24
Trondheim 2002 NTNU Quantum Cryptography FoU NTNU Vadim Makarov and Dag R. Hjelme Institutt for fysikalsk elektronikk NTNU www.vad1.com/qcr/ Norsk kryptoseminar, 17-18. oktober 2002. NTNU, Trondheim

Quantum Cryptography

  • Upload
    ivy

  • View
    28

  • Download
    0

Embed Size (px)

DESCRIPTION

NTNU. FoU. Norsk kryptoseminar, 17-18. oktober 2002. NTNU, Trondheim. Quantum Cryptography. Vadim Makarov and Dag R. Hjelme Institutt for fysikalsk elektronikk NTNU www.vad1.com/qcr/. Classical vs. quantum information. Classical information. Perfect copy. Unchanged original. - PowerPoint PPT Presentation

Citation preview

Page 1: Quantum Cryptography

Trondheim 2002

NTNU

Quantum Cryptography

FoU

NTNU

Vadim Makarov and Dag R. Hjelme

Institutt for fysikalsk elektronikk NTNU

www.vad1.com/qcr/

Norsk kryptoseminar, 17-18. oktober 2002. NTNU, Trondheim

Page 2: Quantum Cryptography

Trondheim 2002

NTNU

Classical information

Unchanged original

Broken original

Classical vs. quantum information

Perfect copy

Imperfect copy

Quantum information

Page 3: Quantum Cryptography

Trondheim 2002

NTNU

Qubit: polarization stateof a single photon

Measure?

Measure?50%

50%

Page 4: Quantum Cryptography

Trondheim 2002

NTNU

What is the problem with classical cryptography?

Secret key cryptography Requires secure channel for key distribution

In principle every classical channel can be monitored passively

Security is mostly based on complicated non-proven algorithms

Public key cryptography Security is based on non-proven mathematical assumptions

(e.g. difficulty of factoring large numbers)

We DO know how to factorize in polynomial time! Shor’s algorithm for quantum computers. Just wait until one is built.

Breakthrough renders messages insecure retroactively

Page 5: Quantum Cryptography

Trondheim 2002

NTNU

The holy grail: One-time pad

The only cipher mathematically proven Requires massive amounts of key material

m m

k k

c

Page 6: Quantum Cryptography

Trondheim 2002

NTNU

Encoder Decoder

Open (insecure) channelBobAlice

Key

Secure channel

MessageMessage

Encoded message

Key distribution

Secret key cryptography requires secure channel for key distribution. Quantum cryptography distributes the key by transmitting quantum

states in open channel.

Page 7: Quantum Cryptography

Trondheim 2002

NTNU

Quantum key distribution

Retained bit sequence 1 – – 1 0 0 – 1 0 0 – 1 – 0Bob’s measurement 1 0 0 1 0 0 1 1 0 0 0 1 0 0

Bob’s detection basisAlice’s bit sequence 1 0 1 1 0 0 1 1 0 0 1 1 1 0

Light source

Alice

Bob

Diagonal detector basis

Horizontal-vertical detector basis

Diagonal polarization filters

Horizontal-vertical polarization filters

Image reprinted from article: W. Tittel, G. Ribordy, and N. Gisin, "Quantum cryptography," Physics World, March 1998

NTNU

Page 8: Quantum Cryptography

Trondheim 2002

NTNU

Sender

50%

50%

50%

50%50%

50%

Eavesdropper Receiver

"0"

"1"

"1"

"0"

Sender

"0"

"0"

"1"

"0"

"1"

"1"

"0"

"1"

"0"

"1"

"0"

"1"

Rett

Galt

Rett

Rett

Galt

Rett

Rett

Galt

Rett

Rett

Galt

Rett

Tyvlytter

Resultat av målingMottaker

Rett

RettGaltRettGalt

Rett

RettGaltRettGalt

Rett

RettGaltRettGalt

Rett

RettGaltRettGalt

Referanse

Galt

Rett

Galt

Rett

Galt

Rett

Galt

Rett

Eavesdropping with wrong reference system

Page 9: Quantum Cryptography

Trondheim 2002

NTNU

1

SourceD0

D1

Sender (Alice) Receiver (Bob)L1

L2

S1 S2

Transmission line

1 = 0 or 90 - "1" Reference systems:

2 = 0

2 = 90 1 = 180 or 270 - "0"

