consistirá en un intercambio de calor entre vapor y el fuel

almacenado.

La generación de vapor se producirá en un intercambiador de calor a

partir de agua de mar que se calentará gracias al efecto de los gases de

exhaustación del motor principal.

Page 8: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 8

4.2.1) Tanques de sedimentación.

Estos tanques se dedican a almacenar combustibles pesados que

necesitan un proceso de decantación como el HFO.

Los tanque de gas-oil no los llevarán puesto que no es un combustible tan

pesado.

Se instalan dos tanques, uno a cada costado del buque.

La expresión con la que calcularemos la capacidad de dichos tanques es:

𝑉[𝑚3] =𝑀𝐶𝑅[𝑘𝑊] · 𝐶𝑒 [

𝑔𝑘𝑊ℎ

] · 𝐴[ℎ𝑜𝑟𝑎𝑠]

𝜌 [𝑔

𝑚3]= 3060 · 186 ·

12

991 · 103= 6,84 𝑚3

Cada tanque tendrá una capacidad de 6,84 m3.

Estos tanques se dimensionan para suministrar la cantidad de fuel

necesaria en 12 horas cuando están llenos al máximo.

4.2.2) Tanques de uso diarios de fuel oil.

Según el fabricante, se dispondrán de dos tanques de uso diario de HFO

que suministraran combustible al motor propulsor después de su

posterior purificación.

Para calcular la capacidad de cada tanque utilizaremos la expresión

utilizada anteriormente, con la diferencia de que la autonomía establecida

para estos tanques es de 8 h. Se dimensionará para albergar combustible

cada 12 h.

𝑉[𝑚3] =𝑀𝐶𝑅[𝑘𝑊] · 𝐶𝑒 [

𝑔𝑘𝑊ℎ

] · 𝐴[ℎ𝑜𝑟𝑎𝑠]

𝜌 [𝑔

𝑚3]= 3060 · 186 ·

12

991 · 103= 6,89 𝑚3

Page 9: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 9

4.3.3) Tanques de uso diario de gas oil.

Se dispondrá de dos tanques de uso diario de MDO. Constituyen el último

proceso de almacenamiento de Gas Oil antes de su entrada en los

generadores auxiliares.

[𝑚3] =𝑀𝐶𝑅[𝑘𝑊] · 𝐶𝑒 [

𝑔𝑘𝑊ℎ

] · 𝐴[ℎ𝑜𝑟𝑎𝑠]

𝜌 [𝑔

𝑚3]= 3060 · 184 ·

8

900 · 103= 5,01 𝑚3

4.2.3) Tanque de lodos.

De acuerdo con la Regla 17 del ANEXO I del MARPOL “Todos los buques

cuyo arqueo bruto sea igual o superior a 400 toneladas tendrán un tanque

o tanques de capacidad suficiente, teniendo en cuenta el tipo de

maquinaria con que estén equipados y la duración de sus viajes, para

recibir los residuos (fangos) que no sea posible eliminar de otro modo”.

Entendiendo como fangos “los resultantes de la purificación de los

combustibles y aceites lubricantes y de las fugas de hidrocarburos que se

producen en los espacios de máquinas.”

La capacidad de dicho tanque de acuerdo con el citado convenio es el

máximo de:

V=2 m3

V=0,5 ·K1·C·D donde K1 es una constante que depende del

combustible utilizado, C es el consumo diario en toneladas y D es la

autonomía entre puertos.

𝑉 = 0,5 · 0,01 ·186 · 0,85 · 3060 · 24

106= 1 𝑚3

Page 10: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 10

4.2.4) Separadora.

El caudal del separador puede calcularse con la siguiente formula.

𝑄 = 𝑃 · 𝑏 ·24

𝜌 · 𝑡=

3060 · 186 · 1,15 · 24

991 · 23,5= 674,5 𝑙/ℎ

P = M.C.R. del motor [kW].

b = consumo específico del motor más un 15 % de margen de seguridad

[g/kWh].

ρ = densidad del combustible en [kg/m3].

t = tiempo de separación [h] (normalmente 23 h o 23.5 h).

4.2.5) Bomba de alimentación de la separadora.

El caudal se corresponde con el de la separadora es decir, 674,5 l/h y la

presión de descarga se establece en 5 bar según la guía del motor.

Se instalaran dos bombas de 5 bar.

Page 11: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 11

Se escogen dos bombas de la marca Hasa serie FUCSIA modelo FT-8 de 0,9

kw.

4.2.6) Precalentador de la separadora.

Como ya habíamos tratado, para eliminar las impurezas del combustible,

se precisa de un precalentador cuya potencia se puede calcular con la

siguiente expresión:

𝑃 =𝑄 · ∆𝑡

1700=

674,5 · 48

1700= 18,53 𝑘𝑊

P = potencia del calentador [kW].

Q = capacidad de la bomba de alimentación del separador [l/h].

ΔT = aumento de temperatura en el intercambiador [°C]. Se utiliza

habitualmente un aumento de 48 ºC para fuel oil pesado.

Page 12: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 12

4.2.7) Bomba de trasiego de combustible.

Estas bombas deben estar dimensionadas para la calidad real del

combustible y el rendimiento óptimo del separador.

Se utilizarán 2 bombas de 4 bares de presión.

El cálculo del caudal se realizará con la siguiente expresión.

𝑄 =𝑉𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡𝑎𝑐𝑖ó𝑛𝐻𝐹𝑂

2=

6,84

2= 3,42 𝑚3/ℎ

Se escogen dos bombas de la marca Hasa serie ROMA modelo 5,5 M de

0,96 kw.

4.3) Cálculo del consumo de combustible MDO.

Se escoge, un generador de la marca VOLVO PENTA, modelo D13-900

capaz de ofrecer 827 kVa a 50 Hz. El consumo del motor es de 208 h/Kw·h.

(cuaderno 11: Balance eléctrico).

La densidad del diesel oil es de 900 kg/m3.

La capacidad necesaria para almacenar el D.O en los tanques será.

Se escogen 40 días de los 60 de autonomía, pues los generadores solo

serán utilizados en dos de las 5 situaciones de carga explicados en el

cuaderno 11.

𝐶𝐷𝑂 =208

𝑔𝐾𝑤 · ℎ · (660 · 0,85 ) · 1 · (40 𝑑𝑖𝑎𝑠 · 24 ℎ)

900= 124 𝑚3

En total se necesitan poder almacenar 124,5 m3 de MDO en los dos

tanques de MDO dispuestos a proa del doble fondo.

Page 13: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 13

4.4 Sistema de alimentación del combustible.

El sistema comprende los siguientes elementos:

Bombas de combustible

Estas bombas impulsan el combustible desde el tanque de uso diario hasta

el motor principal.

Se requiere un caudal de 3,7 m3/h y una presión de 7 bar (700 kPa) según

la Project Guide del motor.

Se instalan dos bombas de 2 m3/h y una presión de 7 bar.

Se eligen dos bombas de la marca Hasa modelo NIZA-66T de 0,75 kw.

Válvulas de inyección.

Válvula antirretorno.

Filtro de combustible.

Imagen 1: Sistema interno de alimentación de combustible.

Page 14: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 14

5) SISTEMA DE REFRIGERACIÓN

En este apartado se tratara la refrigeración de motores, lo cual, permitirá

la constante renovación de los ciclos de trabajo garantizando el buen

funcionamiento de los distintos componentes.

Según la guía del motor, el agua de refrigeración ha de poseer unas

propiedades óptimas en términos de pH, ácidos clorhídricos y sulfatos,

para lo cual se dedicará una parte del agua dulce generada a bordo a tal

efecto.

Para arrancar el motor con fuel pesado, el sistema debe ser precalentado

a una temperatura lo más cercana posible a la de funcionamiento (70ºC).

No obstante, se intentará siempre el arranque y parada del motor con gas

oil procedente del sistema de combustible de los auxiliares.

5.1 Refrigeración interna del motor.

Este sistema se divide en dos circuitos, uno de baja temperatura (LT) y

uno de alta temperatura (HT)

Circuito LT: incluye la refrigeración del aire de admisión y del aceite

lubricante.

Circuito HT: incluye la refrigeración de los cilindros y de al

turbosoplante.

Page 15: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 15

Imagen 2: Sistema interno de agua de refrigeración.

5.2 Refrigeración externa del motor.

5.2.1. Bomba de agua dulce.

La Project Guide del motor Wartsila 9L26 exige el cumplimiento de los

siguientes caudales para ambos circuitos (HT,LT).

Page 16: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 16

Al mismo tiempo se exige demandar una presión mínima de 270 kPa, 2,7

bar.

Por ello, la capacidad de cada una de estas bombas será de 50 m3/h y 3

bares de presión, cumpliendo con la guía del motor.

Se dispondrán de 2 bombas por circuito.

Se escogen 4 bombas de la marca HASA, modelo MO50-200 B de 11 kw.

5.2.2 Bomba de agua de mar.

Según el catálogo, para el motor de 9L26, el flujo de la bomba debe ser al

menos de 120 m3/h. La presión de la bomba será de 25 m.c.a., para poder

vencer las pérdidas en la admisión y tuberías ,y descargar al mar con

suficiente presión. Se instalan dos bombas (una de reserva),

Se escogen dos bombas de la marca HASA modelo MO65-200 de 22 kw.

Page 17: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 17

5.2.3 Precalentador.

La energía requerida para el precalentamiento de los circuitos LT y HT es

según la Project guide igual a 3 kW/cilindro, para conseguir una

temperatura en torno a los 70ºC, por lo que se dispone un calentador

eléctrico con una potencia de 20 kW.

5.2.4 Bombas para el precalentamiento

Como ya se explicó anteriormente los motores que son arrancados con

fuel requieren un precalentamiento del agua en los circuitos de alta y baja

temperatura. La capacidad de la bomba según la Project Guide será de

0.45 m3/h por cilindro, (4.05 m3/h), con una presión absoluta de descarga

de 0.8 bares.

Se escoge 1 bomba de la marca HASA, modelo APM-75 de 0,6 kw.

6) SISTEMA DE LUBRICACIÓN.

6.1 Sistema interno de lubricación.

El sistema interno de lubricación cuenta fundamentalmente con los

siguientes elementos:

Bomba de lubricación:

Se dimensiona la bomba para cumplir con el caudal mínimo y la presión

que indica que indica la guía del motor.

Page 18: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 18

El caudal de esta bomba será de 60 m3/h mientras que la presión a la

entrada del motor será de 4,5 bares. Se instalarán dos bombas de

lubricación para el motor principal.

La altura de succión no debe pasar de los 5 m.

Se escogen dos bombas de la marca HASA, de modelo BMO2-50/200-15

de 11 kw.

Bomba de aceite de prelubricación.

Su función es cebar el sistema de aceite lubricante del motor antes de

arrancar, cuando el motor ha estado fuera de servicio largo tiempo.

Se instalarán 2 bombas de prelubricación con un caudal de 8 m3/h y una

presión de 0,7 bar.

Se escogen dos bombas de la marca HASA, VIX-4/3 de 0,55 kw.

Page 19: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 19

6.2 Sistema externo de lubricación.

Este sistema será el encargado de limpiar el aceite desde su

almacenamiento en los tanques depósito hasta su bombeo hasta el

interior de los motores. Lo componen dos elementos:

Separador.

El separador debe estar diseñado para un centrifugado contínuo.

Según el fabricante, podemos calcular el caudal que pasa a través del

separador con la siguiente expresión basada en un número de

renovaciones de aceite de 5 cada 23 horas:

𝑉 =1,35 · 𝑃(𝑘𝑊) · 𝑛

𝑡=

1,35 · 3060 · 5

23= 898 𝑙/ℎ

La temperatura del centrifugado estará entre 85ºC y 95ºC. La presión será

de 50 m.c.a a la entrada del separador y de 120 m.c.a a la salida, por lo

que la altura hasta la bomba será de 70 m.c.a. El rendimiento del

separador será de 0.7, por lo que la potencia del mismo será de:

𝑃𝑜𝑡 = 898 · 70 · 9,81 ·0,95

3600 · 0,7= 0,5 𝑘𝑊.

Page 20: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 20

Bomba del separador:

Se instalan dos bombas, una de ellas de reserva, accionadas por motores

eléctricos, que impulsarán el lubricante desde el “tanque aceite sistema”

hacia el separador. La bomba debe seleccionarse para que coincida con el

rendimiento recomendado del separador. Normalmente la bomba es

suministrada y emparejada al separador por el fabricante del separador.

El caudal será el mismo que el del separador (Q=1 m3/h) y la presión de 5

bar.

Se escogen dos bombas de la marca HASA, modelo HMI 2/60 M de 1,1

kw.

Tanque de aguas aceitosas.

Los residuos procedentes del separador se envían a este tanque tiene una

capacidad de 8 m3.

Tanque de aceite.

Según el fabricante, el volumen de aceite del tanque será de 1.25 litros

por kW, con un nivel de llenado del 80%. Por lo tanto el volumen mínimo

del tanque debe ser de:

𝑉 =1,25 · 3060 · 1000

0,75= 5,1 𝑚3

Page 21: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 21

7) SISTEMA DE AIRE DE ARRANQUE.

El aire comprimido se utiliza en el arranque de la mayoría de los motores

marinos. El funcionamiento consiste en la inyección de aire en los cilindros

a través de las válvulas de aire de arranque situadas en la parte superior

de estos. El número mínimo de arrancadas condiciona el diseño del

sistema, éste viene impuesto por la sociedad de clasificación Bureau

Veritas que fija un número mínimo de arrancadas de 6.

Para obtener el número y la capacidad de las botellas que se deben

instalar se fija una presión nominal máxima de 30 bar (catálogo del motor)

y una presión mínima para que se produzca una arrancada segura de 18

bares a una temperatura de 20ºC. También se establece un consumo de

aire por arrancada a 20ºC de 2 N·m3.

La capacidad de aire necesaria se calcula con la siguiente expresión

obtenida del catálogo del motor.

𝑉𝑅 =𝑃𝐸 · 𝑉𝐸 · 𝑛

𝑃𝑅𝑚𝑎𝑥 − 𝑃𝑅𝑚𝑖𝑛=

0,1 · 2 · 6

3 − 1,8= 1 𝑚3

Donde:

VR: capacidad necesaria (m3)

PE: presión barométrica normal = 0.1 MPa

VE: consumo aire inicial (N·m3) = 2.0

n: número de arrancadas según la Bureau Veritas = 6

PRmáx: presión máxima aire = 3 MPa

PRmín: presión mínima aire = 1.8 MPa

Para ver los volúmenes standard de las botellas recomendados para poder

dimensionar este sistema, se recurre a la guía del motor.

