40
LH遷移の時空間発展研究の新展開 (Recent Progress on the spa3otemporal evolu3on of the LH transi3on.) 三木 一弘(Kazuhiro Miki) WCI Center for Fusion Theory, NFRI, Korea Center for Computa3onal Science and eSystems, JAEA, Japan 日本物理学会 26aKC3 招待講演 09/26/2013, Tokushima, Japan

(RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

L-­‐H遷移の時空間発展研究の新展開  (Recent  Progress  on  the  spa3o-­‐temporal  

evolu3on  of  the  L-­‐H  transi3on.)     三木 一弘(Kazuhiro  Miki)  

WCI  Center  for  Fusion  Theory,  NFRI,  Korea  Center  for  Computa3onal  Science  and  e-­‐Systems,  JAEA,  Japan  

日本物理学会  26aKC-­‐3  招待講演  09/26/2013,  Tokushima,  Japan

Page 2: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

•  Collaborators  P.H.  Diamond,  G.  Tynan,  O.D.  Gurcan,  T.  Estrada,    L.  Schmitz,  G.S.  Xu,  D.  McDonald,  Y.  Kosuga,  H.  Jhang,  C.  Lee,  M.  Malkov,  P.  Manz,  N.  Fedorczak,  K.J.  Zhao,  W.W.  Xiao,  S.-­‐H.  Hahn    •  Thanks    N.  Miyato,  Y.  Idomura      •  Acknowledgements  This  work  is  supported  by  WCI  Program,  funded  by  NFR,  Korea,    and  HPCI  Strategic  Program  Field  No.4:  Next-­‐Genera3on  Industrial  Innova3ons,  funded  by  the  MEXT,  Japan.  

Page 3: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

Contents

•  Introduc3on  to  recent  progress  on  L-­‐H  transi3on.    

•  Descrip3on  of  the  reduced  1D  model  for  L-­‐H  transi3on,  showing  spontaneous  transi3on.  

•  S3mulated  transi3on,  triggered  by  transient  par3cle  perturba3on.    

•  Concluding  remarks

Page 4: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

最近のLH遷移に関する論文

•  Estrada  ‘10  EPL  •  Conway  ’11  PRL  •  Estrada  ‘11  PRL  •  G.S.  Xu  ’12  PRL  •  Schmitz  ‘12  PRL  •  Miki  ‘13  PRL  •  J.  Cheng  ’13  PRL  •  Kobayashi  ‘13  PRL  •  Shesterikov  ‘13  PRL

近年,LH遷移に関する知見は実験・理論の両面から発展し,注目されている.

Page 5: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

L-­‐H  遷移とは

•  ASDEXで初めて発見  [Wagner  ‘82  PRL]  – 周辺領域に特有の閉じ込め改善現象  – ExBシアの関連性  

•  ITERの標準シナリオ

•  理論によるしきい値の評価は未解決  

[Mar3n  ’08  JoCP]

[Ryter  ‘09  NF]

Page 6: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

Two  kinds  of  bifurca3on  mechanisms  –  Er  bifurca3on  due  to  ion  orbit  loss  etc.

•  Ini3ated  in  late  80s,  [Itoh-­‐Itoh  ‘88  PRL],  [Shaing,  ’89  PRL].  

•  Ini3a3ve  introduc3on  of  cusp-­‐type  bifurca3on.  (S-­‐curve  model)  

•  incomplete  treatment  of  turbulence  fluctua3ons.  

6  Itoh-­‐Itoh,  PRL,  ‘88 Shaing,  PRL  ‘89

Page 7: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

Two  kinds  of  bifurca3on  mechanisms  –  turbulence  model  [Hinton  ‘91  PoF  B]

7  

χ0:  neoclassical  transport  χ1:  turbulent  transport    (1+α<VE>’2)-­‐1:  suppression  by  ExB  shear

ZF  shearing  feedback  loop  is  not  considered  yet.

These  model  studies  are  followed  by:  -­‐  Spa3o-­‐temporal  evolu3on  study,  dynamics  of  

slowly  propaga3ng  barrier  [Diamond  ‘97],  [Lebedev  ’97]  

-­‐  Considera3on  of  2-­‐field  (p,  n)  model,  indica3ng  importance  of  fueling  on  transi3on  [Hinton,  Staebler  ‘93],  [Malkov  ’08]  

1-­‐field  barrier  dynamics:  Turbulence  suppression  by  ExB  shear  and  subsequent  posi6ve  feedback  by  mean  field.

∂P∂t+

1r∂∂r

(rQ) = S(r), Q = − χ0 +χ1

1+α ∂vE /∂r( )2

#

$%%

&

'((

∂P∂r

, ∂vE∂r

=1eB

∂∂r

1n(r)

∂P(r)∂r

#

$%

&

'(

Page 8: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

The  framework  on  the  L-­‐H  transi3on  model:    2  predator-­‐1  prey(Kim-­‐Diamond)  model    

[E.J.  Kim  and  Diamond  ’03,  PRL]

8  

Turbulence:  

Zonal  Flow(ZF):

pressure  gradient  ∇<P>

• Limit-­‐cycle  oscilla3on  prior  to  the  transi3on  • Local(0D)  model  

2  predators

1  prey

ε

VZF Ν=∇<P>

V = dN 2Mean  Flow  equilibrium:  

Page 9: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

TJ-­‐II  revealed  physical  mechanism  behind  the  L-­‐H  transi3on  from  the  LCO.

9  

T. Estrada et al.

0

5

10

10 -6

10 -5

10 -4

168.5 169.0 169.5 170.0 170.5 171.0

|Er| (

kV/m

) S (a. u.)

time (ms)

Fig. 5: (Color online) Time evolution of Er and densityfluctuation level obtained from the spectrogram shown in fig. 4.

6

8

10

12

10 -7 10 -6 10 -5 10 -4

|Er| (

kV/m

)

S (a.u.)

1

2

3

#23473, t=170-170.4 ms

Fig. 6: (Color online) Relation between Er and density fluctu-ation level. Only two of the cycles shown in fig. 5 are displayed.The time interval between consecutive points is 12.8µs.

The time evolution of both, Er and density fluc-tuations, reveals a characteristic predator-prey rela-tionship: a periodic behaviour with Er (predator)following the density fluctuation level (prey) with90! phase di!erence can be clearly seen. Er is observedto grow and decay at di!erent time rates ((100–150)µsand (50–80)µs, respectively), while the turbulence growsand decays in comparable times ((50–70)µs). These timescales being much faster than the energy confinementtime. The relation between Er and the density fluctuationlevel showing a limit-cycle behavior is represented infig. 6. For the sake of clarity, only two cycles are displayed.The turbulence-induced sheared flow is generated causinga reduction in the turbulent fluctuations (1 in fig. 6), thesubsequent drop in the sheared flow (2 in fig. 6) and theposterior increase in the turbulence level (3 in fig. 6).As has been already discussed, the coupling between

fluctuations and flows, described as a predator-prey evolu-tion, is the basis for some bifurcation theory modelsof the L-H transition [10,11]. The experiments reportedin this letter strongly support these models. However,these results do not necessarily exclude other mechanisms