Interferometric QKD channel

Page 10: Quantum Cryptography

Trondheim 2002

NTNU

Implementation: interferometer structure

Bob

Laser

APD

1300 nm (or 1550 nm)

Pulse Rate = 10 MHz

LineStandardSM fiber

PolarizationController

Attenuator

Alice's PC

PublicCommunicationChannel

Bob's PC

Eve's Territory

PolarizationCombiner

PolarizationCombiner

PhaseModulator 2

PolarizingSplitter

Phase Modulator 1

PM Coupler50/50

VariableDelay LinePolarizer

Variable RatioPM Coupler

PM fiber

PM fiber'1'

'0'

Alice

Page 11: Quantum Cryptography

Trondheim 2002

NTNU

Photo 1. Alice (uncovered, no thermoisolation installed)

Page 12: Quantum Cryptography

Trondheim 2002

NTNU

Photo 2. Bob (uncovered, no thermoisolation installed)

Page 13: Quantum Cryptography

Trondheim 2002

NTNU

tgate down to 1ns

gate pulse rate = 20 MHz

VB

t

T=1/(gate pulse rate)

VE

Vbias

tgate-VAPD

Single-photon detector:APD in Geiger mode

APD Inside CryostatC = CAPD

DifferentialAmplifier

Transmission Lines, Z=50

Gate Pulse Generator Bias

Epitaxx APD

Page 14: Quantum Cryptography

Trondheim 2002

NTNU

Recovery from errors

Individual attacks: 15% All theoretically possible attacks: 11%

QBER limit:

Eve’s information

Bob’s information

Page 15: Quantum Cryptography

Trondheim 2002

NTNU

Distance limitation

,nm

Fiberattenuation,

dB/kmDetectors

850 2 Si, room temperature1300 0.35 Ge, -196C1550 0.2 InGaAs, 60C

Maximum link distance, km

Detector noise level (dark count probability)

00 Few %

20

70

5E-5

30

5

1550 nm

850 nm

1300 nm

Page 16: Quantum Cryptography

Trondheim 2002

NTNU

Components of security

1. Conventional security

2. Security against quantum attacks

3. Security against Trojan horse attacks - ones that don’t deal with quantum states, but use loopholes

in optical scheme

Alice Bob

2 311

Page 17: Quantum Cryptography

Trondheim 2002

NTNU

Practical security: large pulse attack

Alice

Line

Attenuator

Alice's PC

Eve’s Equipment

Phase Modulator

- interrogating Alice’s phase modulator with powerful external pulses(can give Eve bit values directly)

Page 18: Quantum Cryptography

Trondheim 2002

NTNU

Eavesdropping experiment

Laser

Phase Modulator

Alice 4% reflection

Vmod

OTDR

Out

In

Fine length adjustment

to get L1 = L2

L2

L1

Received OTDR pulse

Vmod, V4.1 8.20

Variable attenuator

Eve

Page 19: Quantum Cryptography

Trondheim 2002

NTNU

Photo 3. Artem Vakhitov tunes up Eve’s setup

Page 20: Quantum Cryptography

Trondheim 2002

NTNU

Re-keying satellites/Global key distribution network

1.9 km10 km

23.4 km

Page 21: Quantum Cryptography

Trondheim 2002

NTNU

Quantum key distribution in network

Multi-user key distribution

Multiplexing with telecom traffic

Alice Bob 2

Bob 1

Bob 3

Passive splitter

BobAlice28 km

Data transmitter

Data receiver

1300 nm

1550 nm 1.2 Gbit/s

WDM WDM

Page 22: Quantum Cryptography

Trondheim 2002

NTNU

Pump Pulses 780nm

NonlinearCrystal

1560nmEntangled Photon Pairs

Entangled photon pairs

Passive Measurement

Alice

To Bob

Random state prepared passively

Page 23: Quantum Cryptography

Trondheim 2002

NTNU

Advanced multi-party protocols:Secret sharing and splitting

A

B C

A

B C

A

B C

Page 24: Quantum Cryptography

Trondheim 2002

NTNU

Commercial status

id Quantique (Geneva)first commercially available quantum key distribution

system:

MagiQ Technologies (Boston)

EQUIS project (Heriot-Watt University and Corning; UK)compact integration into standard PCs

+ several research groups, telecom/ electronics companies