21
Procesos electroquímicos para: Eficientar el uso de energía Tratamiento de contaminantes Electrogeneración de luz Proyectos de Investigación Jorge Ibáñez Cornejo (JIC)

Proyectos de Investigación - IBERO · • Eficientar el uso de ... • Electrogeneración de luz Proyectos de Investigación ... una de las dos reacciones de la celda para producir

  • Upload
    lemien

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

•  Procesos electroquímicos para:

•  Eficientar el uso de energía

•  Tratamiento de contaminantes

•  Electrogeneración de luz

Proyectos de Investigación Jorge Ibáñez Cornejo

(JIC)

PROCESOS SIMULTÁNEOS

•  En electroquímica es frecuente que se use sólo una de las dos reacciones de la celda para producir una sustancia de interés.

•  Por ello estamos trabajando en procesos en donde se usa la electricidad en ambos electrodos para llevar a cabo una reacción útil

Electrocoagulation

- + Fe2+

OH-

OH-

Ibanez, J. G.; Singh, M. M.; Szafran, Z.; Pike, R. M. “Laboratory Experiments On Electrochemical Remediation Of The Environment. Part 4. Color Removal of Simulated Wastewater by Electrocoagulation-Electroflotation”. J. Chem. Educ. 75 (8) 1040-1041 (1998).

Electrocoagulación asistida por un campo magnético

Fe2+ [Ar]3d6 diamagnético

Fe3+ [Ar]3d5 paramagnético

+-VOLTAJE

Fuente de poder

Ánodo(Fe)

Cátodo

+-

-

Fe(OH)2

Fe(OH)3

Electrocoagulación asistida por un campo magnético

Average Fe(II/III) production as a function of the applied potential, in N2

0

1

2

3

4

5

3 4.5 6 7.5 9 12

Voltage, volts

Fe c

once

ntra

tion,

mg/

L

Avg. mg/L Fe2+

Avg. mg/L Fe3+

Producción y uso de Ag3+ para oxidación de contaminantes

Ag"Ag3+ + 3e- 3H2O + 3e- " 3/2 H2 + 3OH-

Removal of insoluble MX(s) by chelation and regeneration of M + L

MX(s) + H2O MX(s) + EDTA

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14

Fraction

pH

Cu Cu CO (OH) (s) CuO(s)2+22 3

CuCO3·Cu(OH)2 - surrogate pollutant

Ibanez, Jorge; Balderas-Hernández, Patricia; Garcia-Pintor, Elizabeth; Barba-Gonzalez, Sandy; Doria-Serrano, Maria; Hernaiz-Arce, Lorena; Diaz-Perez, Armando; Lozano-Cusi, Ana. Laboratory Experim. on the Electrochem. Remediation of the Environ. Part 9. Microscale Recovery of a Soil Metal Pollutant and its Extractant. J. Chem. Educ. (Web): May 20, 2011.

H4 EDTA

Cu

pH = 3.5

Paired Electrochemical Processes

Paired electrochemical processes:-­‐ Avoid the need for a  “sacrificial reaction”-­‐ Reduce   the generation of waste and theconsumption of energy

EXAMPLE:   We developed a   small–scale processfor the production of ClO2.   (An environmentally-­‐friendly alternative to Cl2 for disinfection,   watertreatment,  pulp bleaching)+  Reduction of ClO3

-­‐,  oxidation of ClO2-­‐

Both electrodic reactions can  be  used for

ELECTROLUMINISCENCE  (ECL)

Luminol (2,3-­‐aminophthalohydrazide) can  be  oxidized  in  basic  conditions  to  yield  a  relatively  long-­‐lived  excited  state  from  which  it  emits  blue  light.  A  co  reactant  (H2O2)  was  used  to  increase  light    emission.

The  equilibrium  between  ClO2-­‐ and  ClO-­‐ at  a  cathode  

could  allow  for  the  use  of  this  last  species  to  provoke    the  oxidation  of  the  luminophore to  produce  an  excited  state.  