Se instalan dos botellas con una capacidad de 750 litros atendiendo al

criterio de peso y volumen necesario. Por tanto la capacidad total de aire

comprimido a bordo será de 1500 litros.

Page 22: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 22

7.1) Compresor de aire de arranque.

Para poder llenar las botellas de aire de arranque será necesario instalar

uno o más compresores.

Atendiendo a la sociedad de clasificación Bureau Veritas Part C

(Machinery, Electricity, Automation and Fire Protection), Ch 01, Sec 10,

[17.3.2]: el tiempo máximo para llenar las botellas de la condición de

mínima presión (1,8 bar) a la máxima presión será de 30 minutos.

La capacidad unitaria será de 1000 l/h a una presión de descarga de 30

bares. La presión a la entrada del compresor es aproximadamente igual a

1.01 bares, por lo que el volumen de entrada de aire en el compresor se

calcula con la siguiente expresión, con un margen del 10%.

Page 23: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 23

𝑄𝐸 = 𝑄𝑆 · (𝑃𝑆/ 𝑃𝐸)1

1,4 = 1000 · (30

1,01)

11,4

· 1,1 = 12400 𝑙/ℎ

Se instalan dos compresores de la marca Util Air modelo :PD1.5-50-1 con

una capacidad de 12500 l/h, uno de los cuales será de respeto.

8) COMPROBACIÓN AUTONOMÍA.

Es necesario poder almacenar los 667 m^3 de HFO en los tanques de

doble fondo para poder asegurar una autonomía de 60 días.

También hay que asegurar que es posible almacenar los 91,5 m^3 de MDO

en los dos tanques de Gas-oil situados a proa del doble fondo.

En la siguiente tabla se establecen las dimensiones de los tanques para

asegurar que es posible almacenar todo el combustible requerido para

cumplir la autonomía.

TANQUE L B D V (m3)

Fuel-oil nº1 2,9 6 6,1 106,14

Fuel-oil nº2 2,935 6,5 6,1 116,37

Fuel-oil nº3 5,280 5,5 1,3 37,75

Fuel-oil nº4 5,294 6 1,3 41,29

Fuel-oil nº5 4,698 6 1,3 36,64

Fuel-oil nº6 4,698 6 1,3 36,64

Fuel-oil nº7 6,353 5,2 2 66,07

Fuel-oil nº8 2,9 6 6,1 106,14

Fuel-oil nº9 2,935 6,5 6,1 116,37

Fuel-oil nº10 5,280 5,5 1,3 37,75

Fuel-oil nº11 5,294 6 1,3 41,29

Fuel-oil nº12 4,698 6 1,3 36,64

Fuel-oil nº13 4,698 6 1,3 36,64

Fuel-oil nº14 6,353 5,2 2 66,07

MDO nº1 2,929 4,5 6 79,08

MDO nº2 2,929 4,5 6 79,08

Page 24: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 24

𝑉𝑡𝑎𝑛𝑞𝑢𝑒𝑠𝐻𝐹𝑂 = 881,8 𝑚3

𝑉𝐻𝐹𝑂 = 667 𝑡

𝑉𝑡𝑎𝑛𝑞𝑢𝑒𝑠𝑀𝐷𝑂 = 158,16 𝑚3

𝑉𝑀𝐷𝑂 = 124 𝑡

Se puede apreciar que a pesar de las densidades del fuel oil (0,991 t/m3) y

diésel oil (0,900 t/m3) el espacio en tanques es más que suficiente.

9) VENTILACIÓN DE CÁMARA DE MÁQUINAS.

La ventilación de cámara de máquinas se realizará de acuerdo a la norma

UNE-EN-ISO 8861.

El flujo de aire necesario para la ventilación en cámara de máquinas viene

dado por el valor mayor de las siguientes expresiones:

𝑄 = 𝑞𝑐 + 𝑞ℎ

𝑄 = 1,5 · 𝑞𝑐

Donde:

Q: Flujo de aire necesario para la ventilación.

qc: Flujo de aire necesario para la combustión.

qh: Flujo de aire necesario para la evacuación del calor.

Además qc viene dado por la siguiente expresión:

Qc= qdp + qdg

Donde:

qdp: Flujo de aire para la combustión del motor principal (m3/s7

Page 25: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 25

qdg: Flujo de aire para la combustión de los motores auxiliares

(m3/s).

𝑞𝑑𝑝 =𝑃𝑑𝑝 · 𝑚𝑎𝑑

𝜌

Donde:

Pdp: Potencia del motor propulsor, 3060 kW.

Mad: Aire necesario para la combustión del motor principal. (0,002

kg/Kw·seg para motores de 4T.

ρ: 1,13 kg/m3

𝑞𝑑𝑝 =𝑃𝑑𝑝 · 𝑚𝑎𝑑

𝜌=

3060 · 0,002

1,13= 5,41 𝑚3/𝑠

𝑞𝑑𝑔 =𝑃𝑑𝑔 · 𝑚𝑎𝑑

𝜌=

620 · 0,002

1,13= 1,09 𝑚3/𝑠

Donde:

Pdg: Potencia de los motores auxiliares. (2 motores de 310 Kw).

mad: Aire necesario para la combustión de los motores principales,

0,002 kg/kW·seg para motores de 4T.

ρ: 1,13 kg/m3

Qc= qdp + qdg= 5,41 + 1,09 = 6,5 m3/s.

Ahora falta obtener qh.

𝑞ℎ =𝜙𝑑𝑝 + 𝜙𝑑𝑔 + 𝜙𝑔 + 𝜙𝑒𝑙 + 𝜙𝑒𝑝 + 𝜙0

𝜌 · 𝑐 · 𝛥𝑇− 0,4 · (𝑞𝑑𝑝 + 𝑞𝑑𝑔)

Page 26: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 26

φdp: Emisión de calor del motor principal, 109 kW (Fuente: tabla 7.1

Norma).

φdg: Emisión de calor de los motores auxiliares 43 kW (Fuente: tabla

7.1 Norma)

φg: Emisión de calor del generador eléctrico.( emisión de calor de

los 2 alternadores 320 kw cada uno).

Øg = P𝑔 · (1 −ŋ

100) = 640 · (1 −

0,94

100) = 633,9 𝑘𝑊.

φel: 20% de la máxima potencia eléctrica.(660· 0,2 =132 Kw.).

Φep: Emisión de calor de los conductos de exhaustación. (25 kw)

Φ0: Emisión de calor de otros componentes. Se toma el 50% de φdp,

54,5 kW.

Ρ: 1,13 kg/m3 .

c: 1,01 kJ/kg·K.

ΔT: 12,5 K.

𝑞ℎ =109 + 43 + 633,9 + 132 + 25 + 54,5

1,13 · 1,01 · 12,5− 0,4 · (5,41 + 1,09) = 66,75

𝑚3

𝑠

Ahora seleccionamos el mayor valor del flujo de aire para diseñar la

ventilación.

𝑄 = 𝑞𝑐 + 𝑞ℎ = 6,5 + 66,75 = 73,25𝑚3

𝑠

𝑄 = 1,5 · 𝑞𝑐 = 1,5 · 6,5 = 9,75𝑚3

𝑠

Se escoge el valor 73,25 m3/s.

A partir de este flujo necesario para la ventilación, considerando una

presión de aire impulsado de 294 Pa, y un rendimiento de los ventiladores

de 0.40, se obtiene la potencia eléctrica necesaria:

𝑃𝑜𝑡 = 𝑄 ·𝑃

ŋ= 73,25 ·

294

0,4= 53,84 𝑘𝑊.

Se instalan dos ventiladores de 30 kW y uno de respeto de igual potencia.

Page 27: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 27

ANEXO 1

PLANO

CÁMARA DE

MÁQUINAS

Page 28: PROYECTO FIN DE GRADO - ruc.udc.es
AutoCAD SHX Text
11
AutoCAD SHX Text
28
AutoCAD SHX Text
29
AutoCAD SHX Text
30
AutoCAD SHX Text
31
AutoCAD SHX Text
32
AutoCAD SHX Text
35
AutoCAD SHX Text
36
AutoCAD SHX Text
40
AutoCAD SHX Text
41
AutoCAD SHX Text
12
AutoCAD SHX Text
13
AutoCAD SHX Text
14
AutoCAD SHX Text
16
AutoCAD SHX Text
17
AutoCAD SHX Text
18
AutoCAD SHX Text
20
AutoCAD SHX Text
23
AutoCAD SHX Text
25
AutoCAD SHX Text
26
AutoCAD SHX Text
27
AutoCAD SHX Text
13
AutoCAD SHX Text
16
AutoCAD SHX Text
32
AutoCAD SHX Text
17
AutoCAD SHX Text
24
AutoCAD SHX Text
34
AutoCAD SHX Text
35
AutoCAD SHX Text
19
AutoCAD SHX Text
33
AutoCAD SHX Text
23
AutoCAD SHX Text
28
AutoCAD SHX Text
32
AutoCAD SHX Text
32
AutoCAD SHX Text
42
AutoCAD SHX Text
39
AutoCAD SHX Text
41
AutoCAD SHX Text
38
AutoCAD SHX Text
37
AutoCAD SHX Text
34
AutoCAD SHX Text
PROYECTO:
AutoCAD SHX Text
UNIVERSIDADE DA CORUNA
AutoCAD SHX Text
ESCALA:
AutoCAD SHX Text
HOJA:
AutoCAD SHX Text
3A
AutoCAD SHX Text
1:200
AutoCAD SHX Text
EPS FERROL
AutoCAD SHX Text
ARRASTRERO CONGELADOR 1200 M3
AutoCAD SHX Text
GRADO EN PROPULSION Y
AutoCAD SHX Text
DISPOSICIÓN CÁMARA DE MÁQUINAS
AutoCAD SHX Text
SERVICIOS DEL BUQUE
AutoCAD SHX Text
A
AutoCAD SHX Text
B
AutoCAD SHX Text
C
AutoCAD SHX Text
D
AutoCAD SHX Text
E
AutoCAD SHX Text
F
AutoCAD SHX Text
G
AutoCAD SHX Text
1
AutoCAD SHX Text
2
AutoCAD SHX Text
3
AutoCAD SHX Text
4
AutoCAD SHX Text
5
AutoCAD SHX Text
6
AutoCAD SHX Text
G
AutoCAD SHX Text
F
AutoCAD SHX Text
E
AutoCAD SHX Text
D
AutoCAD SHX Text
C
AutoCAD SHX Text
B
AutoCAD SHX Text
A
AutoCAD SHX Text
6
AutoCAD SHX Text
5
AutoCAD SHX Text
4
AutoCAD SHX Text
3
AutoCAD SHX Text
2
AutoCAD SHX Text
1
AutoCAD SHX Text
2
AutoCAD SHX Text
Bombas de combustible
AutoCAD SHX Text
2
AutoCAD SHX Text
Bombas lastre y achique
AutoCAD SHX Text
2
AutoCAD SHX Text
12
AutoCAD SHX Text
13
AutoCAD SHX Text
14
AutoCAD SHX Text
15
AutoCAD SHX Text
16
AutoCAD SHX Text
17
AutoCAD SHX Text
18
AutoCAD SHX Text
19
AutoCAD SHX Text
20
AutoCAD SHX Text
21
AutoCAD SHX Text
22
AutoCAD SHX Text
23
AutoCAD SHX Text
24
AutoCAD SHX Text
25
AutoCAD SHX Text
26
AutoCAD SHX Text
27
AutoCAD SHX Text
28
AutoCAD SHX Text
29
AutoCAD SHX Text
30
AutoCAD SHX Text
31
AutoCAD SHX Text
32
AutoCAD SHX Text
33
AutoCAD SHX Text
34
AutoCAD SHX Text
35
AutoCAD SHX Text
36
AutoCAD SHX Text
37
AutoCAD SHX Text
38
AutoCAD SHX Text
39
AutoCAD SHX Text
40
AutoCAD SHX Text
41
AutoCAD SHX Text
42
AutoCAD SHX Text
EQUIPOS
AutoCAD SHX Text
Uds
AutoCAD SHX Text
Motor
AutoCAD SHX Text
AutoCAD SHX Text
9
AutoCAD SHX Text
11
AutoCAD SHX Text
10
AutoCAD SHX Text
9
AutoCAD SHX Text
8
AutoCAD SHX Text
7
AutoCAD SHX Text
6
AutoCAD SHX Text
5
AutoCAD SHX Text
4
AutoCAD SHX Text
3
AutoCAD SHX Text
2
AutoCAD SHX Text
1
AutoCAD SHX Text
2
Page 29: PROYECTO FIN DE GRADO - ruc.udc.es

Arrastrero congelador 1200 m3

ALEJANDRO MARIÑO GONZÁLEZ 28

ANEXO 2

PROJECT

GUIDE

MOTOR

Page 30: PROYECTO FIN DE GRADO - ruc.udc.es

Wärtsilä enhances the business of its customers by providing them with

complete lifecycle power solutions. When creating better and environmentally

compatible technologies, Wärtsilä focuses on the marine and energy markets

with products and solutions as well as services. Through innovative products

and services, Wärtsilä sets out to be the most valued business partner of

all its customers. This is achieved by the dedication of more than 14,000

professionals manning 130 Wärtsilä locations in close to 70 countries around

the world.

WÄRTSILÄ® is a registered trademark. Copyright © 2007 Wärtsilä Corporation.

PROJECT GUIDE

RT

SILÄ

26 – PR

OJE

CT

GU

IDE

06.2

007

/ B

ock´

s O

ffice

/ M

ultip

rint

Page 31: PROYECTO FIN DE GRADO - ruc.udc.es

Lib Version: a1460

Page 32: PROYECTO FIN DE GRADO - ruc.udc.es

IntroductionThis Project Guide provides data and system proposals for the early design phase of marine engine install-ations. For contracted projects specific instructions for planning the installation are always delivered. Anydata and information herein is subject to revision without notice. This 5/2007 issue replaces all previousissues of the Wärtsilä 26 Project Guides.

