40
1 Stefan von der Mark Technische Universität Berlin Microwave Engineering Realisierungskonzepte für drahtlose Sensornetzwerke – Ein Überblick Stefan von der Mark, Georg Böck

Realisierungskonzepte für drahtlose Sensornetzwerke – Ein Überblick

  • Upload
    deiter

  • View
    61

  • Download
    0

Embed Size (px)

DESCRIPTION

Realisierungskonzepte für drahtlose Sensornetzwerke – Ein Überblick. Stefan von der Mark, Georg Böck. Overview. What are Wireless Sensor Networks? Similarities and differences to RFID Some published approaches PicoRadio/PicoBeacon (Berkeley) WiseNET (CSEM) MUSE and ORBIT (WINLAB) - PowerPoint PPT Presentation

Citation preview

1Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Realisierungskonzepte für drahtlose Sensornetzwerke – Ein Überblick

Stefan von der Mark, Georg Böck

2Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Overview

• What are Wireless Sensor Networks?• Similarities and differences to RFID• Some published approaches

– PicoRadio/PicoBeacon (Berkeley)– WiseNET (CSEM)– MUSE and ORBIT (WINLAB)

• The AVM eGrain project– Concept– WakeUp– Demonstrator

3Stefan von der Mark

Technische Universität Berlin Microwave Engineering

What are Sensor Networks?

University of Geneva in Switzerland

Smart Dust:

4Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Applications

• Logistics, Locationing– Goods in a warehouse or shopping center– Books in a library

• Environmental monitoring– Indoor: Temperature, humidity, intruders– Outdoor: Pollution, agricultural research

• Structural monitoring– Bridges, skyscrapers, large halls– Ageing, stress from snow, earthquakes

• Military

5Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Properties of Sensor Networks

• Tiny little low cost sensor nodes • Wireless peer to peer communication• Self-sustained operation for prolonged time• Preferably completely integrated (CMOS)• Ad Hoc Networking:

6Stefan von der Mark

Technische Universität Berlin Microwave Engineering

State of the Art

• Existing sensor arrays are usually wired– Classical: Analog wire from each sensor– More modern: Digital bus systems

• Existing wireless sensors usually communicate with dedicated access points

• Sensor communication mostly proprietary,but IEEE standard 802.15.4/ZigBee exists

• New IEEE 1451.4 „plug&play“ standard for– Sensor ID– Type of measurement (Units!)– Calibration data

7Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Sensor Networks vs. RFID

RFID Sensor Networks

Transponder and interrogator All nodes equal

Tags reply only on request of Interrogator

All nodes can initiate transmission

High transmission power available from interrogator

Very low transmission power

Transponder usually powered by incoming RF

Own power source necessary

8Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Similarities

• Low data rates• Only occasional communication• Receivers can be similar• But transmission is completely different

9Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Realisation approaches

• Nothing coming close to the vision has been realized so far

• Different approaches are being pursued:– Big and power hungry, but functional nodes

(for protocol develompment, application research)– Demonstration of particular technologies

(low power circuits, sensing, energy scavenging)– Attempts towards complete low power hardware

(with reduced functionality)– And anything in between

10Stefan von der Mark

Technische Universität Berlin Microwave Engineering

PicoNode I (UC Berkeley)

• „PicoRadio Project“ at Berkeley Wireless Research Center, University of California at Berkeley (UCB)

• Strong ARM CPU• Xilinx FPGA• Proxim RangeLAN

or Bluetooth HW withown protocols

• 24 hr operation out of2 x 1200mAh Li-Ion

• Variety of sensor boards (modular concept)

11Stefan von der Mark

Technische Universität Berlin Microwave Engineering

PicoBeacon (UCB)

• Energy scavenged from light and vibration– 180 W out of 1 cm3 from vibrations

• 1.9 GHz transmission (no receiver)• 10m range• 2.4 x 3.9 cm2

12Stefan von der Mark

Technische Universität Berlin Microwave Engineering

WiseNet (CSEM)

• Swiss Center for Electronics and Microtechnology (CSEM)

• 2 mW RX, 32 mW TX• 433 / 868 MHz ISM• 25 kbps• 25 W for 56 bytes

every 100 seconds• WiseMAC specialized

MAC protocol• External Antenna

13Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Mote (Crossbow Inc.)