The  equilibrium  between  ClO2-­‐ and  ClO-­‐ at  a  cathode  

could  allow  for  the  use  of  this  last  species  to  provoke    the  oxidation  of  the  luminophore to  produce  an  excited  state.  

+

FIRST  EXAMPLE  OF  SIMULTANEOUS  ELECTROLUMINISCENCE

Study of individual  processses (i.e.,  

conditions for ECL  in  cathode and anode)

Study of individual  processses (i.e.,  

conditions for ECL  in  cathode and anode)

Characterization ofluminol and ClO-­‐ (LSV)

(Figures  1a  – 1c)

Characterization ofluminol and ClO-­‐ (LSV)

(Figures  1a  – 1c)Obtain ECL  separatelyObtain ECL  separately

Couple both processesand attempt

simultaneous ECL

Couple both processesand attempt

simultaneous ECL

Cathodic  ECL  is more  sensitive;  the cathodic  

potenial is fixed at -­‐200  mV

Cathodic  ECL  is more  sensitive;  the cathodic  

potenial is fixed at -­‐200  mV

Blue  ECL  is  produced  in  both  compartments  (constant  in  the  anodic  side,  intermittent  in  the  cathodic  side).

*  Figure  2  shows  the  cell  arrangement  used  for  the  simultaneous  process.

Blue  ECL  is  produced  in  both  compartments  (constant  in  the  anodic  side,  intermittent  in  the  cathodic  side).

*  Figure  2  shows  the  cell  arrangement  used  for  the  simultaneous  process.

0

50

100

150

200

250

300

350

0 200 400 600 800 1000

Potential (mV vs. Ag/AgCl)

Cu

rre

nt

(µA

)

-21.05

-16.05

-11.05

-6.05

-1.05

-800 -700 -600 -500 -400 -300 -200 -100 0

Potential (mV vs. Ag/AgCl)

Cu

rren

t (µ

A)

-60

-50

-40

-30

-20

-10

0

-1000 -800 -600 -400 -200 0 200 400

Potential (mV vs. Ag/AgCl)

Cu

rre

nt

(µA

)

Figure  1  – (a)  Anodic LSV  for luminol in  basic medium,  (b)  cathodic  LSV  for luminol in  basic medium,  (c)  cathodic  LSV  for ClO2-­‐.

0

50

100

150

200

250

300

350

0 200 400 600 800 1000

Potential (mV vs. Ag/AgCl)

Cu

rre

nt

(µA

)

-21.05

-16.05

-11.05

-6.05

-1.05

-800 -700 -600 -500 -400 -300 -200 -100 0

Potential (mV vs. Ag/AgCl)

Cu

rren

t (µ

A)

-60

-50

-40

-30

-20

-10

0

-1000 -800 -600 -400 -200 0 200 400

Potential (mV vs. Ag/AgCl)

Cu

rre

nt

(µA

)

Figure  1  – (a)  Anodic LSV  for luminol in  basic medium,  (b)  cathodic  LSV  for luminol in  basic medium,  (c)  cathodic  LSV  for ClO2-­‐.

0

50

100

150

200

250

300

350

0 200 400 600 800 1000

Potential (mV vs. Ag/AgCl)

Cu

rre

nt

(µA

)

-21.05

-16.05

-11.05

-6.05

-1.05

-800 -700 -600 -500 -400 -300 -200 -100 0

Potential (mV vs. Ag/AgCl)

Cu

rren

t (µ

A)

-60

-50

-40

-30

-20

-10

0

-1000 -800 -600 -400 -200 0 200 400

Potential (mV vs. Ag/AgCl)

Cu

rre

nt

(µA

)

Figure  1  – (a)  Anodic LSV  for luminol in  basic medium,  (b)  cathodic  LSV  for luminol in  basic medium,  (c)  cathodic  LSV  for ClO2-­‐.