UpdatesPublishedIssue

Corrected graphic details before print the guide to paper27.06.20075/2007

Exhaust emission chapter and list of pipe connections updated.12.06.20074/2007

Cooling water chapter and technical data corrected (plus minor corrections).15.05.20073/2007

Corrected publishing errors.02.05.20072/2007

Numerous updates throughout the project guide.24.04.20071/2007

Wärtsilä Ship Power

4-stroke, Business Support

Trieste, June 2007

THIS PUBLICATION IS DESIGNED TO PROVIDE AS ACCURATE AND AUTHORITATIVE INFORMATION REGARDING THE SUBJECTS COVERED ASWAS AVAILABLE AT THE TIME OF WRITING. HOWEVER, THE PUBLICATION DEALS WITH COMPLICATED TECHNICAL MATTERS AND THE DESIGNOF THE SUBJECT AND PRODUCTS IS SUBJECT TO REGULAR IMPROVEMENTS, MODIFICATIONS AND CHANGES. CONSEQUENTLY, THE PUB-LISHER AND COPYRIGHT OWNER OF THIS PUBLICATION CANNOT TAKE ANY RESPONSIBILITY OR LIABILITY FOR ANY ERRORS OR OMISSIONSIN THIS PUBLICATION OR FOR DISCREPANCIES ARISING FROM THE FEATURES OF ANY ACTUAL ITEM IN THE RESPECTIVE PRODUCT BEINGDIFFERENT FROM THOSE SHOWN IN THIS PUBLICATION. THE PUBLISHER AND COPYRIGHT OWNER SHALL NOT BE LIABLE UNDER ANY CIR-CUMSTANCES, FOR ANY CONSEQUENTIAL, SPECIAL, CONTINGENT, OR INCIDENTAL DAMAGES OR INJURY, FINANCIAL OR OTHERWISE,SUFFERED BY ANY PART ARISING OUT OF, CONNECTED WITH, OR RESULTING FROM THE USE OF THIS PUBLICATION OR THE INFORMATIONCONTAINED THEREIN.

COPYRIGHT © 2007 BY WÄRTSILÄ ITALY S.p.A.

ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR COPIED IN ANY FORM OR BY ANY MEANS, WITHOUT PRIORWRITTEN PERMISSION OF THE COPYRIGHT OWNER.

Marine Project Guide W26 - 5/2007 iii

Wärtsilä 26 - Project guideIntroduction

Page 33: PROYECTO FIN DE GRADO - ruc.udc.es

Table of Contents

11. General data and outputs ............................................................................................................................11.1 Technical main data .............................................................................................................................11.2 Maximum continuous output ................................................................................................................21.3 Reference conditions ...........................................................................................................................31.4 Principal dimensions and weights ........................................................................................................

62. Operating ranges ..........................................................................................................................................62.1 Engine operating range ........................................................................................................................82.2 Loading capacity ..................................................................................................................................

112.3 Low air temperature ............................................................................................................................112.4 Operation at low load and idling ...........................................................................................................

123. Technical data ...............................................................................................................................................123.1 Introduction ..........................................................................................................................................133.2 Technical data tables ............................................................................................................................

244. Description of the engine .............................................................................................................................244.1 Definitions ............................................................................................................................................254.2 Main engine components .....................................................................................................................284.3 Cross sections and cut outs .................................................................................................................

305. Piping design, treatment and installation ..................................................................................................305.1 General ................................................................................................................................................305.2 Pipe dimensions ...................................................................................................................................315.3 Trace heating .......................................................................................................................................315.4 Operating and design pressure ............................................................................................................315.5 Pipe class .............................................................................................................................................325.6 Insulation ..............................................................................................................................................325.7 Local gauges ........................................................................................................................................325.8 Cleaning procedures ............................................................................................................................335.9 Flexible pipe connections .....................................................................................................................345.10 Clamping of pipes ................................................................................................................................

366. Fuel oil system ..............................................................................................................................................366.1 Acceptable fuel characteristics ............................................................................................................396.2 Internal fuel oil system .........................................................................................................................416.3 External fuel oil system ........................................................................................................................

577. Lubricating oil system ..................................................................................................................................577.1 Lubricating oil requirements .................................................................................................................587.2 Internal lubricating oil system ..............................................................................................................607.3 External lubricating oil system .............................................................................................................657.4 Crankcase ventilation system ..............................................................................................................657.5 Flushing instructions ............................................................................................................................

678. Compressed air system ...............................................................................................................................678.1 Instrument air quality ............................................................................................................................678.2 Internal compressed air system ...........................................................................................................708.3 External compressed air system ..........................................................................................................

749. Cooling water system ...................................................................................................................................749.1 Water quality .......................................................................................................................................759.2 Internal cooling water system ..............................................................................................................809.3 External cooling water system .............................................................................................................

9010. Combustion air system ................................................................................................................................9010.1 Engine room ventilation .......................................................................................................................9110.2 Combustion air system design .............................................................................................................

iv Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guideTable of Contents

Page 34: PROYECTO FIN DE GRADO - ruc.udc.es

9210.3 Combustion air for engines ..................................................................................................................

9311. Exhaust gas system .....................................................................................................................................9311.1 Internal exhaust gas system ................................................................................................................9611.2 Exhaust gas outlet ...............................................................................................................................9711.3 External exhaust gas system ...............................................................................................................

10112. Turbocharger cleaning .................................................................................................................................10112.1 Turbine cleaning system ......................................................................................................................10212.2 Compressor cleaning system ...............................................................................................................

10313. Exhaust emissions .......................................................................................................................................10313.1 General ................................................................................................................................................10313.2 Diesel engine exhaust components .....................................................................................................10413.3 Marine exhaust emissions legislation ..................................................................................................10513.4 Methods to reduce exhaust emissions .................................................................................................

10714. Automation system .......................................................................................................................................10714.1 UNIC C1 ..............................................................................................................................................11114.2 UNIC C2 ...............................................................................................................................................11614.3 Functions .............................................................................................................................................11714.4 Alarm and monitoring signals ..............................................................................................................11914.5 Electrical consumers ............................................................................................................................

12115. Foundation ....................................................................................................................................................12115.1 General ................................................................................................................................................12115.2 Steel structure design ..........................................................................................................................12815.3 Mounting of generating sets .................................................................................................................

13016. Vibration and noise ......................................................................................................................................13016.1 General ................................................................................................................................................13016.2 External forces and couples .................................................................................................................13116.3 Torque variations ..................................................................................................................................13116.4 Mass moments of inertia ......................................................................................................................13116.5 Noise levels ..........................................................................................................................................

13417. Power transmission ......................................................................................................................................13417.1 Flexible coupling ..................................................................................................................................13417.2 Clutch ...................................................................................................................................................13517.3 Shaft locking device .............................................................................................................................13517.4 Power-take-off from the free end ..........................................................................................................13717.5 Input data for torsional vibration calculations .......................................................................................13817.6 Turning gear .........................................................................................................................................

13918. Engine room layout ......................................................................................................................................13918.1 Crankshaft distances ...........................................................................................................................14018.2 Four-engine arrangement ....................................................................................................................14218.3 Space requirements for maintenance ..................................................................................................14218.4 Handling and storage of spare parts and tools ....................................................................................14218.5 Required deck area for service work ...................................................................................................

14719. Transport dimensions and weights ............................................................................................................14719.1 Lifting of engines ..................................................................................................................................15019.2 Dimensions and weights of engine parts .............................................................................................15219.3 Overhaul intervals and expected life times ...........................................................................................

15420. Project guide attachments ...........................................................................................................................

15521. ANNEX ...........................................................................................................................................................15521.1 Unit conversion tables ..........................................................................................................................15621.2 Collection of drawing symbols used in drawings ..................................................................................

Marine Project Guide W26 - 5/2007 v

Wärtsilä 26 - Project guideTable of Contents

Page 35: PROYECTO FIN DE GRADO - ruc.udc.es

vi Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide

This page intentionally left blank

Page 36: PROYECTO FIN DE GRADO - ruc.udc.es

1. General data and outputs

1.1 Technical main dataThe Wärtsilä 26 is a 4-stroke, non-reversible, turbocharged and intercooled diesel engine with direct fuelinjection.

260 mmCylinder bore

320 mmStroke

17,0 l/cylPiston displacement

2 inlet valves and 2 exhaust valvesNumber of valves

6, 8, 9 in-line; 12, 16 VCylinder configuration

55°V angle

Clockwise, counter-clockwise on requestDirection of rotation

1.2 Maximum continuous outputThe mean effective pressure pe can be calculated as follows:

where:

Mean effective pressure [MPa]pe =

Output per cylinder [kW/cyl]P =

Operating cycle (=2 for 4-stroke)c =

Cylinder bore [mm]D =

Engine speed [rpm]n =

Length of piston stroke [mm]S =

Table 1.2 Rating table for main and auxiliary engines

900 rpm, 60 Hz

GeneratorEngineEngine type

[kWe][KVA][kW]

1882235219506L26

2509313626008L26

2823352829259L26

37644704390012V26

50186273520016V26

1000 rpm, 50 Hz

GeneratorEngineEngine type

[kWe][KVA][kW]

1969246120406L26

2625328127208L26

2953369130609L26

39374922408012V26

52506562544016V26

Marine Project Guide W26 - 5/2007 1

Wärtsilä 26 - Project guide1. General data and outputs

Page 37: PROYECTO FIN DE GRADO - ruc.udc.es

The generator outputs are calculated for an efficiency of 96.5% and a power factor of 0.8. The maximumfuel rack position is mechanically limited to 110% of the continuous output for engines driving generators.

1.3 Reference conditionsThe output is available up to a charge air coolant temperature of max. 38°C and an air temperature of max.45°C. For higher temperatures, the output has to be reduced according to the formula stated in ISO 3046-1:2002 (E).

The specific fuel oil consumption is stated in the chapter Technical data. The stated specific fuel oil con-sumption applies to engines without engine driven pumps, operating in ambient conditions according toISO 15550:2002 (E). The ISO standard reference conditions are:

100 kPatotal barometric pressure

25°Cair temperature

30%relative humidity

25°Ccharge air coolant temperature

Correction factors for the fuel oil consumption in other ambient conditions are given in standard ISO 3046-1:2002.

2 Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide1. General data and outputs

Page 38: PROYECTO FIN DE GRADO - ruc.udc.es

1.4 Principal dimensions and weightsFigure 1.1 W26 in line engines (DAAE034755a)

Figure 1.2 W26 V engines (DAAE034757a)

Marine Project Guide W26 - 5/2007 3

Wärtsilä 26 - Project guide1. General data and outputs

Page 39: PROYECTO FIN DE GRADO - ruc.udc.es

Table 1.4 W26 engines dimensions

Total length of the engine.A

Height from the crankshaft centreline to the highest point of the engine.B

Total width of the engine.C

Minimum height when removing a piston.D

Height from the crankshaft centreline to the engine feet.E

Dimension from the crankshaft centreline to the bottom of the oil sump.F

Length of the engine block (contact surfaces).G

Dimension from the end of the engine block to the end of the crankshaft.H

Width of the oil sump.I

Width of the engine block at the engine feet.K

Distance from the centre of the crankshaft to the outermost point of the engine.M

Length from the engine block to the outermost point of the turbocharger.N

Minimum width when removing a piston.O

Dimensions marked with * are valid when the turbocharger is located at the flywheel end.Note:

Table 1.5 W26 in line engines dimensions

GFdryFwetEDCC*BB*AA*Engine type

[mm]

286681895040024301883191218021881411042586L

364681895040024301979191218252019489051178L

403681895040024301979191218252019528055079L

Weight 1) [ton]NN*MM*KIHEngine type

dry sumpwet sump

TC at FETC at DETC at FETC at DE[mm]

16,917,218,418,78856401073107314209201866L

21,021,422,923,38857191170110314209201868L

22,723,024,825,18857191170110314209201869L

1) Weights (in metric tons) including liquids, without flyweel (about 0.25 t). Tolerance +/-5%

Table 1.6 Center of Gravity coordinates for in line engines

CoG coordinatesCoG coordinates*CoG coordinatesCoG coordinates*Engine type

Dry sumpWet sump

Xg=1513Yg=102Zg=455

Xg=1371Yg=102Zg=455

Xg=1513Yg=102Zg=446

Xg=1371Yg=102Zg=446

6L

Xg=1921Yg=102Zg=446

Xg=1675Yg=102Zg=446

Xg=1921Yg=102Zg=460

Xg=1675Yg=102Zg=460

8L

Xg=2094Yg=102Zg=446

Xg=1867Yg=102Zg=446

Xg=2094Yg=98Zg=453

Xg=1867Yg=98Zg=453

9L

Dimensions marked with * are valid when the turbocharger is located at the flywheel end.

Table 1.7 W26 V engines dimensions

GFdryFwetEDCC*BB*AA*Engine type

[mm]

30358001110460206024532453207420744968521812V

38808001110460206024892489215121515973622316V

4 Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide1. General data and outputs

Page 40: PROYECTO FIN DE GRADO - ruc.udc.es

Weight 1) [ton]ONN*MM*KIHEngine type

wet sumpdry sump[mm]

31,929,2101214631197123612361530101023512V

36,533,0116016261363124812481530101023516V

1) Weights (in metric tons) including liquids, without flyweel (about 0.28t). Tolerance +/-5%

Table 1.8 Center of Gravity coordinates for V engines

CoG coordinatesCoG coordinates*CoG coordinatesCoG coordinates*Engine type

Dry sump [mm]Wet sump [mm]

Xg=1811Zg=470

Xg=1224Zg=470

Xg=1811Zg=413

Xg=1224Zg=413

12V

Xg=2240Zg=568

Xg=1852Zg=568

Xg=2240Zg=548

Xg=1852Zg=548

16V

Dimensions marked with * are valid when the turbocharger is located at the flywheel end.

Figure 1.3 Generating sets (DAAE034758a)

Table 1.9 W26 generating set overall dimensions

WeightMLIHGFEDCB*BA*AEn-ginetype

tonmm

40,018812300191016002430120092132006000702835750075006L

45,020192300191016002430120092133007000702835800080008L

50,020192300191016002430120092134007500702835850085009L

60,020742700231020002765156098136006700-1263-840012V

70,021512700231020002765156098140007730-1400-970016V

NOTE! Genset dimensions are for indication only, based on low voltage generators. Final genset dimen-sions and weights depend on selection of generator and flexible coupling.