working together in triggering the transition. In helicaldevices, the negative radial electric field imposed by theNeoclassical ion root condition in the L-mode can act as abias for the transition [16,22], either because a substantialEr-shear already can exist before the transition or becauseof the amplification of zonal flows by Er [27]. On the otherhand, as already mentioned, the magnetic topology caninfluence the H-mode occurrence through mechanisms asflow damping by poloidal viscosity [24] or spin-up of flowsby rational surfaces [28–30]. All these mechanisms mayact together to reach the specific conditions at which theself-regulation between turbulence and flows becomes thedecisive mechanism.To our knowledge, this is the first time that such

an experimental evidence is reported supporting thepredator-prey relationship of turbulence and flows as thebasis for the L-H transition. During the so-called IM modefound in DIII-D power scan experiments [21], the relationbetween electron temperature fluctuations and shearedflows seems to follow a predator-prey behavior, however,as the authors explain, the sheared flow is not directlyobserved but inferred from beam emission spectroscopydata. Two ingredients have been essential in attaining theresults presented in this letter, the possibility of achievinggradual L-H transitions and the capability of measuringsimultaneously both magnitudes, density fluctuations andsheared flows, with good spatiotemporal resolution.

Conclusions. – The dynamics of turbulence andflows has been measured during L-H transitions in thestellarator TJ-II. When operating close to the L-Htransition power threshold, pronounced oscillations inboth, Er and density fluctuation level, are measuredat the transition. The oscillations are measured rightinside the E!B shear layer (located at !" 0.83). Thetime evolution of both, Er and density fluctuation level,shows a characteristic predator-prey behavior, with Er(predator) following the density fluctuation level (prey)with 90! phase delay. These experimental observationsare consistent with L-H transition models based onturbulence-induced sheared/zonal flows.

# # #

The authors acknowledge the entire TJ-II team fortheir support during the experiments. This work has beenpartially funded by the Spanish Ministry of Science andInnovation under contract No. ENE2007-65927.

REFERENCES

[1] Wagner F., Becker G., Behringer K., CampbellD., Eberhagen A., Engelhardt W., Fussmann G.,Gehre O., Gernhardt J., v. Gierke G., Haas G.,Huang M., Karger F., Keilhacker M., KluberO., Kornherr M., Lackner K., Lisitano G., ListerG. G., Mayer H. M., Meisel D., Muller E. R.,Murmann H., Niedermeyer H., Poschenrieder W.,Rapp H. and Rohr H., Phys. Rev. Lett., 49 (1982) 1408.

35001-p4

T. Estrada et al.

0

5

10

10 -6

10 -5

10 -4

168.5 169.0 169.5 170.0 170.5 171.0

|Er| (

kV/m

) S (a. u.)time (ms)

Fig. 5: (Color online) Time evolution of Er and densityfluctuation level obtained from the spectrogram shown in fig. 4.

6

8

10

12

10 -7 10 -6 10 -5 10 -4

|Er| (

kV/m

)

S (a.u.)

1

2

3

#23473, t=170-170.4 ms

Fig. 6: (Color online) Relation between Er and density fluctu-ation level. Only two of the cycles shown in fig. 5 are displayed.The time interval between consecutive points is 12.8µs.

The time evolution of both, Er and density fluc-tuations, reveals a characteristic predator-prey rela-tionship: a periodic behaviour with Er (predator)following the density fluctuation level (prey) with90! phase di!erence can be clearly seen. Er is observedto grow and decay at di!erent time rates ((100–150)µsand (50–80)µs, respectively), while the turbulence growsand decays in comparable times ((50–70)µs). These timescales being much faster than the energy confinementtime. The relation between Er and the density fluctuationlevel showing a limit-cycle behavior is represented infig. 6. For the sake of clarity, only two cycles are displayed.The turbulence-induced sheared flow is generated causinga reduction in the turbulent fluctuations (1 in fig. 6), thesubsequent drop in the sheared flow (2 in fig. 6) and theposterior increase in the turbulence level (3 in fig. 6).As has been already discussed, the coupling between

fluctuations and flows, described as a predator-prey evolu-tion, is the basis for some bifurcation theory modelsof the L-H transition [10,11]. The experiments reportedin this letter strongly support these models. However,these results do not necessarily exclude other mechanisms

working together in triggering the transition. In helicaldevices, the negative radial electric field imposed by theNeoclassical ion root condition in the L-mode can act as abias for the transition [16,22], either because a substantialEr-shear already can exist before the transition or becauseof the amplification of zonal flows by Er [27]. On the otherhand, as already mentioned, the magnetic topology caninfluence the H-mode occurrence through mechanisms asflow damping by poloidal viscosity [24] or spin-up of flowsby rational surfaces [28–30]. All these mechanisms mayact together to reach the specific conditions at which theself-regulation between turbulence and flows becomes thedecisive mechanism.To our knowledge, this is the first time that such

an experimental evidence is reported supporting thepredator-prey relationship of turbulence and flows as thebasis for the L-H transition. During the so-called IM modefound in DIII-D power scan experiments [21], the relationbetween electron temperature fluctuations and shearedflows seems to follow a predator-prey behavior, however,as the authors explain, the sheared flow is not directlyobserved but inferred from beam emission spectroscopydata. Two ingredients have been essential in attaining theresults presented in this letter, the possibility of achievinggradual L-H transitions and the capability of measuringsimultaneously both magnitudes, density fluctuations andsheared flows, with good spatiotemporal resolution.

Conclusions. – The dynamics of turbulence andflows has been measured during L-H transitions in thestellarator TJ-II. When operating close to the L-Htransition power threshold, pronounced oscillations inboth, Er and density fluctuation level, are measuredat the transition. The oscillations are measured rightinside the E!B shear layer (located at !" 0.83). Thetime evolution of both, Er and density fluctuation level,shows a characteristic predator-prey behavior, with Er(predator) following the density fluctuation level (prey)with 90! phase delay. These experimental observationsare consistent with L-H transition models based onturbulence-induced sheared/zonal flows.

# # #

The authors acknowledge the entire TJ-II team fortheir support during the experiments. This work has beenpartially funded by the Spanish Ministry of Science andInnovation under contract No. ENE2007-65927.

REFERENCES

[1] Wagner F., Becker G., Behringer K., CampbellD., Eberhagen A., Engelhardt W., Fussmann G.,Gehre O., Gernhardt J., v. Gierke G., Haas G.,Huang M., Karger F., Keilhacker M., KluberO., Kornherr M., Lackner K., Lisitano G., ListerG. G., Mayer H. M., Meisel D., Muller E. R.,Murmann H., Niedermeyer H., Poschenrieder W.,Rapp H. and Rohr H., Phys. Rev. Lett., 49 (1982) 1408.

35001-p4

TJ-­‐II  [Estrada  ‘10  EPL]

•  Time  evolu3on  of  Er  and  turbulence  fluctua3on  reveals  predator-­‐prey  behavior.  

•  Microphysics  (fluctua3ons,  ZF)  should  enter    the  L-­‐H  transi3on  dynamics.    

   

Page 10: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

Spa3o-­‐Temporal  evolu3on  of  L-­‐(I-­‐phase)-­‐H  transi3on.