• Commercial sensor nodes based on UCB design and TinyOS operating system

14Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Mote (cont.)

• Variety of different nodes• MICA2 or 802.15.4/ZigBee protocols • 315/433/868/916 MHz options (MICA)

or 2.4 GHz (ZigBee)• 1 yr operation out of

AAA batteries

15Stefan von der Mark

Technische Universität Berlin Microwave Engineering

MUSE (WINLAB)

• Wireless Information Network Laboratory, Rutgers University, New Jersey

• Commercial embedded computers and WLAN transceiver

• Target is completeintegration

16Stefan von der Mark

Technische Universität Berlin Microwave Engineering

ORBIT (WINLAB)

• 400 nodes• Pure software testbed• No development of sensor hardware

17Stefan von der Mark

Technische Universität Berlin Microwave Engineering

The AVM eGrain Project

• AVM – „Autarke Verteilte Mikrosysteme“• 3 year BMBF project with these partners:

AVMMWT - ANT - TKN

BMBF grant No. 16SV1658

18Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Concept

• Development of completely autarkic ultra low power pico cell network

• Nodes are self organizing, no master/slave principle

• Highly integrated, node size ~1 cm3

• RF frequency 24 GHz• Development of low power system

architecture• Development of ultra low power RF

components

19Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Wakeup Strategies

Periodic Wakeup Wakeup Receiver

No extra components

Network synchronization necessary

Waste of power through unnecessary wakeups

Delay in communications

Immediate response

No reference clock

Standby power consumption

Nodes need to be in a sleep mode most of the time, but how and when to activate them?

20Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Block Diagram of the Wakeup Circuit

21Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Detector Principle

• Zero bias Schottky Diodes• FET size increases from first to third stage

22Stefan von der Mark

Technische Universität Berlin Microwave Engineering

0.5 1.0 1.50.0 2.0

20

40

60

0

80

U [V]

I [m

A]

Diode-like behavior of an NMOS Transistor:

„MOS Diode“

U

I

23Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Alternative Principle

• MOS rectifier• CMOS compatible, no BiCMOS necessary• But: less sensitivity, more standby power

Load

Vout

24Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Wake-Up Address Decoder

• Main requirement: low power consumption• Block diagram:

Detector

PWM-signal

serial Input

Shift registersAdress

correlator

A1-A8

Discriminators&

Logic

serialdata (0/1)

clock

reset

Adress preset

A1-

A8

Wakeupparallel

data

datavalid

25Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Prototype of Address Decoder

• CMOS-technology• Low complexity: ca. 470 transistors• No oscillator• Low data rate:

e.g. 50 kb/s

Address preset

RF Input

PWM signal

Wakeup-Output

Bias

Vcc: + 3V

26Stefan von der Mark

Technische Universität Berlin Microwave Engineering

RF Frontend Overview

• Frontend characteristics– Frequency: 24.125 GHz– Range: ca. 1 m– Transmit power: ca. 1 mW

• Flip-Chip-Assemblyand integrated Antenna

• IC-Technology: GaAs-HBT-MMICs (FBH)• TU Berlin (MWT, ANT), FBH

27Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Heterodyne Concept

• Standard approach• Upconversion and downconversion mixers• Good channel selectivity• Oscillator needed for Tx and Rx

LNA

BandFilter Mixer

VCO

Demodulator

PARF FilterIF Filter Mixer

VCO

28Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Zero IF Concept

• No oscillator needed in the receiver • Power consumption determined by LNA• Low complexity, low power consumption

Data

BatteryOscillator

LNA Detector LF-Amplifier

Discriminator

Data

Band filter

29Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Baseband demonstrator

• Concept

• Real data transmission at 24 GHz• Patch antenna realised on multilayer PCB• Minimum component count

RS232 12V

3V

TX Demonstrator

12V

3V

RX Demonstrator

RS232

2 2

30Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Transmitter

– On-Off-Keying (OOK) modulation– No power consumption in standby mode– No power consumption for „0“ bits

Data

BatteryOscillator

Antenna

31Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Receiver

– Zero IF– No mixer => no LO necessary (power saving!)– LF amplifier has very low current consumption

(ca. 100 µA)– Total battery current < 15 mA– Dielectric Resonator as BPF

LNA Detector LF-Amplifier

Discriminator

Data

Band filter

32Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Detector• Detector

– Diode type HSCH-3486 (Agilent)– Single stage detector – Other topologies are less efficient (bridge, cascade)