Marine Project Guide W26 - 5/2007 5

Wärtsilä 26 - Project guide1. General data and outputs

Page 41: PROYECTO FIN DE GRADO - ruc.udc.es

2. Operating ranges

2.1 Engine operating rangeBelow nominal speed the load must be limited according to the diagrams in this chapter in order to maintainengine operating parameters within acceptable limits. Operation in the shaded area is permitted only tem-porarily during transients. Minimum speed and speed range for clutch engagement are indicated in thediagrams, but project specific limitations may apply.

2.1.1 Controllable pitch propellersAn automatic load control system is required to protect the engine from overload. The load control reducesthe propeller pitch automatically, when a pre-programmed load versus speed curve (“engine limit curve”)is exceeded, overriding the combinator curve if necessary. The engine load is derived from fuel rack positionand actual engine speed (not speed demand).

The propulsion control should also include automatic limitation of the load increase rate. Maximum loadingrates can be found later in this chapter.

The propeller efficiency is highest at design pitch. It is common practice to dimension the propeller so thatthe specified ship speed is attained with design pitch, nominal engine speed and 85% output in the specifiedloading condition. The power demand from a possible shaft generator or PTO must be taken into account.The 15% margin is a provision for weather conditions and fouling of hull and propeller. An additional enginemargin can be applied for most economical operation of the engine, or to have reserve power.

Figure 2.1 Operating field for CP propeller

2.1.2 Fixed pitch propellersThe thrust and power absorption of a given fixed pitch propeller is determined by the relation between shipspeed and propeller revolution speed. The power absorption during acceleration, manoeuvring or towingis considerably higher than during free sailing for the same revolution speed. Increased ship resistance, for

6 Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide2. Operating ranges

Page 42: PROYECTO FIN DE GRADO - ruc.udc.es

reason or another, reduces the ship speed, which increases the power absorption of the propeller over thewhole operating range.

Loading conditions, weather conditions, ice conditions, fouling of hull, shallow water, and manoeuvringrequirements must be carefully considered, when matching a fixed pitch propeller to the engine. Thenominal propeller curve shown in the diagram must not be exceeded in service, except temporarily duringacceleration and manoeuvring. A fixed pitch propeller for a free sailing ship is therefore dimensioned sothat it absorbs max. 85% of the engine output at nominal engine speed during trial with loaded ship. Typ-ically this corresponds to about 82% for the propeller itself.

If the vessel is intended for towing, the propeller is dimensioned to absorb 95% of the engine power atnominal engine speed in bollard pull or towing condition. It is allowed to increase the engine speed to101.7% in order to reach 100% MCR during bollard pull.

A shaft brake should be used to enable faster reversing and shorter stopping distance (crash stop). Theship speed at which the propeller can be engaged in reverse direction is still limited by the windmillingtorque of the propeller and the torque capability of the engine at low revolution speed.

Figure 2.2 Operating field for FP Propeller

FP propellers in twin screw vessels

Requirements regarding manoeuvring response and acceleration, as well as overload with one engine outof operation must be very carefully evaluated if the vessel is designed for free sailing, in particular if openpropellers are applied. If the bollard pull curve significantly exceeds the maximum overload limit, accelerationand manoeuvring response can be very slow. Nozzle propellers are less problematic in this respect.

2.1.3 DredgersMechanically driven dredging pumps typically require a capability to operate with full torque down to 70%or 80% of nominal engine speed. This requirement results in significant de-rating of the engine.

Marine Project Guide W26 - 5/2007 7

Wärtsilä 26 - Project guide2. Operating ranges

Page 43: PROYECTO FIN DE GRADO - ruc.udc.es

Figure 2.3 Operating field for Dredgers

2.2 Loading capacityControlled load increase is essential for highly supercharged diesel engines, because the turbochargerneeds time to accelerate before it can deliver the required amount of air. A slower loading ramp than themaximum capability of the engine permits a more even temperature distribution in engine componentsduring transients.

The engine can be loaded immediately after start, provided that the engine is pre-heated to a HT-watertemperature of 60…70ºC, and the lubricating oil temperature is min. 40 ºC.

The ramp for normal loading applies to engines that have reached normal operating temperature.

8 Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide2. Operating ranges

Page 44: PROYECTO FIN DE GRADO - ruc.udc.es

2.2.1 Mechanical propulsionFigure 2.4 Loading rate W26 variable speed

Fig 1. Maximum recommended load increase rates for variable speed engines

The propulsion control must include automatic limitation of the load increase rate. If the control system hasonly one load increase ramp, then the ramp for a preheated engine should be used. In tug applications theengines have usually reached normal operating temperature before the tug starts assisting. The “emergency”curve is close to the maximum capability of the engine.

If minimum smoke during load increase is a major priority, slower loading rate than in the diagram can benecessary below 50% load.

Large load reductions from high load should also be performed gradually. In normal operation the loadshould not be reduced from 100% to 0% in less than 15 seconds. When absolutely necessary, the loadcan be reduced as fast as the pitch setting system can react (overspeed due to windmilling must be con-sidered for high speed ships).

Marine Project Guide W26 - 5/2007 9

Wärtsilä 26 - Project guide2. Operating ranges

Page 45: PROYECTO FIN DE GRADO - ruc.udc.es

2.2.2 Diesel electric propulsion and auxiliary enginesFigure 2.5 Loading rate W26 nominal speed

Fig 2. Maximum recommended load increase rates for engines operating at nominal speed

In diesel electric installations loading ramps are implemented both in the propulsion control and in thepower management system, or in the engine speed control in case isochronous load sharing is applied. Ifa ramp without knee-point is used, it should not achieve 100% load in shorter time than the ramp in thefigure. When the load sharing is based on speed droop, the load increase rate of a recently connectedgenerator is the sum of the load transfer performed by the power management system and the load increaseperformed by the propulsion control.

The “emergency” curve is close to the maximum capability of the engine and it shall not be used as thenormal limit. In dynamic positioning applications loading ramps corresponding to 20-30 seconds from zeroto full load are however normal. If the vessel has also other operating modes, a slower loading ramp is re-commended for these operating modes.

In typical auxiliary engine applications there is usually no single consumer being decisive for the loadingrate. It is recommended to group electrical equipment so that the load is increased in small increments,and the resulting loading rate roughly corresponds to the “normal” curve.

In normal operation the load should not be reduced from 100% to 0% in less than 15 seconds. If the ap-plication requires frequent unloading at a significantly faster rate, special arrangements can be necessaryon the engine. In an emergency situation the full load can be thrown off instantly.

Maximum instant load steps

The electrical system must be designed so that tripping of breakers can be safely handled. This requiresthat the engines are protected from load steps exceeding their maximum load acceptance capability. Themaximum permissible load step is 30% MCR. The resulting speed drop is less than 10% and the recoverytime to within 1% of the steady state speed at the new load level is max. 5 seconds.

10 Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide2. Operating ranges

Page 46: PROYECTO FIN DE GRADO - ruc.udc.es

When electrical power is restored after a black-out, consumers are reconnected in groups, which maycause significant load steps. The engine can be loaded in three steps up to 100% load, provided that thesteps are 0-30-65-100. The engine must be allowed to recover for at least 7 seconds before applying thefollowing load step, if the load is applied in maximum steps.

Start-up time

A diesel generator typically reaches nominal speed in about 20...25 seconds after the start signal. The ac-celeration is limited by the speed control to minimise smoke during start-up.

2.3 Low air temperatureIn cold conditions the following minimum inlet air temperatures apply:

• Starting + 5ºC

• Idling - 5ºC

• High load - 10ºC

To prevent excessive firing pressures at full load Wärtsilä must be informed in case the intake air temperatureis below +15 C.

If the engine is equipped with a two-stage charge air cooler, sustained operation between 0 and 40% loadcan require special provisions in cold conditions to prevent too low engine temperature.

For further guidelines, see chapter Combustion air system design.

2.4 Operation at low load and idlingThe engine can be started, stopped and operated on heavy fuel under all operating conditions. Continuousoperation on heavy fuel is preferred rather than changing over to diesel fuel at low load operation andmanoeuvring. The following recommendations apply:

Absolute idling (declutched main engine, disconnected generator)

• Maximum 10 minutes if the engine is to be stopped after the idling. 3-5 minutes idling before stop isrecommended.

• Maximum 6 hours if the engine is to be loaded after the idling.

Operation below 20 % load on HFO or below 10 % load on MDF

• Maximum 100 hours continuous operation. At intervals of 100 operating hours the engine must beloaded to minimum 70 % of the rated output.

Operation above 20 % load on HFO or above 10 % load on MDF

• No restrictions.

Marine Project Guide W26 - 5/2007 11

Wärtsilä 26 - Project guide2. Operating ranges

Page 47: PROYECTO FIN DE GRADO - ruc.udc.es

3. Technical data

3.1 Introduction

General

This chapter gives the technical data needed to design auxiliary systems. The technical data tables giveseparate exhaust gas and heat balance data for constant speed engines (Diesel electric propulsion andauxiliary) and for variable speed engines (CPP and FPP mechanically driven). The data differs per applicationsince the turbocharging system is optimised for the specific use of the engine.

Ambient conditions

The reference ambient conditions are described in chapter 1.3.

Coolers

The charge air and lubricating oil coolers are dimensioned for tropical conditions, 45ºC suction air and 38ºCLT-water. A sea water temperature of 32ºC typically results in a LT-water temperature of 38ºC.

For the layout of the central cooler 15% safety margin has to be added to the heat balance data.

Heat recovery

For heat recovery purposes, dimensioning conditions have to be evaluated on a project specific basis asto engine load, operating modes, ambient conditions etc.

For the layout of the heat recovery system, 10% safety margin has to be subtracted from the heat balancedata.

12 Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide3. Technical data

Page 48: PROYECTO FIN DE GRADO - ruc.udc.es

3.2 Technical data tables

3.2.1 Wärtsilä 6L26

CPP/FPPDE/AuxiliaryDiesel engine Wärtsilä 6L26

10009001000900rpmEngine speed, ST173

2040195020401950kWEngine output

2775265327752653HPEngine output

260260260260mmCylinder bore

320320320320mmStroke

2.42.552.42.55MPaMean effective pressure

10.79.610.79.6m/sMean piston speed

450450450450rpmIdling speed

Combustion air system (Note 1)

4.23.94.23.8kg/sFlow of air at 100% load

45454545°CAmbient air temperature, max.

60606060°CAir temperature after air cooler

65656565°CAir temperature after air cooler, alarm, TE601

Exhaust gas system (Note 2)

4.123.964.273.93kg/sExhaust gas flow (100% load)

3.543.43.73.91kg/sExhaust gas flow (85% load)

3.113.023.353.1kg/sExhaust gas flow (75% load)

365352334346°CExhaust gas temperature after turbocharger (100% load), TE517

342342334347°CExhaust gas temperature after turbocharger (85% load), TE517

349350338351°CExhaust gas temperature after turbocharger (75% load), TE517

3.03.03.03.0kPaExhaust gas back pressure, rec. max.

500500500500mmExhaust gas pipe diameter, min

519504515499mmCalculated exhaust diameter for 35 m/s

Heat balance (Note 3)

364362364323kWJacket water

288272275250kWLubricating oil

730666702618kWCharge air Cooler

1386132813971333kWExhaust gases

85828582kWRadiation

Fuel system (Note 4)

700±50700±50700±50700±50kPaPressure before injection pumps minimum

3.22.93.22.9m³/hPump capacity, engine driven (MDF only)

191190187186g/kWhFuel consumption (100% load)

186185186185g/kWhFuel consumption (85% load)

187186188187g/kWhFuel consumption (75% load)

194193201200g/kWhFuel consumption (50% load)

6.56.26.46.1kg/hLeak fuel quantity (MDF), clean fuel (100% load)

Lubricating oil system (note 5)

450450450450kPaPressure before engine, nom., PT201

300300300300kPaPressure before engine, alarm, PT201

200200200200kPaPressure before engine, stop, PT201

Marine Project Guide W26 - 5/2007 13

Wärtsilä 26 - Project guide3. Technical data

Page 49: PROYECTO FIN DE GRADO - ruc.udc.es

80808080kPaPriming pressure, nom., PT201

50505050kPaPriming pressure, alarm, PT201

68686868°CTemperature before engine, nom., TE201

75757575°CTemperature before engine, alarm, TE201

78787878°CTemperature after engine, abt., TE201

68616861m³/hPump capacity (main), engine driven

55555555m³/hPump capacity (main), separate

11 / 1311 / 1311 / 1311 / 13m³/hPump capacity (priming), 50Hz/60Hz

1.31.31.31.3m³Oil volume, wet sump, nom.

2.82.62.82.6m³Oil volume in separate system oil tank, nom.

30303030µmFilter fineness, mesh size

80808080kPaFilters difference pressure, alarm, PDT243

0.50.50.50.5g/kWhOil consumption (100% load), abt.

150150150150l/min/cylCrankcase ventilation flow rate

0.30.30.30.3kPaCrankcase backpressure (max)

High temperature cooling water system

260 + static260 + static260 + static260 + statickPaPressure at engine inlet, after pump, nom., PT401

160 + static160 + static160 + static160 + statickPaPressure at engine inlet, after pump, alarm, PT401

500 + static500 + static500 + static500 + statickPaPressure at engine inlet, after pump, max., PT401

81818181°CTemperature before engine, abt., TE401

93939393°CTemperature after engine, nom., TE401

97979797°CTemperature after engine, alarm, TE401

105105105105°CTemperature after engine, stop, TE401

35353535m³/hPump capacity, nom.

180180180180kPaPressure drop over engine

0.30.30.30.3m³Water volume in engine

70...15070...15070...15070...150kPaPressure from expansion tank

60606060kPaPressure drop over central cooler, max

265265265265kPaDelivery head of stand-by pump, PT401

Low temperature cooling water system

260 + static260 + static260 + static260 + statickPaPressure before charge air cooler, nom., PT471

160 + static160 + static160 + static160 + statickPaPressure before charge air cooler, alarm, PT471

500 + static500 + static500 + static500 + statickPaPressure before charge air cooler, max., PT471

38383838°CTemperature before engine, max., TE471

44404440m³/hPump capacity, engine driven, nom.

60606060kPaPressure drop over central cooler, max.