10  

The time-resolved E! B velocity is obtained from theinstantaneous Doppler shift, fD " #!S $!I%=2! "v?k"=#2!%, with v? " vE!B & vph. Neglecting the con-tribution of the fluctuation phase velocity vph, (estimated to

be much smaller than the electron and ion diamagneticvelocities by linear stability calculations for similar plas-mas [18]), one obtains vE!B ' 2! fD=k".

Figure 1(a) shows the time history of theE! B velocityvE!B across the plasma edge (measured by an 8-channelDBS system) in a dithering L-H transition, induced bystepping up the (co-injected) neutral beam power fromPinj " 2:8 MW to 4.5 MW, a value just above the

H-mode transition power threshold (at a toroidal magnetic

field B# " 2 T and plasma current Ip " 1:1 MA), Thecore plasma (line density !n " 2:7! 1019 m$3) is co-rotating, and in the L mode the radial electric field Er 'v#B"=B

2 and the poloidal projection of the E! B veloc-ity shown here are positive except for a narrow radial edgelayer a few cm inside the separatrix, where the contributionof the ion pressure gradient to Er produces weak intermit-tent negative flow. The normalized edge density fluctuationlevel ~n=n peaks near/outside the separatrix [Fig. 1(b)]. ~n=nis measured by DBS at a wave number k" ( 2:7 cm$1,"k"=k" ' 0:3, and k"$s ( 0:4. This wave number rangeoverlaps with the upper wave number range detected bybeam emission spectroscopy (BES) in DIII-D and corre-sponds to the poloidal wavenumber range where the maxi-mum growth rate of the ion temperature gradient mode[ITG], is expected. In addition, resistive balloning modes(RBM) may be active just inside the separatrix. The radia-tive instability, thought to be responsible for limit cycleoscillations in earlier DIII-D experiments with a highertriangularity plasma with lower x-point height [8], is notlikely to be present here due to the higher NBI heatingpower (2.8 vs 0.3 MW) and edge electron temperature, andlow Zeff ' 1:6. Because of backscattering, DBS intrinsi-cally detects modes with kr ' 0. At t( 1271 ms, a strong,periodic limit cycle oscillation (LCO) oscillation in theE!B velocity starts to develop in a 2–3 cm wide layer atand just inside the separatrix. Starting at t0 ( 1271:7 ms,density fluctuations are periodically reduced in the region2:25 m<R< 2:28 m, concomitantly with a sharp reduc-tion in theD% recycling light [Fig. 1(c)]. Edge confinementstarts to improve during the oscillatory phase, as evidencedby the changing rate of increase of the line density[Fig. 1(d)] and edge electron temperature [Fig. 1(e)]. Thefrequency of the E! B flow oscillation decreases gradu-ally from 2.5 to 1.7 kHz. About 15 ms after LCO onset,after a final D% transient, the transition to sustainedH-mode takes place, characterized by a strong, steadyE!B flow layer with Er ($rpi=en, where rpi is theion pressure gradient and n is the plasma density. Anexpanded time history reveals that the E!B velocityoscillations [Fig. 2(a)] at the separatrix lag the densityfluctuation amplitude [Fig. 2(b)] by about 90), as con-firmed by the cross-correlation coefficient [Fig. 2(d)].This phase lag is consistent with the predator-prey modelof the L-H transition advocated previously [11]. ZFs aredriven once density fluctuations reach sufficient amplitude;in turn, ZF shear is thought to quench fluctuations. Thetime delay between the peak fluctuation amplitude (and,presumably, peak radial particle transport flux) and thepeak divertor recycling (D%) light [Fig. 2(c)] is found tobe (120–140 &s, consistent with an estimated plasmaloss time due to parallel scrape-off layer (SOL) flow0:5q95R=0:3cs ' 140–180 &s (the edge safety factor isq95 ( 4:1 and an estimated SOL parallel flow speed of

0:3cs with cs " *#kTe & kTi%=mi+1=2 is used here).

R (m

)

LCFS

R (m

)

1265 1275 1285 1295

140426

D ! (1

015 p

h/s)

Time (ms)

2.53.0

3.5

n e(1

019 m

–3)

0.15

0.33

0.50

kT e

(keV

)

135

P NB

(MW

)

R = 2.2 m2.25 m2.28 m

Limit-CycleOscillations (LCO)L-Mode H-Mode

vExB(km/s)

ñ/n(au)

1.5

2.5

3.5

2.23

2.25

2.27

0.0

0.5

1.0

2.23

2.25

2.27

–6

3

0

6

9

(a)

(b)

(c)

(d)

(e)

(f)

to

FIG. 1 (color). Time evolution of (a) E!B velocity (thedirection of the ion diamagnetic and rB drift is indicated);(b) relative density fluctuation level; (c) divertor D% signal;(d) electron density; (e) edge electron temperature, and(f) neutral beam power across the transition from L modethrough limit cycle oscillations (LCO) to H mode.

PRL 108, 155002 (2012) P HY S I CA L R EV I EW LE T T E R Sweek ending

13 APRIL 2012

155002-2

DIII-­‐D  [Schmitz  ‘12  PRL]

•  Limit-­‐cycle  oscilla3on  with  radial  propaga3on.  

•  (At  least)  one  space  –  one  3me  model  is  necessary.

Page 11: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

1次元輸送モデルと自発的遷移

Page 12: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

L-­‐H時空間構造を調べるために,1次元のメゾスケール輸送モデルを提案しました.

•  5  field  reduced  mesoscale  model(p,  n,  I,  E0,  vθ),  mo3vated  by  – 1D  transport  +  2-­‐predator-­‐1-­‐prey  model    – Simplified  boundary  condi3on  on  p  and  n  at  LCFS;  no  SOL-­‐edge  interac3on.    

•  No  ion-­‐orbit-­‐loss  (or  Er  bifurca3on  )  •  NO  MHD  ac3vity    

•  N.B.:  No  ‘first  principle’  simula6ons  have    reproduced  or  elucidated  the  L-­‐H  transi6on  

12

[K.  Miki,  and  P.H.  Diamond  et  al.,  Phys.  Plasmas,  2012]

Page 13: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

Descrip3on  of  the  1D  model  (1):  Predator-­‐Prey  model    (a‘  la  Kim-­‐Diamond)

13

Driving  term Local  dissipa3on

ZF  shearing MF  shearing Turbulence  

spreading    [Hahm,  Lin]  

Reynolds  stress  drive MF  inhibi3on  in  Reynolds  cross-­‐phase  [E.  Kim  ’03  PRL]

ZF  collisional  damping

by  radial  force  balance

Turbulence  intensity:

Zonal  flow(ZF)  energy:  E0=V’ZF2

Mean  flow(MF)  shearing:

∂t I = (γL −ΔωI −α0Eo −αVEV )I + χN∂x (I∂xI )

∂tE0 =α0IE0 / (1+ζ0EV )−γdamp

ΕV = (∂xVE×B )2

Assuming  ITG  turbulence

Page 14: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

VnnDDp

xoneon

xoneop

−∂+−=Γ

∂+−=Γ

)(

)( χχ

∂t p(x)+∂xΓ p = H∂tn(x)+∂xΓn = S

Neoclassical  transport  term          

Banana  regime χneo ~ χTi ~ εT

−3/2q2ρi2ν ii

Dneo ~ (me /mi )1/2 χTi

D0 ~ χ0 ~τ ccs

2I(1+αt !VE

2 )

Turbulent  transport  term

pressure

density

)0 ,(

)( ,0,0

<∝⎟⎟⎠

⎞⎜⎜⎝

⎛−≅

+=

TT

TETEP

LILD

RD

vvV

TEP  pinch Thermoelectric  pinch

Inward

Pinch  term

Descrip3on  of  the  1D  model  (2):1D  transport  model  

14

ExB  shear  modifies  the  cross-­‐phase  factor  in  turbulent  flux  [Z.H.  Wang  ‘12  NF]

H

S

Page 15: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

Descrip3on  of  the  1D  model  (3):  poloidal  flow  and  radial  force  balance

−∂uθ∂t

≅α5γLω*

cs2∂xI +ν iiq

2R2µ00 (uθ +1.17csρiLT)Poloidal  flow  

Evolu3on:

!VE×B =1eB

−1n2

!n !p + 1n

!!p$

%&'

()+

rqR

u||$

%&

'

()!− !uθ

*

+

,,

-

.