– PTX = 0 dBm, Pathloss (1m@24 GHz) = 76 dB=> PRX = –76 dBm, Gain LNA = 13 dB=> Pin, Detector = –63 dBm => Uout = 3 µV

-70 -60 -50 -40 -30-80 -20

1E-7

1E-6

1E-5

1E-4

1E-3

1E-8

1E-2

P_in

HB

.V_out_

e[::,0]

Matching

33Stefan von der Mark

Technische Universität Berlin Microwave Engineering

LNA• Measured LNA performance

– 14 mA DC @ 2 V– 13.3 dB gain @ 24.8 GHz– Bandwidth 4.2 GHz– NF 5.8 dB

(simulated) DC

IN

OUT

Bias Bias

Chipsize 1.1x1.3 mm

34Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Assembly

• Aperture coupled patch antenna

• Industry standard multilayer PCB

• RF Chip Flip-Chip mounted

• LF electronics in SMD• Housing soldered

• => only standard assembly technologies

Battery

RF ChipGroundplane

Patch-AntennaApertureFeedlineTeflon

Multilayer- PCB

1cm

LF Components

FR4

Solder

35Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Patch Antenna Principle

• Whole module size is antenna base

• Great beam collimation – Directivity 19.6 dB– Gain 8.5 dB (theo. Max. 9 dB)

• Coax feed

36Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Aperture coupled feed

• Greater bandwidth than for coaxial feed

• Lower directivity of15.6 dB

• Gain 7.8 dB• Fabrication much easier

than coax feed

37Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Photo

• 1 cm3

• 2 button cellbatteries

• 24 GHz• 2400 bps

38Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Future Work

• CMOS LNA to further reduce power consumption of the receiver (7 mA @ 1.2 V)

• Integration of detector with LNA– BiCMOS with schottky diodes– Pure CMOS with MOS rectifier

• Complete integration as SoC

39Stefan von der Mark

Technische Universität Berlin Microwave Engineering

Summary

• Today the vision is still far from reality• But many efforts and progress are made in

– Hardware design (digital and RF)– Integration and miniaturization– Energy scavenging and storage– Software design

• Some day the vision will become reality!

40Stefan von der Mark

Technische Universität Berlin Microwave Engineering

ReferencesT. T. Hsieh Using sensor networks for highway and traffic applications IEEE Potentials, vol. 23, no. 2,

pp. 13 – 16, Apr-May 2004

Christian C.Enz, Amre El-Hoiydi, Jean-Dominique Decotignie, Vincent Peiris WiseNET: An Ultralow-Power Wireless Sensor Network Solution IEEE Computer, August 2004, p. 62-70

Shad Roundy, Brian P. Otis, Yuen-Hui Chee, Jan M. Rabaey, Paul Wright A 1.9GHz RF Transmit Beacon using Environmentally Scavenged Energy IEEE Int.Symposium on Low Power Elec. and Devices 2003

Stefan von der Mark, Meik Huber, Mathias Wittwer, Wolfgang Heinrich, and Georg Boeck System Architecture for Low Power 24 GHz Front-End Frequenz -Zeitschrift für Telekommunikation, Special Issue Autarkic Distributed Microsystems in Sensor Networks, 3-4/2004, p. 70-73

M. Huber, S.v.d. Mark, N. Angwafo and G. Boeck Ultra low power Wakeup Circuits for Pico Cell Networks, A conceptional View Technical Report of the 1st European Workshop on Wireless Sensor Networks (EWSN), Jan 2004

Stefan von der Mark, Roy Kamp, Meik Huber and Georg Boeck Three Stage Wakeup Scheme for Sensor Networks IEEE/SBMO International Microwave and Optoelectronics Conference IMOC 2005; Brasilia, Brazil, July 25-28

http://tcs.unige.ch/doku.php/web/wirelesssensornetworks University of Geneva in Switzerland

http://bwrc.eecs.berkeley.edu BWRC at UCB: PicoRadio, PicoNode, PicoBeacon

http://www.csem.ch CSEM: WiseNet

http://www.xbow.com Crossbow: Mote

http://www.winlab.rutgers.edu WINLAB: Muse, Orbit

http://www-mwt.ee.tu-berlin.de Technische Universität Berlin Microwave Engineering: AVM