16161616kPaPressure drop over oil cooler

80808080m3/hMax capacity engine driven seawater pump

70...15070...15070...15070...150kPaPressure from expansion tank

265265265265kPaDelivery head of stand-by pump, PT471

Stating air system

3000300030003000kPaAir pressure, nom., PT301

1500150015001500kPaAir pressure, min., PT301

3300330033003300kPaAir pressure, max., PT301

1500150015001500kPaAir pressure, alarm, PT311

1.41.41.41.4Nm3Air consumption per start (20°C)

14 Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide3. Technical data

Page 50: PROYECTO FIN DE GRADO - ruc.udc.es

3.2.2 Wärtsilä 8L26

CPP/FPPDE/AuxiliaryDiesel engine Wärtsilä 8L26

10009001000900rpmEngine speed, ST173

2720260027202600kWEngine output

3700353737003537HPEngine output

260260260260mmCylinder bore

320320320320mmStroke

2.42.552.42.55MPaMean effective pressure

10.79.610.79.6m/sMean piston speed

450450450450rpmIdling speed

Combustion air system (Note 1)

5.55.15.65.1kg/sFlow of air at 100% load

45454545°CAmbient air temperature, max.

60606060°CAir temperature after air cooler

65656565°CAir temperature after air cooler, alarm, TE601

Exhaust gas system (Note 2)

5.495.285.75.24kg/sExhaust gas flow (100% load)

4.724.544.934.54kg/sExhaust gas flow (85% load)

4.154.024.464.13kg/sExhaust gas flow (75% load)

365352334346°CExhaust gas temperature after turbocharger (100% load), TE517

342342334347°CExhaust gas temperature after turbocharger (85% load), TE517

349350338351°CExhaust gas temperature after turbocharger (75% load), TE517

3.03.03.03.0kPaExhaust gas back pressure, rec. max.

550550550550mmExhaust gas pipe diameter, min

599582595577mmCalculated exhaust diameter for 35 m/s

Heat balance (Note 3)

486483485430kWJacket water

383363366334kWLubricating oil

974888936824kWCharge air Cooler

1848177118621778kWExhaust gases

110109110106kWRadiation

Fuel system (Note 4)

700±50700±50700±50700±50kPaPressure before injection pumps minimum

4.13.74.13.7m³/hPump capacity, engine driven (MDF only)

191190187186g/kWhFuel consumption (100% load)

186185186185g/kWhFuel consumption (85% load)

187186188187g/kWhFuel consumption (75% load)

194193201200g/kWhFuel consumption (50% load)

8.78.38.58.1kg/hLeak fuel quantity (MDF), clean fuel (100% load)

Lubricating oil system (note 5)

450450450450kPaPressure before engine, nom., PT201

300300300300kPaPressure before engine, alarm, PT201

200200200200kPaPressure before engine, stop, PT201

80808080kPaPriming pressure, nom., PT201

50505050kPaPriming pressure, alarm, PT201

68686868°CTemperature before engine, nom., TE201

Marine Project Guide W26 - 5/2007 15

Wärtsilä 26 - Project guide3. Technical data

Page 51: PROYECTO FIN DE GRADO - ruc.udc.es

75757575°CTemperature before engine, alarm, TE201

78787878°CTemperature after engine, abt., TE201

92839283m³/hPump capacity (main), engine driven

75757575m³/hPump capacity (main), separate

16 / 1916 / 1916 / 1916 / 19m³/hPump capacity (priming), 50Hz/60Hz

1.61.61.61.6m³Oil volume, wet sump, nom.

3.73.53.73.5m³Oil volume in separate system oil tank, nom.

30303030µmFilter fineness, mesh size

80808080kPaFilters difference pressure, alarm, PDT243

0.50.50.50.5g/kWhOil consumption (100% load), abt.

150150150150l/min/cylCrankcase ventilation flow rate

0.30.30.30.3kPaCrankcase backpressure (max)

High temperature cooling water system

260 + static260 + static260 + static260 + statickPaPressure at engine inlet, after pump, nom., PT401

160 + static160 + static160 + static160 + statickPaPressure at engine inlet, after pump, alarm, PT401

500 + static500 + static500 + static500 + statickPaPressure at engine inlet, after pump, max., PT401

81818181°CTemperature before engine, abt., TE401

93939393°CTemperature after engine, nom., TE401

97979797°CTemperature after engine, alarm, TE401

105105105105°CTemperature after engine, stop, TE401

45454545m³/hPump capacity, nom.

200200200200kPaPressure drop over engine

0.40.40.40.4m³Water volume in engine

70...15070...15070...15070...150kPaPressure from expansion tank

60606060kPaPressure drop over central cooler, max

265265265265kPaDelivery head of stand-by pump, PT401

Low temperature cooling water system

265 + static265 + static265 + static265 + statickPaPressure before charge air cooler, nom., PT471

160 + static160 + static160 + static160 + statickPaPressure before charge air cooler, alarm, PT471

500 + static500 + static500 + static500 + statickPaPressure before charge air cooler, max., PT471

38383838°CTemperature before engine, max., TE471

56505650m³/hPump capacity, engine driven, nom.

60606060kPaPressure drop over central cooler, max.

18181818kPaPressure drop over oil cooler

120120120120m3/hMax capacity engine driven seawater pump

70...15070...15070...15070...150kPaPressure from expansion tank

265265265265kPaDelivery head of stand-by pump, PT471

Stating air system

3000300030003000kPaAir pressure, nom., PT301

1500150015001500kPaAir pressure, min., PT301

3300330033003300kPaAir pressure, max., PT301

1500150015001500kPaAir pressure, alarm, PT311

1.81.81.81.8Nm3Air consumption per start (20°C)

16 Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide3. Technical data

Page 52: PROYECTO FIN DE GRADO - ruc.udc.es

3.2.3 Wärtsilä 9L26

CPP/FPPDE/AuxiliaryDiesel engine Wärtsilä 9L26

10009001000900rpmEngine speed, ST173

3060292530602925kWEngine output

4162397941623979HPEngine output

260260260260mmCylinder bore

320320320320mmStroke

2.42.552.42.55MPaMean effective pressure

10.79.610.79.6m/sMean piston speed

450450450450rpmIdling speed

Combustion air system (Note 1)

6.25.86.35.8kg/sFlow of air at 100% load

45454545°CAmbient air temperature, max.

60606060°CAir temperature after air cooler

65656565°CAir temperature after air cooler, alarm, TE601

Exhaust gas system (Note 2)

6.175.946.415.89kg/sExhaust gas flow (100% load)

5.315.115.545.11kg/sExhaust gas flow (85% load)

4.674.525.024.64kg/sExhaust gas flow (75% load)

365352334346°CExhaust gas temperature after turbocharger (100% load), TE517

342342334347°CExhaust gas temperature after turbocharger (85% load), TE517

349350338351°CExhaust gas temperature after turbocharger (75% load), TE517

3.03.03.03.0kPaExhaust gas back pressure, rec. max.

600600600600mmExhaust gas pipe diameter, min

635617631611mmCalculated exhaust diameter for 35 m/s

Heat balance (Note 3)

546544546484kWJacket water

431408412375kWLubricating oil

10959991053927kWCharge air Cooler

2079199220952000kWExhaust gases

125123125120kWRadiation

Fuel system (Note 4)

700±50700±50700±50700±50kPaPressure before injection pumps minimum

4.13.74.13.7m³/hPump capacity, engine driven (MDF only)

191190187186g/kWhFuel consumption (100% load)

186185186185g/kWhFuel consumption (85% load)

187186188187g/kWhFuel consumption (75% load)

194193201200g/kWhFuel consumption (50% load)

9.89.39.69.1kg/hLeak fuel quantity (MDF), clean fuel (100% load)

Lubricating oil system (Note 5)

450450450450kPaPressure before engine, nom., PT201

300300300300kPaPressure before engine, alarm, PT201

200200200200kPaPressure before engine, stop, PT201

80808080kPaPriming pressure, nom., PT201

50505050kPaPriming pressure, alarm, PT201

68686868°CTemperature before engine, nom., TE201

Marine Project Guide W26 - 5/2007 17

Wärtsilä 26 - Project guide3. Technical data

Page 53: PROYECTO FIN DE GRADO - ruc.udc.es

75757575°CTemperature before engine, alarm, TE201

78787878°CTemperature after engine, abt., TE201

92839283m³/hPump capacity (main), engine driven

75757575m³/hPump capacity (main), separate

16 / 1916 / 1916 / 1916 / 19m³/hPump capacity (priming), 50Hz/60Hz

1.71.71.71.7m³Oil volume, wet sump, nom.

4.13.94.13.9m³Oil volume in separate system oil tank, nom.

30303030µmFilter fineness, mesh size

80808080kPaFilters difference pressure, alarm, PDT243

0.50.50.50.5g/kWhOil consumption (100% load), abt.

150150150150l/min/cylCrankcase ventilation flow rate

0.30.30.30.3kPaCrankcase backpressure (max)

High temperature cooling water system

270 + static270 + static270 + static270 + statickPaPressure at engine inlet, after pump, nom., PT401

160 + static160 + static160 + static160 + statickPaPressure at engine inlet, after pump, alarm, PT401

500 + static500 + static500 + static500 + statickPaPressure at engine inlet, after pump, max., PT401

81818181°CTemperature before engine, abt., TE401

93939393°CTemperature after engine, nom., TE401

97979797°CTemperature after engine, alarm, TE401

105105105105°CTemperature after engine, stop, TE401

50505050m³/hPump capacity, nom.

220220220220kPaPressure drop over engine

0.450.450.450.45m³Water volume in engine

70...15070...15070...15070...150kPaPressure from expansion tank

60606060kPaPressure drop over central cooler, max

265265265265kPaDelivery head of stand-by pump, PT401

Low temperature cooling water system

270 + static270 + static270 + static270 + statickPaPressure before charge air cooler, nom., PT471

160 + static160 + static160 + static160 + statickPaPressure before charge air cooler, alarm, PT471

500 + static500 + static500 + static500 + statickPaPressure before charge air cooler, max., PT471

38383838°CTemperature before engine, max., TE471

65606560m³/hPump capacity, engine driven, nom.

60606060kPaPressure drop over central cooler, max.

21212121kPaPressure drop over oil cooler

120120120120m3/hMax capacity engine driven seawater pump

70...15070...15070...15070...150kPaPressure from expansion tank

265265265265kPaDelivery head of stand-by pump, PT471

Stating air system

3000300030003000kPaAir pressure, nom., PT301

1500150015001500kPaAir pressure, min., PT301

3300330033003300kPaAir pressure, max., PT301

1500150015001500kPaAir pressure, alarm, PT311

2.02.02.02.0Nm3Air consumption per start (20°C)

18 Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide3. Technical data

Page 54: PROYECTO FIN DE GRADO - ruc.udc.es

3.2.4 Wärtsilä 12V26

CPP/FPPDE/AuxiliaryDiesel engine Wärtsilä 12V26

10009001000900rpmEngine speed, ST173

4080390040803900kWEngine output

5549530555495305HPEngine output

260260260260mmCylinder bore

320320320320mmStroke

2.42.552.42.55MPaMean effective pressure

10.79.610.79.6m/sMean piston speed

400400450450rpmIdling speed

Combustion air system (Note 1)

7.46.97.56.9kg/sFlow of air at 100% load

45454545°CAmbient air temperature, max.

50505050°CAir temperature after air cooler

60606060°CAir temperature after air cooler, alarm, TE601

Exhaust gas system (Note 2)

7.677.137.777.15kg/sExhaust gas flow (100% load)

7.36.67.686.99kg/sExhaust gas flow (85% load)

6.325.616.946.26kg/sExhaust gas flow (75% load)

364382348361°CExhaust gas temperature after turbocharger (100% load), TE517

3.03.03.03.0kPaExhaust gas back pressure, rec. max.

700650700650mmExhaust gas pipe diameter, min

708692703682mmCalculated exhaust diameter for 35 m/s

Heat balance (Note 3)

894889894889kWJacket water

446414450409kWLubricating oil

740688740656kWCharge air, HT-circuit

649566649566kWCharge air, LT-circuit

2730267326352523kWExhaust gases

160153160153kWRadiation

Fuel system (Note 4)

700±50700±50700±50700±50kPaPressure before injection pumps minimum

5.24.65.24.6m³/hPump capacity, engine driven (MDF only)

191190187186g/kWhFuel consumption (100% load)

186185188187g/kWhFuel consumption (85% load)

187186189188g/kWhFuel consumption (75% load)

192191200199g/kWhFuel consumption (50% load)

15.515.015.515.0kg/hLeak fuel quantity (MDF), clean fuel (100% load)

3.13.03.13.0kg/hLeak fuel quantity (HFO), clean fuel (100% load)

Lubricating oil system (Note 5)

450450450450kPaPressure before engine, nom., PT201

300300300300kPaPressure before engine, alarm, PT201

250250250250kPaPressure before engine, stop, PT201

80808080kPaPriming pressure, nom., PT201

50505050kPaPriming pressure, alarm, PT201

63636363°CTemperature before engine, nom., TE201

Marine Project Guide W26 - 5/2007 19

Wärtsilä 26 - Project guide3. Technical data

Page 55: PROYECTO FIN DE GRADO - ruc.udc.es

70707070°CTemperature before engine, alarm, TE201

79797979°CTemperature after engine, abt., TE201

1049310493m³/hPump capacity (main), engine driven

83838383m³/hPump capacity (main), separate

20 / 2520 / 2520 / 2520 / 25m³/hPump capacity (priming), 50Hz/60Hz

2.62.62.62.6m³Oil volume, wet sump, nom.

5.55.35.55.3m³Oil volume in separate system oil tank, nom.

30303030µmFilter fineness, mesh size

80808080kPaFilters difference pressure, alarm, PDT243

0.50.50.50.5g/kWhOil consumption (100% load), abt.

100100100100l/min/cylCranckcase ventilation flow rate

0.30.30.30.3kPaCranckcase backpressure (max)

High temperature cooling water system

350 + static280 + static350 + static280 + statickPaPressure at engine inlet, after pump, nom., PT401

100 + static100 + static100 + static100 + statickPaPressure at engine inlet, after pump, alarm, PT401

500 + static500 + static500 + static500 + statickPaPressure at engine inlet, after pump, max., PT401

73737373°CTemperature before engine, abt., TE401

93939393°CTemperature after engine, nom., TE401

95959595°CTemperature after engine, alarm, TE401

100100100100°CTemperature after engine, stop, TE401

67606760m³/hPump capacity, nom.