//

Pressure  curvature

Density  gradient

Diamagne3c  driq

Toroidal  flow  (not  considered  here)

Poloidal  flow Radial  Force    Balance:

Turbulence  driven   Neoclassical  poloidal  flow

Page 16: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

L-­‐H  Transi3on  in  the  dynamical  systems

•  In  the  local  limit,  this  model  is  reduced  to  the  local  predator-­‐prey  (Kim-­‐Diamond)  model.    

•  Phase-­‐portrait  on  the  projec3on  of  E0=0

p’

I

∂t I = 0∂tE0 = 0

Suppression  by    mean  flow

∂t "p = 0 for  low  Q

L-­‐mode

Unstable  H-­‐mode

Destabiliza3on  of  the  node  due  to  MF  inhibi3on

Ramp  up

Cross-­‐over  in  3D  manifold  (L-­‐H  transi3on)  

(ref.  [Malkov  ’08]) for  high  Q

Limit-­‐cycle  oscilla3on  (stable)

Stable  H-­‐mode

∂t "p = 0

Page 17: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

自発的なL-­‐H遷移のケース

17

Model  studies  recover  the  spa3o-­‐temporal  evolu3on  of  the  spontaneous  L-­‐I-­‐H  transi3on.

→  At  L-­‐I  transi3on  -­‐  Limit-­‐cycle  oscilla3on(LCO)  begins.  

→  At  I-­‐H  transi3on  -­‐  MF  increases.  -­‐  Turbulence  and  ZF  

drop  in  the  pedestal  

������ ��

���

���

���

����

L�I#phase)/)))Limit#cycle))oscilla2on(LCO)) H#mode�

(∇n/n)-1(r/a=0.95) related Dα�

Page 18: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

1D  model  studies  exhibit  limit-­‐cycle  oscilla3on  in  space  of  I  VS  E0  VS  Ev

Turbulence  intensity  VS  ZF  energy ZF  energy  VS  MF  energy

1D  model  LCO  exhibits  a  gradient  oscilla3on,  too.  [cf.  Cheng  ’13  PRL]

Page 19: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

→ Note:  Extended  LCO  I-­‐phase  is  conceptually  and  diagnos3cally  useful  but  NOT  intrinsic  to  transi3on    

→ Stress  driven  flow  can  be  excited  in  burst      i.e.      cycle                    →        1  Period

19

turbulence

ZF

MF

3me

r/a

t(a/cs)

r/ar/a

r/a

(a) turbulence

(b) ZF

(c) log(MF)

(d)

(e)

turbulence

MFZF

!0IE

0

"

t(a/cs)

(f)

(A) (B)

FIG. 7. Spatio-temporal evolution of turbulence (a) I, (b) E0

, and (c) ln(EV ) as a function of time

t during a fast power ramp 2 ⇥ 104(a/cs) < t < 4 ⇥ 104(a/cs), and radius (0.5 < r/a < 1.0). No

LCO is seen. The I-phase LCO is compressed into a single burst of ZF at t = 2.72 ⇥ 104(a/cs).

(d) Time evolution of turbulence intensity I (blue chain line), ZF energy E0

(green solid line),

and MF shearing energy EV (red dotted line). This figure shows that at the L!H transition

t = 2.72⇥104(a/cs), the turbulence quenches at a faster rate, the ZF increases before the transition

and damps after the transition, and MF shear rapidly increases at and just after the transition.

(e) The evolution of the product quantity P? = ↵IE0

. The product quantity exhibits a peak just

before the transition and quenches after the transition. (f) An evolution of ⌘, showing a single

burst at t = 2.72⇥ 104(a/cs). This single burst triggers the quench of turbulence and the product

quantity ↵0

IE0

. Thus, the L!H transition occurs. For convenience, we here draw vertical lines

(A) at t = 2.71⇥ 104(a/cs) and (B) at t = 2.72⇥ 104(a/cs).

46

Slow  ramp  up Fast  ramp  up

Page 20: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

ZF  acts  as  a  trigger  of  the  L-­‐H  transi3on.  

•  Increasing  ZF  damping  delays  L-­‐H  transi3on.  

3me,  Q

n

Pthresh(n) Low  n High  n

Pthresh ∝γZF ∝ν ii ∝n

→  explaining  scaling  in  high  density  region?  

Page 21: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

→ Systema3c  Iden3fica3on  of  ZF  role  on  the  transi3on  

- Useful  parameter  (from  predator-­‐prey  model):    

             RT≥  1  ⇒  turbulence  collapse  and  transi3on  

21

RT ≡ vrE vθE ∂ V⊥ / ∂r γeffET

[Manz,  PoP  ’12]

Page 22: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

Useful  valida3on  on  the  transi3on

then begins to decay, defining phase (III) in the transition,consistent with recent observations in TJ-II.18 The delaybetween the reduction in the turbulent amplitude and thedrop of the Da (Figs. 2(a) and 2(b)) most likely correspondsto a combination of the time needed for cross-field transportand parallel flow from the midplane region to the divertorregion where the Da emissions are observed. The kineticenergy transfer P? from the turbulence into the shear flowcontinues to increase while the turbulence amplitude isdecreasing (Fig. 2(d)) during phase (III), while the L–H tran-sition is approached as shown in Fig. 2(d)). This confirmedthe earlier conjecture above that the low frequency flow isactually driven by a transfer of energy from the turbulence.About 1 ms before the L–H transition occurs, the kineticenergy transfer P? peaks. To evaluate whether this energytransfer is sufficient to reduce the turbulence level signifi-cantly the transfer rate must be compared to the energy inputrate into the turbulence as discussed above. Using experi-mental data, we find the ratio of the production, P?, normal-ized by ceff h~v2