Oxidation signalat 300  mV

(should occur at anode)

Oxidation signalat 300  mV

(should occur at anode)

Reduction signalat -­‐450  mV

(should NOT occurat the cathode)

Reduction signalat -­‐450  mV

(should NOT occurat the cathode)

Reduction signal.Starts at -­‐200  mV(should occur at

cathode).

Reduction signal.Starts at -­‐200  mV(should occur at

cathode).

Reference electrode(Ag  /  AgCl)

Pt gauze

Reference electrode(Ag/AgCl)

Pt flag

Cationic Exchange  membrane

Catholyte:1  M  NaClO2 (5  mL)*As  electrochemicalreduction initiated,  2  mL  ofluminol/H2O2 solution(same as  anolyte)  wasadded dropwise on top ofthe Pt gauze.

Anolyte:5.6  x  10-­‐6 M  luminolsolution made  basic withNaOH.H2O2 was added as  co-­‐reactant (30  μL  of 10  %  H2O2 in  5  mL  of testsolution)

Figure  2  – Experimental  cell used for simultaneous ECL.

Reference electrode(Ag  /  AgCl)

Pt gauze

Reference electrode(Ag/AgCl)

Pt flag

Cationic Exchange  membrane

Catholyte:1  M  NaClO2 (5  mL)*As  electrochemicalreduction initiated,  2  mL  ofluminol/H2O2 solution(same as  anolyte)  wasadded dropwise on top ofthe Pt gauze.

Anolyte:5.6  x  10-­‐6 M  luminolsolution made  basic withNaOH.H2O2 was added as  co-­‐reactant (30  μL  of 10  %  H2O2 in  5  mL  of testsolution)

Reference electrode(Ag  /  AgCl)

Pt gauze

Reference electrode(Ag/AgCl)

Pt flag

Cationic Exchange  membrane

Catholyte:1  M  NaClO2 (5  mL)*As  electrochemicalreduction initiated,  2  mL  ofluminol/H2O2 solution(same as  anolyte)  wasadded dropwise on top ofthe Pt gauze.

Anolyte:5.6  x  10-­‐6 M  luminolsolution made  basic withNaOH.H2O2 was added as  co-­‐reactant (30  μL  of 10  %  H2O2 in  5  mL  of testsolution)

Pt gauze

Reference electrode(Ag/AgCl)

Pt flag

Cationic Exchange  membrane

Pt gauze

Reference electrode(Ag/AgCl)

Pt flag

Cationic Exchange  membrane

Catholyte:1  M  NaClO2 (5  mL)*As  electrochemicalreduction initiated,  2  mL  ofluminol/H2O2 solution(same as  anolyte)  wasadded dropwise on top ofthe Pt gauze.

Anolyte:5.6  x  10-­‐6 M  luminolsolution made  basic withNaOH.H2O2 was added as  co-­‐reactant (30  μL  of 10  %  H2O2 in  5  mL  of testsolution)

Figure  2  – Experimental  cell used for simultaneous ECL.

Biaani  Sotomayor  Martínez-­‐Barranco,  Daniel  Zavala  Araiza,  Jorge  G.  Ibanez  Depto.  Ing.  y  C.  Químicas.  