160160160160kPaPressure drop over engine

0.550.550.550.55m³Water volume in engine

70...15070...15070...15070...150kPaPressure from expansion tank

60606060kPaPressure drop over central cooler, max

330330330330kPaDelivery head of stand-by pump, PT401

Low temperature cooling water system

350 + static280 + static350 + static280 + statickPaPressure before charge air cooler, nom., PT471

100 + static100 + static100 + static100 + statickPaPressure before charge air cooler, alarm, PT471

500 + static500 + static500 + static500 + statickPaPressure before charge air cooler, max., PT471

38383838°CTemperature before engine, max., TE471

67606760m³/hPump capacity, engine driven, nom.

60606060kPaPressure drop over central cooler, max.

71717171kPaPressure drop over oil cooler

70...15070...15070...15070...150kPaPressure from expansion tank

330330330330kPaDelivery head of stand-by pump, PT471

Stating air system

3000300030003000kPaAir pressure, nom., PT301

1500150015001500kPaAir pressure, min., PT301

3300330033003300kPaAir pressure, max., PT301

1500150015001500kPaAir pressure, alarm, PT311

3.03.03.03.0Nm3Air consumption per start (20°C)

20 Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide3. Technical data

Page 56: PROYECTO FIN DE GRADO - ruc.udc.es

3.2.5 Wärtsilä 16V26

CPP/FPPDE/AuxiliaryDiesel engine Wärtsilä 16V26

10009001000900rpmEngine speed, ST173

5440520054405200kWEngine output

7399707373997073HPEngine output

260260260260mmCylinder bore

320320320320mmStroke

2.42.552.42.55MPaMean effective pressure

10.79.610.79.6m/sMean piston speed

400400450450rpmIdling speed

Combustion air system (Note 1)

9.99.210.09.2kg/sFlow of air at 100% load

45454545°CAmbient air temperature, max.

50505050°CAir temperature after air cooler

60606060°CAir temperature after air cooler, alarm, TE601

Exhaust gas system (Note 2)

10.239.510.369.54kg/sExhaust gas flow (100% load)

10.088.7511.2710.19kg/sExhaust gas flow (85% load)

8.857.3110.229.12kg/sExhaust gas flow (75% load)

364382348361°CExhaust gas temperature after turbocharger (100% load), TE517

3.03.03.03.0kPaExhaust gas back pressure, rec. max.

800750800750mmExhaust gas pipe diameter, min

817799812787mmCalculated exhaust diameter for 35 m/s

Heat balance (Note 3)

1191118611911186kWJacket water

595552601545kWLubricating oil

987918987874kWCharge air, HT-circuit

865754865754kWCharge air, LT-circuit

3641356135143366kWExhaust gases

214204214204kWRadiation

Fuel system (Note 4)

700±50700±50700±50700±50kPaPressure before injection pumps minimum

7.87.07.87.0m³/hPump capacity, engine driven (MDF only)

191190187186g/kWhFuel consumption (100% load)

186185188187g/kWhFuel consumption (85% load)

187186189188g/kWhFuel consumption (75% load)

192191200199g/kWhFuel consumption (50% load)

21.020.021.020.0kg/hLeak fuel quantity (MDF), clean fuel (100% load)

4.24.04.24.0kg/hLeak fuel quantity (HFO), clean fuel (100% load)

Lubricating oil system (Note 5)

450450450450kPaPressure before engine, nom., PT201

300300300300kPaPressure before engine, alarm, PT201

250250250250kPaPressure before engine, stop, PT201

80808080kPaPriming pressure, nom., PT201

50505050kPaPriming pressure, alarm, PT201

63636363°CTemperature before engine, nom., TE201

Marine Project Guide W26 - 5/2007 21

Wärtsilä 26 - Project guide3. Technical data

Page 57: PROYECTO FIN DE GRADO - ruc.udc.es

70707070°CTemperature before engine, alarm, TE201

79797979°CTemperature after engine, abt., TE201

141127141127m³/hPump capacity (main), engine driven

103103103103m³/hPump capacity (main), separate

20 / 2520 / 2520 / 2520 / 25m³/hPump capacity (priming), 50Hz/60Hz

3.53.53.53.5m³Oil volume, wet sump, nom.

7.37.07.37.0m³Oil volume in separate system oil tank, nom.

30303030µmFilter fineness, mesh size

80808080kPaFilters difference pressure, alarm, PDT243

0.50.50.50.5g/kWhOil consumption (100% load), abt.

100100100100l/min/cylCrankcase ventilation flow rate

0.30.30.30.3kPaCrankcase backpressure

High temperature cooling water system

440 + static350 + static440 + static350 + statickPaPressure at engine inlet, after pump, nom., PT401

100 + static100 + static100 + static100 + statickPaPressure at engine inlet, after pump, alarm, PT401

500 + static500 + static500 + static500 + statickPaPressure at engine inlet, after pump, max., PT401

73737373°CTemperature before engine, abt., TE401

93939393°CTemperature after engine, nom., TE401

95959595°CTemperature after engine, alarm, TE401

100100100100°CTemperature after engine, stop, TE401

89808980m³/hPump capacity, nom.

200200200200kPaPressure drop over engine

0.680.680.680.68m³Water volume in engine

70...15070...15070...15070...150kPaPressure from expansion tank

60606060kPaPressure drop over central cooler, max

330330330330kPaDelivery head of stand-by pump, PT401

Low temperature cooling water system

440 + static350 + static440 + static350 + statickPaPressure before charge air cooler, nom., PT471

100 + static100 + static100 + static100 + statickPaPressure before charge air cooler, alarm, PT471

500 + static500 + static500 + static500 + statickPaPressure before charge air cooler, max., PT471

38383838°CTemperature before engine, max., TE471

89808980m³/hPump capacity, engine driven, nom.

60606060kPaPressure drop over central cooler, max.

83838383kPaPressure drop over oil cooler

70...15070...15070...15070...150kPaPressure from expansion tank

330330330330kPaDelivery head of stand-by pump, PT471

Stating air system

3000300030003000kPaAir pressure, nom., PT301

1500150015001500kPaAir pressure, min., PT301

3300330033003300kPaAir pressure, max., PT301

1500150015001500kPaAir pressure, alarm, PT311

3.93.93.93.9Nm3Air consumption per start (20°C)

Notes:

At ISO 3046-1 conditions (ambient air temperature 25°C, LT-water 25°C) and 100% load. Tolerance 5%.Note 1

At ISO 3046-1 conditions (ambient air temperature 25°C, LT-water 25°C) and 100% load. Flow tolerance5% and temperature tolerance 20°C.

Note 2

22 Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide3. Technical data

Page 58: PROYECTO FIN DE GRADO - ruc.udc.es

The heat balances are made for ISO 3046/1 standard reference conditions. The heat balances include enginedriven pumps (two water pumps and one lube oil pump).

Note 3

According to ISO 3046/1, lower calorific value 42 700 kJ/kg at constant engine speed, with engine drivenpumps. Tolerance 5%.The fuel consumption at 85 % load is guaranteed and the values at other loads aregiven for indication only.

Note 4

Lubricating oil treatment losses and oil changes not included.Note 5

Subject to revision without notice.

Marine Project Guide W26 - 5/2007 23

Wärtsilä 26 - Project guide3. Technical data

Page 59: PROYECTO FIN DE GRADO - ruc.udc.es

4. Description of the engine

4.1 DefinitionsFigure 4.1 Definitions (9604DT105)

The following definitions are used in this Project Guide:

Operating side

Longitudinal side of the engine where the operating controls are located

Non-operating side

Longitudinal side opposite of the operating side

Driving end

End of the engine where the flywheel is located

Free end

The end opposite the driving end

Designation of cylinders

Designation of cylinders begins at the driving end

Direction of rotating

The rotation as viewed from the position of the observer

A-bank and B-bank

See figure 4.1 in relation to observer

Inlet and exhaust valves

See figure 4.1 in relation to observer.

24 Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide4. Description of the engine

Page 60: PROYECTO FIN DE GRADO - ruc.udc.es

4.2 Main engine componentsThe dimensions and weights of engine parts can be found in chapter for maintenance and parts.

The engine is designed to fulfil the requirements of the different classification societies, SOLAS rules andIMO requirements.

4.2.1 Engine blockThe engine block is a one piece nodular cast iron component. The engine block is of stiff and durable designto absorb internal forces. The engine can be resiliently mounted without requiring any intermediate found-ations.

The engine block carries the under-slung crankshaft.

The main bearing caps, made of nodular cast iron, are fixed from below by two hydraulically tensionedstuds. They are guided sideways by the engine block at the top as well as at the bottom. Hydraulicallytightened horizontal side studs provide a very rigid crankshaft bearing.

For ease of mounting the engine feet (nodular cast iron) can be mounted in a number of positions alongthe engine block. This minimises modifications to existing foundation and makes various mounting config-urations easy to implement.

Engine–driven cooling water pumps and a lubricating oil pump are mounted on a multi functional cast ironhousing (pump module) which is fitted at the free end of the engine.

4.2.2 CrankshaftThe crankshaft is forged in one piece and is underslung in the engine block. The crankshaft design satisfiesthe requirements of all classification societies.

The crankshaft design features a very short cylinder distance with a maximum bearing length resulting ina short engine. The crankshaft is forged from one piece of high tensile steel.

Counterweights are fitted on the crankshaft webs. The high degree of balancing results in an even and thickoil film for all bearings. The gear on the crankshaft is fitted by a flange connection.

Depending on the outcome of the torsional vibration calculation, vibration dampers will be fit at the freeend of the engine. If required full output can be taken from either end of the engine.

4.2.3 Connecting rodThe connecting rod is of forged alloy steel. All connecting rod studs are hydraulically tightened.

The connecting rod has a horizontal split at the crankpin bearing. The advantages of this type of connectingrod are:

• Shorter length

• High rigidity (stiffness)

• Low mass (results in smaller bearing load)

For overhaul the piston and connecting rod are removed together with the cylinder liner as one unit. Theoil supply for the piston cooling, gudgeon pin bush and piston skirt lubrication takes place through a singledrilling in the connecting rod.

4.2.4 Main bearings and big end bearingsThe main bearings and the crankpin bearings are of the bi–metal type with a steel backing and a soft runninglayer with excellent corrosion resistance.

4.2.5 Cylinder linerThe cylinder liners are centrifugally cast of a special grey cast iron alloy developed for good wear resistanceand high strength. They are of wet type, sealed against the engine block metallically at the upper part andby O-rings at the lower part. To eliminate the risk of bore polishing the liner is equipped with an anti-polishingring.

Marine Project Guide W26 - 5/2007 25

Wärtsilä 26 - Project guide4. Description of the engine

Page 61: PROYECTO FIN DE GRADO - ruc.udc.es

Cooling around the liner is divided into two parts: the greater volume in the lower part for uniform coolingwater distribution and a smaller volume at the top of the jacket to facilitate an efficient cooling due to a highflow velocity.

4.2.6 PistonThe piston is of composite design with nodular cast iron skirt and steel crown. The piston skirt and cylinderliner are lubricated by a unique lubricating system utilizing lubricating nozzles in the piston skirt. This systemensures excellent running behaviour and constant low lubrication oil consumption during all operatingconditions. Oil is fed through the connecting rod to the cooling spaces of the piston. The piston coolingoperates according to the cocktail shaker principle. The piston ring grooves in the piston top are hardenedfor better wear resistance.

The crown and piston skirt are connected with one central bolt, which results in symmetrical load distributionin the piston.

4.2.7 Piston ringsThe piston ring set consists of two directional compression rings and one spring-loaded conformable oilscraper ring. All rings are chromium-plated and located in the piston crown. The two compression ringsare asymmetrically profiled.

4.2.8 Cylinder headThe cylinder head is made of spheroidal or grey lamellar cast iron. The thermally loaded flame plate iscooled efficiently by cooling water led from the periphery radially towards the centre of the head. Coolingchannels are drilled in the bridges between valves, to provide the best possible heat transfer.

The mechanical load is absorbed by a strong intermediate deck, which together with the upper deck andthe side walls form a box section in the four corners of which the hydraulically tightened cylinder head boltsare situated. The exhaust valve seats are directly water-cooled.

All valves are equipped with valve rotators.

4.2.9 Camshaft and valve mechanismThe cams are integrated in the drop forged completely hardened camshaft material. To provide the requiredrigidity to deal with the high transmission forces involved, the fuel cam is located very close to the bearing.

The bearing journals are made in separate pieces which are fitted to the camshaft sections by means offlanged connections. This design allows lateral dismantling of the camshaft sections.

The camshaft bearings are located in integrated bores in the engine block casting. The built–on valve tappetunit bolted to the engine block makes maintenance easy.

The valve tappets are of piston type with self-adjustment of roller against cam to give an even distributionof the contact pressure. The valve springs make the valve mechanism dynamically stable.

4.2.10 Camshaft driveThe camshaft is driven from the crankshaft through a fully integrated gear train.

Camshaft gear is shrunk on camshaft. Adjusting of timing is possible by means of oil pressure on the gearwheel.

4.2.11 Turbocharging and charge air coolingThe charge air module for the V–engine is a casting in which the charge air cooler is accommodated andwhich supports the turbochargers.

For the in–line engine the turbocharger support and the charge air housing are different modules. Connectionsbetween turbocharger, charge air cooler and scavenging air duct as well as the connections to the coolingwater systems and turbocharger housing(s) are integrated. This construction eliminates the conventionalpiping outside the engine.

The selected turbocharger offers the ideal combination of high-pressure ratios and good efficiency at fulland part load.

26 Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide4. Description of the engine

Page 62: PROYECTO FIN DE GRADO - ruc.udc.es

The turbocharger(s) is (are) as standard located at the driving end, but can also be mounted on the freeend.

The charge air cooler is of the one-stage type for in-line engines and of the two–stage type, consisting ofHT and LT cooling water sections, for V-engines. Treated fresh water is used in both sections. The chargeair cooler is an insert type element and can easily be removed for cleaning the air side.

The water side is accessible through removal of the cooler end covers.

4.2.12 Fuel injection equipmentThe high injection pressure and bore to stroke ratio ensure low NOx emission and low fuel oil consumption.The fuel injection equipment and system piping are located in a hot box, providing maximum reliability andsafety when using pre-heated heavy fuel oils. The fuel oil circulation lines are mounted directly in the fuelinjection pump tappet housing. Particular design attention has been made to significantly reduce pressurepulses in the system.

The HP fuel pumps are individual per cylinder with shielded high pressure pipes. The HP fuel pumps areof the flow through type to ensure good performance with all fuel oil types. The pumps are completelyisolated from the camshaft compartment preventing fuel contamination of the lubricating oil.