?i in Figure 2(e). This ratio indicates the powertransfer rate into the shear flow normalized by the power

transfer into the turbulence from the combined effects of thefree energy source and the background Er shearing duringperiods of weak flow. As the Da signal starts to drop (the tra-ditional measure of the start of the L–H transition), the turbu-lence has already reached its minimum. Commensurate withthe drop in Da signal, the flow production rate surpasses theturbulence recovery rate and the turbulence energy collapsesto nearly zero. After the peak of the normalized productionrate, the production P? remains small and the low. But thelow frequency flow begins to recover (Fig. 2(c)), suggestingthat after the transition the flow is sustained by non-turbulentprocesses. The growth of the radial electric field and associ-ated flow shear after the drop in Da light has already beenshown to be associated with the growth of the ion pressuregradient.28 No ion temperature profiles are available here, butthe observation here is consistent with this earlier result. Fur-thermore, in an analysis of similar data obtained just outsideof the separatrix (shown in green in Fig. 2), no such transientbehavior is observed. This indicates that these observationsare isolated to the region inside the LCFS, and that on openfield lines the turbulence amplitude simply collapses after theH-mode transition, as has been reported earlier.3

COMPARISON WITH PRESENT PREDATOR-PREYMODEL

The one-space, one-time multiple shearing predator-prey model22 is used for comparison with the experimentalresults reported here from EAST. A fast ramp of the heatingpower is used to model the regular L–H transition. Underthese conditions, no limit-cycle oscillation is observed.Instead, a single burst of zonal flow energy and turbulencecollapse is observed, followed by a classic L–H transition. Atypical time trace around the L–H transition is shown in Fig.4. Here, Fig. 4(a) depicts the evolution of the amplitudes ofthe turbulence I, the zonal flow E2

0, and the mean flow. Themodest decrease of turbulence I in the early part of the modelevolution is triggered by a rapid growth of the mean flow, ora decorrelation of turbulence drive by mean flow shearing.The coupling between the zonal flow and the turbulence is

FIG. 2. Da (a), turbulent (b), and flow (c) fluctuation amplitude during L–Htransition. Energy transfer between turbulence and shear flow (d) and nor-malized to turbulent fluctuation amplitude and energy recovery time (e).Data from 1.0–1.5 cm inside LCFS denoted by blue and red curves. Datataken 1 cm outside of LCFS in the SOL region denoted by green curve.

FIG. 3. Hodograph of turbulent and flow energies during L-H transition.

072311-4 Manz et al. Phys. Plasmas 19, 072311 (2012)

t(a/cs)

r/a

r/a

r/a

(a) turbulence

(b) ZF

(c) log(MF)

(d)

(e)

turbulence

MFZF

!0IE

0

"

t(a/cs)

(f)

(A) (B)

FIG. 7. Spatio-temporal evolution of turbulence (a) I, (b) E0

, and (c) ln(EV ) as a function of time

t during a fast power ramp 2 ⇥ 104(a/cs) < t < 4 ⇥ 104(a/cs), and radius (0.5 < r/a < 1.0). No

LCO is seen. The I-phase LCO is compressed into a single burst of ZF at t = 2.72 ⇥ 104(a/cs).

(d) Time evolution of turbulence intensity I (blue chain line), ZF energy E0

(green solid line),

and MF shearing energy EV (red dotted line). This figure shows that at the L!H transition

t = 2.72⇥104(a/cs), the turbulence quenches at a faster rate, the ZF increases before the transition

and damps after the transition, and MF shear rapidly increases at and just after the transition.

(e) The evolution of the product quantity P? = ↵IE0

. The product quantity exhibits a peak just

before the transition and quenches after the transition. (f) An evolution of ⌘, showing a single

burst at t = 2.72⇥ 104(a/cs). This single burst triggers the quench of turbulence and the product

quantity ↵0

IE0

. Thus, the L!H transition occurs. For convenience, we here draw vertical lines

(A) at t = 2.71⇥ 104(a/cs) and (B) at t = 2.72⇥ 104(a/cs).

46

RT

transi3on

transi3on

TEXTOR  [Shesterikov  PRL  ’13]:  L-­‐H  transi3on  occurs  at  VbM=150[V]

RT

- Exp.  EAST  [Manz,  PoP  ’12]        Model  [Miki,  PoP  ’12]  

Page 23: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

What  do  we  learn? •  ZF  ‘triggers’  the  L-­‐H  transi3on,  (but  never  exclusive)  

– ZF  acts  as  a  ‘energy  holding  pa2ern’  to  store  energy  without  increasing  transport,  allowing  mean  VE’  to  steepen,  so  the  transi3on  can  develop    

•  ZF  damping  can  be  another  factor  to  determine  the  L-­‐H  power  threshold.  – Explain  high  density  scaling?  

•  I-­‐phase  can  be  dis3nct  state,  with  dis3nct  threshold,  different  from  H.  

 

23  

Page 24: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

誘起遷移の物理

Page 25: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

誘起遷移のダイナミクス Mo3va3on  Par3cle  injec3on  to  probe  and    

 Control  the  L→H  and  H→L  transi3ons.  

25

[K.  Miki,  P.H.  Diamond  et  al.,  PRL  ‘13],  [K.  Miki,  P.H.  Diamond  et  al.,  PoP  ‘13]

Previous  Work    –  Par3cle  injec3on-­‐induced  L-­‐H  transi3on  -­‐  Askinazi,  et  al.,  (1993)  –  Tuman-­‐3  

→  Transi3ons  triggered  by  strong,  rapid  gas  puffing  

→  Some  evidence  that  H  mode  triggered  by  <VE>’  increase  near  edge.    

-­‐  Gohil,  Baylor,  et  al.,  (2001,  2003)  –  DIII-­‐D  →  Transi3ons  triggered  by  pellet  injec3on  →  Reduc3on  of  PTh  by  ~30%    →  Limited  evidence  that  <VE>’  steepened  near  

edge.     25

0.08 -f-------- O .08-

0 10 20 30 40 50 60 t, ms 0 10 20 30 40 50 60 t, ms (4 ( W

FIG. 7. (a) Temporal evolution of some plasma parameters in PCH mode and (b) in the shot without transition.

D. The H mode induced by pellet injection

Both active methods for H-mode initiation described above are not feasible for the next generation of tokamaks with hotter plasmas. This is due to the low efficiency of gas puffing in larger tokamaks with divertors, and the impos- sibility of immersing any electrodes in a hot plasma during a longer pulse. So it is highly desirable to find a practical alternative for triggering an H mode using a more subtle method. Pellet injection which is regarded as an effective means for plasma fueling is shown to offer such an option. Pellet injection causes rather steep density and temperature gradients. If the pellet is sufficiently large and the penetra- tion depth is small, the region of steep density gradient occurs close to the LCFS. From Eq. (7) it is obvious that the radial electric field in the L regime increases during the pellet injection due to the growth of the density gradient. klore importantly, it has been shown in Ref. 19 that there is an important causal relationship between the gradient of density profile and the value of the electric-field potential at the separatrix. Steeper profiles cause stronger electric fields and vice versa. Thereafter a strong electric field with a large gradient produces the shear of plasma rotation which can reduce the anomalous transport and cause the transi- tion from L to H regime.

During pellet injection the electron temperature is re- duced while the ion temperature remains approximately the same as before the injection because of the sufficiently long time for heat exchange between ions and electrons compared to the time for pellet evaporation. Therefore, the density dependence of the radial electric field impacts most significantly. Another reason for the improvement of the confinement may be related to the variation of the param- eter vi=d(ln Ti)/d( In ni). The conditions for VI-mode ex- citation are worsened during the pellet injection and the corresponding transport may be reduced.*’ However, this

2425 Phys. Fluids B, Vol. 5, No. 7, July 1993

appears most likely to result from a pellet injection within the inner core.”