Mexican Microscale  &  Green Chemistry Center.  U.  Iberoamericana  – México

LITERATURE  REFERENCES1.  Paddon,  C.A.;  Atobe,  M.;  Fuchigami,  T.;  He,  P.;  Watts,  P.;  Hasswel,  S.J.;  Pritchard,  G.J.;  Bull,  S.D.;  Marken,  F.  Towards  Paired  and  Coupled  Electrode  Reactions  for  Clean  Organic  Microreactor Electrosyntheses,  J.  Appl Electrochem,  2005,  36,  617-­‐634.2.  Rajeshwar,  K.;  Ibanez,  J.  G.  Environmental  Electrochemistry:  Fundamentals  and  Applications  in  Pollution  Abatement.  Academic  Press,  San  Diego,  1997.3.  Gomez-­‐Gonzalez,  A.;.  Ibanez,  J.  G.;  Vasquez-­‐Medrano,  R.  C.;  Paramo-­‐Garcia,  U.;  Zavala-­‐Araiza,  D. Cathodic  Production  of  ClO2 from  NaClO3,  J.  Electrochem.  Soc. 2009,156 (7),  E113-­‐E117.4.  Mena-­‐Brito,  R.;  Terrazas-­‐Moreno,  S.;  Ibanez,  J.  G.  Towards  A  Green  Production  Of  Chlorine  Dioxide  By  Convergent  Paired  Electrosynthesis.  (In  press, FreseniusEnvironmental  Bulletin,  Germany).5.  Liu,  X.;  Jiang,  H.;  Lei,  J.;  Ju,  H.  Anodic  Electrochemiluminescence of  CdTe Quantum  Dots  and  its  Energy  Transfer  for  Detection  of  Catechol Derivatives,  Anal.  Chem.  2007,  79,  8055  -­‐ 8060.6.  Bolton,  E.;  Richter,  M.;  Light  Emission  at  Electrodes:  An  ElectrochemiluminescenceDemonstration”,  J.  Chem.  Ed.,  2001,  78,  641  – 643.7.  Kumala,  S.;  Ala  – Kleme,  T.;  Papkovsky,  D.;  Loikas,  K.  Cathodic  ElectrogeneratedChemiluminescence of  Luminol at  Disposable  Oxide  – covered  Aluminum  Electrodes”,  Anal.  Chem.  1998,  70,  1112  – 1118.  

−+−

→−++−

2OHClO                                                    

2eO2H2ClO (6)

−+

→−++−

2OH2Cl                                                    

eO2HClO (7)

*2AP2ClLH −→+− (8)

hν2AP*2AP +−→− (9)

ELECTROLUMINISCENCIA SIMULTÁNEA Lum

inol in NaO

H + H

2 O2

Gases: Indirect Oxidation, Outer-Cell Process

Electrochemical treatments of H2S

Lab experiment with H2S

Ibanez, J. G. “Laboratory Experiments On Electrochemical Remediation Of The Environment. Part 5. Indirect H2S removal”. J. Chem. Educ. 2001 (6) 78, 778-779.

Oxidation of Sulfide Ions by Iodine

Iodine Regeneration by Electrolysis

Frost diagram of Cl species

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

-1 0 1 2 3 4 5 6 7 8

Oxidation number

-nE pH 0

pH 14

Electrochemical Production of Chlorine Dioxide

Paired production of ClO2

NaClO3, 1 M NaClO2, 1 M

Identification

UV-Vis Spectrum of gaseous chlorine dioxide

Ibanez, Jorge G.; Navarro-Monsivais, Carlos; Terrazas-Moreno, Sebastian; Mena-Brito, Rodrigo; Pedraza-Segura, Lorena; Mattson,

Bruce; Anderson, Michael P.; Fujita, Jiro; Hoette, Trisha. “Microscale Environmental Chemistry, Part 5. Production of ClO2, an Environmentally-Friendly Oxidizer and Disinfectant”, Chem. Educator 2006, 11, 174-177.

Photocatalysis

Cu2+ Cu1+ or Cu CB

VB

e-

h+

Ox 1 Red 1

Red 1 Ox 1 Org CO2

Coupled oxidation and reduction

Cu(II) removal and organic oxidation by photocatalysis

   To p  v ie w

Sid e  vie w

O p tio na l  C O   te st2

UV   la m p

To  p owe r  so urc e

Ba(OH)2 quartz tubes

TiO2 + Cu(II) + org

before

after

Cu (II) concentration change

00.10.20.30.40.50.60.70.80.91

0 10 20 30 40 50 60 70

t/min

At/Ao

Ibanez, Jorge G.; Mena-Brito, Rodrigo; Fregoso-Infante, Arturo. “Laboratory Experiments on the Electrochemical Remediation of the Environment. Part 8. Microscale Photocatalysis”, J. Chem. Educ. 2005, 82, 1549-1551.