The nozzles of the fuel injector are cooled with lubricating oil.

The HP fuel pump is a reliable mono–element type designed for injection pressures up to 1500 bar. Theengine is stopped through activation of the individual stop cylinders on each HP fuel pump.

4.2.13 Exhaust pipesThe complete exhaust gas system is enclosed in an insulated box consisting of easily removable panels.Mineral wool is used as insulating material.

4.2.14 Pump moduleThe pump module is a cast iron housing fitted at the free end of the engine which supports the coolingwater pumps, the lubricating oil pump(s) and the fuel oil circulating pump (for distillate fuel oil only). Themodule contains the liquid channels between the pumps and the corresponding channels in the engineblock, the charge air module, the lubricating oil module and the engine sump. Also the thermostatic valvesof the cooling water systems for V engines are mounted in the pump module.

4.2.15 Automation systemThe engine can be provided with either a basic automation system or with an advanced integrated enginecontrol system (UNIC C1, C2). These systems are described in detail in chapter Automation system.

Marine Project Guide W26 - 5/2007 27

Wärtsilä 26 - Project guide4. Description of the engine

Page 63: PROYECTO FIN DE GRADO - ruc.udc.es

4.3 Cross sections and cut outsFigure 4.2 Cross section of in-line engine

28 Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide4. Description of the engine

Page 64: PROYECTO FIN DE GRADO - ruc.udc.es

Figure 4.3 Cross section of V-engine

Marine Project Guide W26 - 5/2007 29

Wärtsilä 26 - Project guide4. Description of the engine

Page 65: PROYECTO FIN DE GRADO - ruc.udc.es

5. Piping design, treatment and installation

5.1 GeneralThis chapter provides general guidelines for the design, construction and installation of piping systems,however, not excluding other solutions of at least equal standard.

Fuel, lubricating oil, fresh water and compressed air piping is usually made in seamless carbon steel (DIN2448) and seamless precision tubes in carbon or stainless steel (DIN 2391), exhaust gas piping in weldedpipes of corten or carbon steel (DIN 2458). Pipes on the freshwater side of the cooling water system mustnot be galvanized. Sea-water piping should be made in hot dip galvanised steel, aluminium brass, cuniferor with rubber lined pipes.

Attention must be paid to fire risk aspects. Fuel supply and return lines shall be designed so that they canbe fitted without tension. Flexible hoses must have an approval from the classification society. If flexiblehoses are used in the compressed air system, a purge valve shall be fitted in front of the hose(s).

The following aspects shall be taken into consideration:

• Pockets shall be avoided. When not possible, drain plugs and air vents shall be installed

• Leak fuel drain pipes shall have continuous slope

• Vent pipes shall be continuously rising

• Flanged connections shall be used, cutting ring joints for precision tubes

Maintenance access and dismounting space of valves, coolers and other devices shall be taken into con-sideration. Flange connections and other joints shall be located so that dismounting of the equipment canbe made with reasonable effort.

5.2 Pipe dimensions

When selecting the pipe dimensions, take into account:

• The pipe material and its resistance to corrosion/erosion.

• Allowed pressure loss in the circuit vs delivery head of the pump.

• Required net positive suction head (NPSH) for pumps (suction lines).

• In small pipe sizes the max acceptable velocity is usually somewhat lower than in large pipes of equallength.

• The flow velocity should not be below 1 m/s in sea water piping due to increased risk of fouling andpitting.

• In open circuits the velocity in the suction pipe is typically about 2/3 of the velocity in the deliverypipe.

Recommended maximum fluid velocities on the delivery side of pumps are given as guidance in table 5.1.

Table 5.1 Recommended maximum velocities on pump delivery side for guidance

Max velocity [m/s]Pipe materialPiping

1.0Black steelFuel piping (MDF and HFO)

1.5Black steelLubricating oil piping

2.5Black steelFresh water piping

2.5Galvanized steelSea water piping

2.5Aluminium brass

3.010/90 copper-nickel-iron

4.570/30 copper-nickel

4.5Rubber lined pipes

30 Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide5. Piping design, treatment and installation

Page 66: PROYECTO FIN DE GRADO - ruc.udc.es

NOTE! The diameter of gas fuel and compressed air piping depends only on the allowed pressure lossin the piping, which has to be calculated project specifically.

5.3 Trace heatingThe following pipes shall be equipped with trace heating (steam, thermal oil or electrical). It shall be possibleto shut off the trace heating.

• All heavy fuel pipes

• All leak fuel and filter flushing pipes carrying heavy fuel

5.4 Operating and design pressureThe pressure class of the piping shall be equal to or higher than the maximum operating pressure, whichcan be significantly higher than the normal operating pressure.

A design pressure is defined for components that are not categorized according to pressure class, and thispressure is also used to determine test pressure. The design pressure shall also be equal to or higher thanthe maximum pressure.

The pressure in the system can:

• Originate from a positive displacement pump

• Be a combination of the static pressure and the pressure on the highest point of the pump curve fora centrifugal pump

• Rise in an isolated system if the liquid is heated

Within this Project Guide there are tables attached to drawings, which specify pressure classes of connec-tions. The pressure class of a connection can be higher than the pressure class required for the pipe.

Example 1:

The fuel pressure before the engine should be 1.0 MPa (10 bar). The safety filter in dirty condition maycause a pressure loss of 0.1 MPa (1 bar). The viscosimeter, heater and piping may cause a pressure lossof 0.2 MPa (2 bar). Consequently the discharge pressure of the circulating pumps may rise to 1.3 MPa (13bar), and the safety valve of the pump shall thus be adjusted e.g. to 1.4 MPa (14 bar).

• The minimum design pressure is 1.4 MPa (14 bar) has to be selected.

• The nearest pipe class to be selected is PN16.

• Piping test pressure is normally 1.5 x the design pressure = 2.1 MPa (21 bar).

Example 2:

The pressure on the suction side of the cooling water pump is 0.1 MPa (1 bar). The delivery head of thepump is 0.3 MPa (3 bar), leading to a discharge pressure of 0.4 MPa (4 bar). The highest point of the pumpcurve (at or near zero flow) is 0.1 MPa (1 bar) higher than the nominal point, and consequently the dischargepressure may rise to 0.5 MPa (5 bar) (with closed or throttled valves).

• The minimum design pressure is 0.5 MPa (5 bar).

• The nearest pressure class to be selected is PN6.

• Piping test pressure is normally 1.5 x the design pressure = 0.75 MPa (7.5 bar).

Standard pressure classes are PN4, PN6, PN10, PN16, PN25, PN40, etc.

5.5 Pipe classClassification societies categorize piping systems in different classes (DNV) or groups (ABS) depending onpressure, temperature and media. The pipe class can determine:

• Type of connections to be used

• Heat treatment

• Welding procedure

Marine Project Guide W26 - 5/2007 31

Wärtsilä 26 - Project guide5. Piping design, treatment and installation

Page 67: PROYECTO FIN DE GRADO - ruc.udc.es

• Test method

Systems with high design pressures and temperatures and hazardous media belong to class I (or group I),others to II or III as applicable. Quality requirements are highest in class I.

Examples of classes of piping systems as per DNV rules are presented in the table below.

Table 5.2 Classes of piping systems as per DNV rules

Class IIIClass IIClass IMedia

°CMPa (bar)°CMPa (bar)°CMPa (bar)

and < 170< 0.7 (7)and < 300< 1.6 (16)or > 300> 1.6 (16)Steam

and < 60< 0.7 (7)and < 150< 1.6 (16)or > 150> 1.6 (16)Flammable fluid

and < 200< 1.6 (16)and < 300< 4 (40)or > 300> 4 (40)Other media

5.6 Insulation

The following pipes shall be insulated:

• All trace heated pipes

• Exhaust gas pipes

• Exposed parts of pipes with temperature > 60°C

Insulation is also recommended for:

• Pipes between engine or system oil tank and lubricating oil separator

• Pipes between engine and jacket water preheater

5.7 Local gaugesLocal thermometers should be installed wherever a new temperature occurs, i.e. before and after heat ex-changers, etc.

Pressure gauges should be installed on the suction and discharge side of each pump.

5.8 Cleaning proceduresInstructions shall be given to manufacturers and fitters of how different piping systems shall be treated,cleaned and protected before delivery and installation. All piping must be checked and cleaned from debrisbefore installation. Before taking into service all piping must be cleaned according to the methods listedbelow.

Table 5.3 Pipe cleaning

MethodsSystem

A,B,C,D,FFuel oil

A,B,C,D,FLubricating oil

A,B,CStarting air

A,B,CCooling water

A,B,CExhaust gas

A,B,CCharge air

A = Washing with alkaline solution in hot water at 80°C for degreasing (only if pipes have been greased)

B = Removal of rust and scale with steel brush (not required for seamless precision tubes)

C = Purging with compressed air

D = Pickling

F = Flushing

32 Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide5. Piping design, treatment and installation

Page 68: PROYECTO FIN DE GRADO - ruc.udc.es

5.8.1 PicklingPipes are pickled in an acid solution of 10% hydrochloric acid and 10% formaline inhibitor for 4-5 hours,rinsed with hot water and blown dry with compressed air.

After the acid treatment the pipes are treated with a neutralizing solution of 10% caustic soda and 50 gramsof trisodiumphosphate per litre of water for 20 minutes at 40...50°C, rinsed with hot water and blown drywith compressed air.

5.8.2 FlushingMore detailed recommendations on flushing procedures are when necessary described under the relevantchapters concerning the fuel oil system and the lubricating oil system. Provisions are to be made to ensurethat necessary temporary bypasses can be arranged and that flushing hoses, filters and pumps will beavailable when required.

5.9 Flexible pipe connectionsPressurized flexible connections carrying flammable fluids or compressed air have to be type approved.

Great care must be taken to ensure proper installation of flexible pipe connections between resilientlymounted engines and ship’s piping.

• Flexible pipe connections must not be twisted

• Installation length of flexible pipe connections must be correct

• Minimum bending radius must respected

• Piping must be concentrically aligned

• When specified the flow direction must be observed

• Mating flanges shall be clean from rust, burrs and anticorrosion coatings

• Bolts are to be tightened crosswise in several stages

• Flexible elements must not be painted

• Rubber bellows must be kept clean from oil and fuel

• The piping must be rigidly supported close to the flexible piping connections.

Marine Project Guide W26 - 5/2007 33

Wärtsilä 26 - Project guide5. Piping design, treatment and installation

Page 69: PROYECTO FIN DE GRADO - ruc.udc.es

Figure 5.1 Flexible hoses (4V60B0100a)

5.10 Clamping of pipesIt is very important to fix the pipes to rigid structures next to flexible pipe connections in order to preventdamage caused by vibration. The following guidelines should be applied:

• Pipe clamps and supports next to the engine must be very rigid and welded to the steel structure ofthe foundation.

• The first support should be located as close as possible to the flexible connection. Next supportshould be 0.3-0.5 m from the first support.

• First three supports closest to the engine or generating set should be fixed supports. Where necessary,sliding supports can be used after these three fixed supports to allow thermal expansion of the pipe.

• Supports should never be welded directly to the pipe. Either pipe clamps or flange supports shouldbe used for flexible connection.

Examples of flange support structures are shown in Figure 5.2. A typical pipe clamp for a fixed support isshown in Figure 5.3. Pipe clamps must be made of steel; plastic clamps or similar may not be used.

34 Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide5. Piping design, treatment and installation

Page 70: PROYECTO FIN DE GRADO - ruc.udc.es

Figure 5.2 Flange supports of flexible pipe connections (4V60L0796)

Figure 5.3 Pipe clamp for fixed support (4V61H0842)

Marine Project Guide W26 - 5/2007 35

Wärtsilä 26 - Project guide5. Piping design, treatment and installation

Page 71: PROYECTO FIN DE GRADO - ruc.udc.es

6. Fuel oil system

6.1 Acceptable fuel characteristicsThe fuel specifications are based on the ISO 8217:2005 (E) standard. Observe that a few additional propertiesnot included in the standard are listed in the tables.

Distillate fuel grades are ISO-F-DMX, DMA, DMB, DMC. These fuel grades are referred to as MDF (MarineDiesel Fuel).

Residual fuel grades are referred to as HFO (Heavy Fuel Oil). The fuel specification HFO 2 covers the cat-egories ISO-F-RMA 30 to RMK 700. Fuels fulfilling the specification HFO 1 permit longer overhaul intervalsof specific engine components than HFO 2.

Table 6.1 MDF Specifications

Test methodref.

ISO-F-DMC 1)

ISO-F-DMB

ISO-F-DMA

ISO-F-DMX

UnitProperty

Visualinspection

--Clear and brightAppearance

ISO 31042.02.02.02.0cStViscosity, before injection pumps, min. 2)

ISO 310424242424cStViscosity, before injection pumps, max. 2)

ISO 310414.011.06.05.5cStViscosity at 40°C, max.

ISO 3675 or12185

920900890—kg/m³Density at 15°C, max.

ISO 4264—354045Cetane index, min.

ISO 37330.30.3——% volumeWater, max.

ISO 8574 or14596

2.0 3)2.0 3)1.51.0% massSulphur, max.

ISO 62450.050.010.010.01% massAsh, max.

ISO 14597 orIP 501 or 470

100———mg/kgVanadium, max.

ISO 1047830———mg/kgSodium before engine, max. 2)

ISO 10478 orIP 501 or 470

25———mg/kgAluminium + Silicon, max

ISO 10478 orIP 501 or 470

15———mg/kgAluminium + Silicon before engine, max. 2)

ISO 10370——0.300.30% massCarbon residue on 10 % volume distillationbottoms, max.

ISO 103702.500.30——% massCarbon residue, max.

ISO 271960606060 2)°CFlash point (PMCC), min.

ISO 301600-6—°CPour point, winter quality, max.

ISO 3016660—°CPour point, summer quality, max

ISO 3015———-16°CCloud point, max.

ISO 10307-10.10.1——% massTotal sediment existent, max.

IP 501 or 47030———mg/kgUsed lubricating oil, calcium, max. 4)

IP 501 or 47015———mg/kgUsed lubricating oil, zinc, max. 4)

IP 501 or 50015———mg/kgUsed lubricating oil, phosphorus, max. 4)

Remarks:

Use of ISO-F-DMC category fuel is allowed provided that the fuel treatment system is equipped with a fuelcentrifuge.

1)

Additional properties specified by the engine manufacturer, which are not included in the ISO specification ordiffer from the ISO specification.