Using the regime of injector operation described in Sec. I, an improved confinement regime has been obtained ex- perimentally. This mode has many similarities with the spontaneous H mode and therefore was termed pellet caused H (PCH) mode. The typical traces of some plasma parameters in the PCH mode are shown in Fig. 7(a). For comparison, the shot without transition is presented in Fig. 7(b). In this case, the pellet was larger and therefore pen- etrated deeper into the bulk plasma. This is clearly seen in Fig. 8 where the perturbations of the plasma density in these two cases are shown. The radial profiles of electric field calculated, according to Eq. (7), provided Ti= 70 eV=const, and using experimental n,(r) profiles, are shown in Fig. 9. In the case when the pellet injection trig- gered the L-H transition, the region of the strong shear of the radial electric field dE/dr is shifted outwards closer to

:Ti

;--A 1::

‘0.00 ,I I I 0.10 OY20 r:m ’

FIG. 8. The density profile (solid line) and its perturbation by a pellet which resulted (dashed line) or did not result (dashed-dotted line) in the L-H transition.

Askinazi et a/. 2425

Downloaded 28 Nov 2012 to 203.230.125.100. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions

608 P Gohil et al

1412

10864

864

2

16

14

12

10

Density Interferometer Signal (a.u.)

Pellet Time

Er Measurements

3900 3920 3940 3960Time (ms)

3980 4000 4020 4040

40

30

Er (

kV/m

)

20

10

02.26 2.27 2.28 2.29 2.30

–2 ms0 ms2 ms4 ms6 ms

Separatrix

Shot 102014

R (m)

Upper Divertor D! (a.u.)

8 ms

(a)

(b)

(c)

Figure 4. The time history of a HFS pellet-induced H-mode transition and the radial electric field,Er , profile at the plasma edge. (a) Density interferometer signal indicating the relative change inthe line-average density, (b) upper divertor D! emission (from D! filterscopes), (c) the Er profileat the plasma edge (determined from CER measurements). The green solid vertical line in (a) and(b) indicates the time of pellet injection. The red shaded region in (a) indicates the time periodfor the Er measurements shown in (c) at a sample time of 2 ms. The dashed vertical line in (c)indicates the position of the separatrix.

and after pellet injection from the inside vessel wall i.e. high magnetic field side of the plasma.The interferometer signal increases dramatically, indicating the large increase in density ofpellet injection, and then remains high due to the formation of the edge transport barrier.The D! signal drops simultaneously indicating the H-mode transition and is followed by ashort phase of dithering H-mode, which quickly (<40 ms) turns into an ELM-free H-mode.On pellet injection, the gradient of Er just inside the separatrix increases substantially andthen continues to increase with time and also widens as the edge barrier is firmly established.The values of |Er | were obtained from charge exchange recombination (CER) spectroscopicmeasurements of the CVI impurity ions [51]. The radial electric field is obtained from theradial force balance equation for any plasma species, i, such that

Er = !Pi

niZie+ v"B# " v#B", (1)

where n is the species density, P the pressure, Z the charge number, e the electric charge, v"

the impurity ion toroidal rotation, v# the poloidal rotation, B" the toroidal magnetic field andB# the poloidal magnetic field. The poloidal rotation used is the measured value from CERmeasurements. The greatest changes (i.e. dominant terms in equation (1)) to the total Er at theplasma edge are the result of changes to v" and v# of the impurity ions after pellet injection,whereas the core rotation shows less change. The effect on the individual contributions toEr of !P , v" and v# of the main (bulk) deuterium ions is not determined. However, thereare clear increases in the shear in the edge Er profile for the pellet-induced H-mode whichis identical in behaviour with spontaneous H-mode transitions and is consistent with E # B

velocity stabilization of turbulence leading to the formation of the edge barrier.The large changes in the edge ne, Te, and Ti produced by pellet injection provide a

direct means of testing theories on the formation of the H-mode edge barrier. The theoriesconsidered [24–26] postulate certain critical threshold parameters for the H-mode transition

[Askinazi,  ‘93]

[Gohil,  ‘03]

E rv 751 1

-25-

I 0.20 r, m

FIG. 9. Radial electric field E calculated for the cases shown in Fig. 8, respectively.

the plasma edge. The shear itself is larger compared to the case without L-H transition.

The PCH mode has some features which distinguish it from the Ohmic H mode. (i) The PCH mode exists in TUMAN-3 only during a short period of about 5 msec, and no way was found to prolong its duration. (ii) Micro- wave reflectometer data suggest that the density fluctuation (and transport) suppression zone is shifted towards the plasma center, as compared to the case of a spontaneous Ohmic H mode. (iii) Since the rate of the SXR intensity increase is higher compared to that for an Ohmic H mode, it is concluded that the improvement of the energy con- finement is enhanced in the PCH mode.

IV. SUMMARY

Three different methods of H-mode initiation in the TUMAN-3 tokamak are described: a short increase of the gas puffing rate, the edge plasma polarization using a bi- ased electrode, and a steep peripheral density gradient brought about by a pellet injected into the boundary plasma.

The improvement of confinement has a common origin in all of these cases, and is clearly caused by a strongly inhomogeneous radial electric field inside the LCFS. The extended version of standard neoclassic theory, invoking anomalous inertia and viscosity driven by a turbulence, has been shown to describe qualitatively all three methods of H-mode initiation.

‘F. Wagner, G. Becker, K. Behringer, D. Campbell, A. Eberhangen, W. Engelhard, G. Fussmann, 0. Gehre, J. Gemhardt, G. v. Gierke, G. Haas, M. Huang, F. Karger, M. Keilhacker, 0. Khmer, M. Komherr, K. Lackner, G. Lisitano, G. G. Lister, H. M. Mayer, D. Meisel, E. R. Muller, H. Murmann, H. Niedermeyer, W. Poschenrieder, H. Rapp, H. Rohr, F. Schneider, G. Siller, E. Speth, A. Stabler, K. H. Steuer, G. Venus, and 0. Vollmer, Phys. Rev. Lett. 49, 1408 (1982).

*K. Toi, K. Kawahata, S. Morita, T. Watari, R. Kumazawa, K. Ida, A. Ando, Y. Oka, M. Sakamoto, Y. Hamada, K. Adati, R. Ando, T. Aoki, S. Hidekuma, S. Hirokura, 0. Kaneko, A. Karita, T. Kawamoto, Y. Kawasumi, T. Kurota, K. Masai, K. Narihara, Y. Ogawa, K. Ohkubo, S. Okajima, T. Ozaki, M. Sasao, K. N. Sato, T. Seki, F. Shimpo, H. Takahashi, S. Tanahashi, Y. Taniguchi, and T. Tsuzuki, Phys. Rev. Lett. 64, 1895 (1990).

‘K. H. Burrell, S. L. Allen, G. Bramson, N. H. Brooks, R. W. Callis, T. N. Carlstrom, M. S. Chance, M. S. Chu, A. P. Colleraine, D. Content,

J. C. DeBoo, R. R. Dominguez, S. Ejima, J. Ferron, R. L. Freeman, H. Fukumoto, P. Gohil, N. Gottardi, C. M. Greenfield, R. J. Groebner, G. Haas, R. W. Harvey, W. W. Heidbrink, F. G. Helton, D. N. Hill, F. L. Hinton, R.-M. Hong, N. Hosogane, W. Howl, C. L. Hsieh, G. L. Jack- son, G. L. Jahns, R. A. James, A. G. Kellman, J. Kim, S. Kinoshita, L. L. Lao, E. A. Lasarus, P. Lee, T. LeHecka, J. Lister, J. M. Lohr, P. J. Lomas, T. C. Lute, J. L. Luxon, M. A. Mahdavi, K. Matsuda, H. Matsumoto, M. Mayberry, C. P. Moeller, Y. Neyatani, T. Ohkawa, N. Ohyabu, T. N. Osborne, D. 0. Overskei, T. Ozeki, W. A. Peebles, S. Perkins, M. Perry, P. I. Petersen, T. W. Petrie, R. Philipono, J. C. Phillips, R. Pinsker, P. A. Politzer, G. D. Porter, R. Prater, D. B. Remsen, M. E. Rensink, K. Sakamoto, M. J. Schaffer, D. P. Schissel, J. T. Scoville, R. P. Seraydarian, M. Shimada, T. C. Simonen, R. T. Snider, G. M. Staebler, B. W. Stallard, R. D. Stambaugh, R. D. Stav, H. St. John, R. E. Stockdale, E. J. Strait, P. L. Tailor, T. T. Taylor, P. K. Trost, A. Turnbull, U. Stroth, R. E. Waltz, and R. Wood, in Plasma Physics and Controlled Nuclear Fusion Research (International Atomic Energy Agency, Vienna, 1989), Vol. I, p. 193.

4R. J. Groebner, K. H. Burrell, and R. P. Seraydarian, Phys. Rev. Lett. 64, 3015 (1990).

5T. Yu. Akatova, L. G. Askinazi, V. I. Afanas’ev, V. E. Golant, V. K. Gusev, E. R. Its, S. V. Krikunov, S. V. Lebedev, B. M. Lipin, K. A. Podushnikova, G. T. Razdobarin, V. V. Rozhdestvenskij, N. V. Sa- harov, A. S. Tukachinskij, A. A. Fedorov, F. V. Chemyshev, S. P. Jaroshevich, L. Kryska, and P. Dvoracek, in Plasma Physics and Con- trolled Nuclear Fusion Research (International Atomic Energy Agency, Vienna, 1991), Vol. I, p. 509.

‘A. N. Arbuzov, L. G. Askinazi, V. I. Afanas’ev, V. E. Golant, V. K. Gusev, E. R. Its, A. A. Korotkov, S. V. Krikunov, B. M. Lipin, S. V. Lebedev, K. A. Podushnikova, G. T. Razdobarin, V. V. Rozhdestven- skij, N. V. Saharov, A. S. Tukachinskij, A. A. Fedorov, and S. P. Jaroshevich, in Proceedings of the 17th European Conference on Con- trolled Fusion and Plasma Heating, edited by G. Briffod, A. Nijsen-Vis, and F. C. Schluller (European Physical Society, Amsterdam, 1990), Vol. 14B, Pt. 1, p. 299.

‘L. G. Askinazi, V. E. Golant, S. V. Lebedev, V. A. Rozhansky, and M. Tendler, Nucl. Fusion 32, 271 (1992).

*R. J. Taylor, M. L. Brown, B. D. Fried, H. Grote, J. R. Liberati, G. J. Morales, P. Pribyl, D. Darrow, and M. Ono, Phys. Rev. Lett. 63, 2365 (1989).

9R. VanNieuwenhove, G. VanOost, R. R. Weynants, J. Boedo, D. Bora, T. Delvigne, F. Durodie, M. Gaigneaux, D. S. Gray, B. Giesen, R. S. Ivanov, R. Leners, Y. T. Lie, A. M. Messiaen, A. Pospieszczyck, U. Samm, R. P. Schom, B. Schweer, C. Stickelmann, G. Telesca, and P. E. Vandenplas, in Proceedings of the 18th European Conference on Con- trolled Fusion and Plasma Physics, edited by P. Backmann and D. C. Robinson (European Physical Society, Berlin, 1991), Vol. 15C, Pt. 1, p.

t”z5Biglari, P. Diamond, and P. Terry, Phys. Fluids B 2, 1 ( 1990). “V. Rozhansky and M. Tendler, Phys. Fluids B 4, 1877 (1992). ‘*B. V. Kuteev, “Voprosy Atomnoj Nauki i Tehniki,” ser. “Termoyad.

Sintez” 3, 242 (1986) (in Russian). 13L. G. Askinazi, V. E. Golant, E. R. Its, D. 0. Komeyev, S. V.

Krikunov, B. M. Lipin, S. V. Lebedev, K. A. Podushnikova, V. V. Rozhdestvenskij, N. V. Sakharov, S. P. Jaroshevich, L. Kryska, and P. Dvoracek, in Proceedings of the 18th European Conference on Controlled Fusion and Plasma Physics, edited by P. Backmann and D. C. Robinson (European Physical Society, Berlin, 1991), Vol. 15C, Pt. 1, p. 401.

14B. Coppi and N. Sharky, Nucl. Fusion 21, 1363 (1981). “A. Yu. Dnestrovsky, L. E. Zaharov, G. V. Pereverzev, K. N. Tarasyan,

P. N. Yushmanov, and A. R. Polevoj (Kurchatov Institute Atomic Energy, Moscow, 1991) (in Russian).

16M. Tendler and V. Rozhansky, Comments Plasma Phys. Control. Fu- sion 13, 191 (1990).

“K. C. Shaing K. G. and E. C. Crume, Phys. Rev. Lett. 63,2369 ( 1989). ‘*H. L. Berk and K. Molvig, Phys. Fluids 26, 1385 (1983). 19M. Tendler, U. Daybelge, and V. Rozhansky, in Proceedings of the 14th

International Conference on Plasma Physics and Controlled Fusion, Wiinburg, Germany, 1992 (International Atomic Energy Agency, Vi- enna), Paper No. IAEA-CN-56/D-4-8.

2426 Phys. Fluids B, Vol. 5, No. 7, July 1993 Askinazi et al. 2426

Downloaded 28 Nov 2012 to 203.230.125.100. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions

 ne

 Er

Page 26: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

Extension:  Represen3ng  par3cle  injec3on Important  parameters:  δΓSMBI(ISMBI,  τSMBI,  xdep,  Δx,  t)  ISMBI:  par3cle  injec3on  intensity  τSMBI:  dura3on  of  par3cle  injec3on

xdep:  deposi3on  point  of  injec3on  Δx:  par3cle  deposi3on  layer  width

∂n∂t− (original term) = δΓSMBI

∂T∂t

− (original term) = −Trefnref

#

$%%

&

'((δΓSMBI

Cooling  due  to  par3cle  injec3on

Page 27: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

→ Limita3ons  of  Model  Specific  to  injec3on:  -­‐  No  abla3on,  ioniza3on,  etc.  Injec3on  is  instantaneous  ⇒  3me  delay  related  to  ioniza3on,  etc.  not  accurately  represented.    

-­‐  Source  asymmetry  ⇒ toroidal  and  poloidal  -­‐  Vφ  not  evolved⇒  model  does  not  include  possible  benefit  from  reduc3on  in  rota3on.  