2)

36 Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide6. Fuel oil system

Page 72: PROYECTO FIN DE GRADO - ruc.udc.es

A sulphur limit of 1.5% mass will apply in SOx emission controlled areas designated by IMO (InternationalMaritime Organization). There may also be other local variations.

3)

A fuel shall be considered to be free of used lubricating oil (ULO), if one or more of the elements calcium, zinc,and phosphorus are below or at the specified limits. All three elements shall exceed the same limits before afuel shall be deemed to contain ULO's.

4)

Table 6.2 HFO Specifications

Test method ref.Limit HFO 2Limit HFO 1UnitProperty

ISO 310455700

7200

55700

7200

cStcSt

Redwood No. 1 s

Viscosity at 100°C, max.Viscosity at 50°C, max.Viscosity at 100°F, max

20±420±4cStViscosity, before injection pumps 4)

ISO 3675 or 12185991 / 1010 1)991 / 1010 1)kg/m³Density at 15°C, max.

ISO 8217, Annex B870 2)850CCAI, max.4)

ISO 37330.50.5% volumeWater, max.

ISO 37330.30.3% volumeWater before engine, max.4)

ISO 8754 or 145964.5 5)1.5% massSulphur, max.

ISO 62450.150.05% massAsh, max.

ISO 14597 or IP 501or 470

600 3)100mg/kgVanadium, max. 3)

ISO 104785050mg/kgSodium, max. 3,4)

ISO 104783030mg/kgSodium before engine, max.3,4)

ISO 10478 or IP 501or 470

8030mg/kgAluminium + Silicon, max.

ISO 10478 or IP 501or 470

1515mg/kgAluminium + Silicon before engine, max.4)

ISO 103702215% massCarbon residue, max.

ASTM D 3279148% massAsphaltenes, max.4)

ISO 27196060°CFlash point (PMCC), min.

ISO 30163030°CPour point, max.

ISO 10307-20.100.10% massTotal sediment potential, max.

IP 501 or 4703030mg/kgUsed lubricating oil, calcium, max. 6)

IP 501 or 4701515mg/kgUsed lubricating oil, zinc, max. 6)

IP 501 or 5001515mg/kgUsed lubricating oil, phosphorus, max. 6)

Remarks:

Max. 1010 kg/m³ at 15°C provided the fuel treatment system can remove water and solids.1)

Straight run residues show CCAI values in the 770 to 840 range and are very good ignitors. Cracked residuesdelivered as bunkers may range from 840 to - in exceptional cases - above 900. Most bunkers remain in themax. 850 to 870 range at the moment.

2)

Sodium contributes to hot corrosion on exhaust valves when combined with high sulphur and vanadium contents.Sodium also contributes strongly to fouling of the exhaust gas turbine blading at high loads. The aggressivenessof the fuel depends not only on its proportions of sodium and vanadium but also on the total amount of ashconstituents. Hot corrosion and deposit formation are, however, also influenced by other ash constituents. It istherefore difficult to set strict limits based only on the sodium and vanadium content of the fuel. Also a fuel withlower sodium and vanadium contents that specified above, can cause hot corrosion on engine components.

3)

Additional properties specified by the engine manufacturer, which are not included in the ISO specification.4)

A sulphur limit of 1.5% mass will apply in SOx emission controlled areas designated by IMO (InternationalMaritime Organization). There may also be other local variations.

5)

A fuel shall be considered to be free of used lubricating oil (ULO), if one or more of the elements calcium, zinc,and phosphorus are below or at the specified limits. All three elements shall exceed the same limits before afuel shall be deemed to contain ULO's.

6)

Marine Project Guide W26 - 5/2007 37

Wärtsilä 26 - Project guide6. Fuel oil system

Page 73: PROYECTO FIN DE GRADO - ruc.udc.es

The limits above concerning HFO 2 also correspond to the demands of the following standards:

• BS MA 100: 1996, RMH 55 and RMK 55

• CIMAC 2003, Grade K 700

• ISO 8217: 2005(E), ISO-F-RMK 700

The fuel shall not include any added substances or chemical waste, which jeopardizes the safety of install-ations or adversely affects the performance of the engines or is harmful to personnel or contributes overallto air pollution.

38 Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide6. Fuel oil system

Page 74: PROYECTO FIN DE GRADO - ruc.udc.es

6.2 Internal fuel oil systemFigure 6.1 Internal fuel oil system, MDF (DAAE031815b)

Sensors and indicatorsSystem components

Fuel oil leakage, injection pipeLS103A/BInjection pump01

Fuel oil filter, pressure differencePDS113Injection valve02

Fuel oil pressure, engine inlet (if GL)PI101Leak fuel oil system with level alarm03

Fuel oil stand-by pump start (optional)PS110Duplex fine filter04

Fuel oil pressure, engine inletPT101Engine driven fuel feed pump05

Fuel oil temperature, engine inletTE101Pressure regulating valve06

Fuel oil temperature, engine inletTI101

Marine Project Guide W26 - 5/2007 39

Wärtsilä 26 - Project guide6. Fuel oil system

Page 75: PROYECTO FIN DE GRADO - ruc.udc.es

Figure 6.2 Internal fuel oil system, HFO (DAAE031861a)

Sensors and indicatorsSystem components

Fuel oil leakage, injection pipe A/B bankLS103A/BInjection pump01

Fuel oil pressure, engine inlet (if GL)PI101Injection valve02

Fuel oil pressure, engine inletPT101Leak fuel oil system with level alarm03

Fuel oil temperature, engine inletTE101Adjustable orifice04

Fuel oil temperature, engine inletTI101

StandardPressureclass

SizePipe connections

DIN2633/DIN2513 R13PN16DN32Fuel inlet, in line101

DIN2633/DIN2513 R13PN16DN32Fuel inlet 12V, MDF101

DIN2633/DIN2513 R13PN16DN40Fuel inlet 16V, MDF101

DIN2633/DIN2513 V13PN16DN25Fuel inlet V engines, HFO101

DIN2633/DIN2513 R13PN16DN32Fuel outlet, in line102

DIN2633/DIN2513 V13PN16DN25Fuel outlet, V102

40 Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide6. Fuel oil system

Page 76: PROYECTO FIN DE GRADO - ruc.udc.es

StandardPressureclass

SizePipe connections

DIN2353PN250OD22Leak fuel drain, clean fuel103

DIN2353PN250OD22Leak fuel drain, dirty fuel104

DIN2633PN16DN32Fuel stand-by connection, in line105

DIN2633PN16DN32Fuel from starting/day tank, in line114

DIN2633PN16DN25Fuel stand-by connection, V105

DIN2353PN250OD22Drain from fuel filter drip tray, V111

DIN2633PN16DN25Fuel from starting/day tank, V114

The engine can be specified to either operate on heavy fuel oil (HFO) or on marine diesel fuel (MDF).

6.2.1 MDF engineAn engine specified for MDF must be modified for operation on HFO.

The standard system comprises the following built-on equipment:

• Fuel injection pumps

• Injection valves

• Engine driven fuel feed pump

• Non-return valve

• Fine filter, duplex type

• Stand-by connection

• Pressure control valve in the outlet pipe

6.2.2 HFO engineAn engine specified for continuous operation on HFO can be operated on MDF without modifications forlimited periods. If operating for longer periods on MDF, the exhaust valve and valve rotators have to bechanged.

The standard system comprises the following built-on equipment:

• Fuel injection pumps

• Injection valves

• Adjustable throttle valve in the outlet pipe

6.2.3 Leak fuel systemClean leak fuel from the injection valves and the injection pumps is collected on the engine and drained bygravity through a clean leak fuel connection. The clean leak fuel can be re-used without separation. Thequantity of clean leak fuel is given in chapter Technical data. Other possible leak fuel and spilled water andoil is separately drained from the hot-box through dirty fuel oil connections and it shall be led to a sludgetank.

6.3 External fuel oil systemThe design of the external fuel system may vary from ship to ship, but every system should provide wellcleaned fuel of correct viscosity and pressure to each engine. Temperature control is required to maintainstable and correct viscosity of the fuel before the injection pumps (see Technical data). Sufficient circulationthrough every engine connected to the same circuit must be ensured in all operating conditions.

The fuel treatment system should comprise at least one settling tank and two separators. Correct dimen-sioning of HFO separators is of greatest importance, and therefore the recommendations of the separatormanufacturer must be closely followed. Poorly centrifuged fuel is harmful to the engine and a high contentof water may also damage the fuel feed system.

Marine Project Guide W26 - 5/2007 41

Wärtsilä 26 - Project guide6. Fuel oil system

Page 77: PROYECTO FIN DE GRADO - ruc.udc.es

Injection pumps generate pressure pulses into the fuel feed and return piping. The fuel pipes between thefeed unit and the engine must be properly clamped to rigid structures. The distance between the fixingpoints should be at close distance next to the engine. See chapter Piping design, treatment and installation.

A connection for compressed air should be provided before the safety filter, together with a drain from thefuel return line to the clean leakage fuel or overflow tank. With this arrangement it is possible to blow outfuel from the engine prior to maintenance work, to avoid spilling.

Note

In multiple engine installations, where several engines are connected to the same fuel feed circuit, it mustbe possible to close the fuel supply and return lines connected to the engine individually. This is a SOLASrequirement. It is further stipulated that the means of isolation shall not affect the operation of the otherengines, and it shall be possible to close the fuel lines from a position that is not rendered inaccessible dueto fire on any of the engines.

6.3.1 Fuel heating requirements HFOHeating is required for:

• Bunker tanks, settling tanks, day tanks

• Pipes (trace heating)

• Separators

• Fuel feeder/booster units

To enable pumping the temperature of bunker tanks must always be maintained 5 - 10°C above the pourpoint - typically at 40 - 50°C. The heating coils can be designed for a temperature of 60°C.

The tank heating capacity is determined by the heat loss from the bunker tank and the desired temperatureincrease rate.

42 Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide6. Fuel oil system

Page 78: PROYECTO FIN DE GRADO - ruc.udc.es

Figure 6.3 Fuel oil viscosity-temperature diagram for determining the pre-heating temperatures of fuel oils (4V92G0071a)

Example 1: A fuel oil with a viscosity of 380 cSt (A) at 50°C (B) or 80 cSt at 80°C (C) must be pre-heatedto 115 - 130°C (D-E) before the fuel injection pumps, to 98°C (F) at the separator and to minimum 40°C (G)in the storage tanks. The fuel oil may not be pumpable below 36°C (H).

To obtain temperatures for intermediate viscosities, draw a line from the known viscosity/temperature pointin parallel to the nearest viscosity/temperature line in the diagram.

Example 2: Known viscosity 60 cSt at 50°C (K). The following can be read along the dotted line: viscosityat 80°C = 20 cSt, temperature at fuel injection pumps 74 - 87°C, separating temperature 86°C, minimumstorage tank temperature 28°C.

6.3.2 Fuel tanksThe fuel oil is first transferred from the bunker tanks to settling tanks for initial separation of sludge andwater. After centrifuging the fuel oil is transferred to day tanks, from which fuel is supplied to the engines.

Marine Project Guide W26 - 5/2007 43

Wärtsilä 26 - Project guide6. Fuel oil system

Page 79: PROYECTO FIN DE GRADO - ruc.udc.es

Settling tank, HFO (1T02) and MDF (1T10)

Separate settling tanks for HFO and MDF are recommended.

To ensure sufficient time for settling (water and sediment separation), the capacity of each tank should besufficient for min. 24 hours operation at maximum fuel consumption.

The tanks should be provided with internal baffles to achieve efficient settling and have a sloped bottomfor proper draining.

The temperature in HFO settling tanks should be maintained between 50°C and 70°C, which requiresheating coils and insulation of the tank. Usuallly MDF settling tanks do not need heating or insulation, butthe tank temperature should be in the range 20 - 40°C.

Day tank, HFO (1T03) and MDF (1T06)

Two day tanks for HFO are to be provided, each with a capacity sufficient for at least 8 hours operation atmaximum fuel consumption.

A separate tank is to be provided for MDF. The capacity of the MDF tank should ensure fuel supply for 8hours.

Settling tanks may not be used instead of day tanks.

The day tank must be designed so that accumulation of sludge near the suction pipe is prevented and thebottom of the tank should be sloped to ensure efficient draining.

HFO day tanks shall be provided with heating coils and insulation. It is recommended that the viscosity iskept below 140 cSt in the day tanks. Due to risk of wax formation, fuels with a viscosity lower than 50 cStat 50°C must be kept at a temperature higher than the viscosity would require. Continuous separation isnowadays common practice, which means that the HFO day tank temperature normally remains above90°C.

The temperature in the MDF day tank should be in the range 20 - 40°C.

The level of the tank must ensure a positive static pressure on the suction side of the fuel feed pumps. Ifblack-out starting with MDF from a gravity tank is foreseen, then the tank must be located at least 15 mabove the engine crankshaft.

Leak fuel tank, clean fuel (1T04)

Clean leak fuel is drained by gravity from the engine. The fuel should be collected in a separate clean leakfuel tank, from where it can be pumped to the day tank and reused without separation. The pipes from theengine to the clean leak fuel tank should be arranged continuosly sloping. The tank and the pipes must beheated and insulated, unless the installation is designed for operation on MDF only.

The leak fuel piping should be fully closed to prevent dirt from entering the system.

Leak fuel tank, dirty fuel (1T07)

In normal operation no fuel should leak out from the components of the fuel system. In connection withmaintenance, or due to unforeseen leaks, fuel or water may spill in the hot box of the engine. The spilledliquids are collected and drained by gravity from the engine through the dirty fuel connection.

Dirty leak fuel shall be led to a sludge tank. The tank and the pipes must be heated and insulated, unlessthe installation is designed for operation exclusively on MDF.

6.3.3 Fuel treatment

Separation

Heavy fuel (residual, and mixtures of residuals and distillates) must be cleaned in an efficient centrifugalseparator before it is transferred to the day tank.

Classification rules require the separator arrangement to be redundant so that required capacity is maintainedwith any one unit out of operation.

All recommendations from the separator manufacturer must be closely followed.

Centrifugal disc stack separators are recommended also for installations operating on MDF only, to removewater and possible contaminants. The capacity of MDF separators should be sufficient to ensure the fuelsupply at maximum fuel consumption. Would a centrifugal separator be considered too expensive for a

44 Marine Project Guide W26 - 5/2007

Wärtsilä 26 - Project guide6. Fuel oil system