General:  -­‐  Need  separately  evolve  Te,  Ti  and  ion,  electron  hea3ng  ⇒  low  PT(n)  behavior  

-­‐  Generalize  turbulence  model:  ITG+TEM  27

Page 28: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

A.  )  Model  PREDICTS  par3cle  injec3on-­‐induced  transi3on Case  1:  shallower  injec3on  triggers  turbulence  collapse.

Case  2:  deeper  (xdep=0.95)  injec3on  does  not  trigger  turbulence  collapse.

•  Peak  of  edge  <VE>’  is  a  key.  •  No  apparent  evidence  for  ZF  in  transi3on!?  

Page 29: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

Details  of  Par3cle  injec3on-­‐induced  L→H  Transi3on

Change  of  Profile,  (increase  of  edge  grad  n  and  decrease  of  edge  grad  T),  leads  to  edge  <VE>’  peak.

Page 30: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

Correspondence  of  s3mulated  L-­‐H  transi3on  to  the  dynamical  system  analyses  in  Kim-­‐

Diamond  model.

p’

I

∂t I = 0∂tE0 = 0

∂t "p = 0 for  low  Q for  high  Q

Stable  H-­‐mode

∂t "p = 0  dQ

Stable  L-­‐mode

Page 31: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

B.)  Model  PREDICTS  Effec3ve  Hysteresis

31

turbulence

ZF

<VE>’2

Case  3:  dQ=.7,  ISMBI=100  Strong  single  injec3on  into  subcri<cal  state  can  trigger  a  transient  turbulence  collapse.

��������

(a)$turbulence�

(b)$ZF�

(c$)$<VE>’2�

Case  4:  Sequen<al,  repe<<ve  injec3on  into  subcri3cal  state  can  sustain  turbulence  collapse.  ⇒ driven,  or  ‘  s3mulated  H-­‐mode’    

→ Specula3on:  Sequen3al  injec3on  can  enhance  effec3ve  hysteresis,  facilita3ng  control  of  H→L  back  transi3on.  

Page 32: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

Correspondence  of  the  driven  H-­‐mode,  to  the  Kim-­‐Diamond  model,  

in  the  dynamical  systems.

p’

I

∂t I = 0∂tE0 = 0

∂t "p = 0 for  low  Q for  high  Q

Unstable  H-­‐mode

∂t "p = 0

 dQ

Stable  L-­‐mode

Repe33ve  par3cle  injec3on  sustains  the  unstable  H-­‐mode.

Page 33: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

Op3mizing  par3cle  injec3on:        SMBI  VS  gas-­‐puffing

•  Compare  the  total  number  of  par3cles  necessary  to  trigger  L-­‐H  transi3on  by  SMBI  or  gas-­‐puffing.  1.  SMBI(τSMBI=250cs/a):  moderate  par3cle  injec3on  for  rdep  -­‐>  1  ⇒ ΔNSMBI=0.083  

2.  Gas-­‐puffing(τgp=3000cs/a):  No  injec3on,  but  par3cle  source  increment  (sta3c  and  pulsed)  i.e.  S0-­‐>  S+δS0  ⇒  ΔNgp=1.08  

•  Intense,  rapid  par3cle  injec3on  is  op3mal  for  transi3on,  as  opposed  to  slow  gas  puffing.  

–  Because  par3cle  injec3on  causes  a  large  change  in  edge  profiles  and  <VE>’,  which  is  essen3al  for  the  transi3on.

Page 34: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

自発遷移と誘起遷移の定性的な比較

34

RT ≡ vrE vθE ∂ V⊥ / ∂r γeffET =α0E0 / (γL − IΔω)

RH ≡ VE & / γeff =αVEV / (γL − IΔω)

Spontaneous  transi3on:  RT(edge)  leads  RH  prior  to  transi3on

S3mulated  transi3on:    RT(edge)  and  RH  peak  simultaneously,  at  transi3on.

Normalized  Reynolds  Work

Normalized  Shearing  Rate

edge Injec3on  centroid Dura3on

Order→  Causality:    ZFs  do  not  play  a  cri3cal  role  in  s3mulated  transi3ons.

Page 35: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

What  do  we  learn?   •  Subcri3cal  transi3ons  can  indeed  occur.  

–  Zonal  flow  do  not  play  a  key  role  in  such  fueling-­‐induced  transi3ons,  in  contrast  to  their  contribu3on  to  spontaneous  transi3ons.    

•  The  crucial  element  for  a  subcri3cal  transi3on  appears  to  be  how  the  injec3on  influences  the  edge  <V’E>.  

•  Below  a  certain  power,  subcri3cal  injec3on  can  induce  a  transient  turbulence  collapse  which  later  relaxes  back  to  L-­‐mode.    –  However,  repe33ve  injec3on  can  sustain  subcri3cal  improved  H-­‐mode  states.    

•  Intense,  rapid  par3cle  injec3on  is  op3mal  for  transi3on,  as  opposed  to  slow  gas  puffing.  – We  can  op3mize  the  way  to  achieve  the  H-­‐mode  by  facilita3ng  par3cle  injec3on  (depth,  intensity,  periodicity,  etc.)  

Page 36: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

Concluding  remarks: •  Mul3ple  access  to  the  H-­‐mode.  

–  For  spontaneous  transi3on,  ZF  is  fundamentally  a  key  to  trigger  L-­‐H  transi3on.  

•  Macro  dynamics  of  PL-­‐H(n)  can  connect  with  the  micro  physics  of  γZF.    –  For  s3mulated  case,  ZF  does  not  play  a  role  on  triggering  the  L-­‐H  transi3on.  

•  Despite  of  the  simple  model,  obtained  implica3ons  comprehend  the  essence  of  phenomena.    –  Future  works  diverge.  Selected  number  of  works  are  effec3ve.    

•  Toroidal  momentum  dynamics  •  SOL-­‐edge  coupling,  i.e.  boundary  condi3on.  

Page 37: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

SUPPL.  FURTHER  MODELS

Page 38: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

Further  model  works •  FM3  model  (Fundamenski  NF  ’12)  

– SOL  Turbulence:  LH  transi3on  happens  when  

→ Parallel  Alfvenic  3me  in  edge  becomes  comparable  to  the  perpendicular  electron  transport  3me.  → Enhance  inverse  cascade  and  ZF(?)

à  Still speculative and underlying physics unclear but..

à  Suggests LH transition may be affected by outside (i.e. SOL) à boundary condition?

Page 39: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

Phenomenology:  Why  power  threshold  is  lower  for  LSN  than  for  USN?    Heuris3cs:  Interplay  of  magne3c  shear  ŝ  and  ExB  shear  induced  eddy  <l<ng    Thus,  residual  Reynolds  stress:    

39

5 69-TH/P4-02

of ZFs, making it di�cult to recover the H-mode, should a back-transition occur. Thissuggests that proper wall conditioning, or reduction of wall impurity saturation, is neces-sary throughout the long pulse H-mode operation, because the ZF shearing necessary totrigger the transition may be more di�cult to achieve.

3 Physics of the rB-Drift Asymmetry.

Figure 6: Poloidal cross sectionof a LSN shaped plasma. Themagnetic shear e↵ect is noticeableover the whole surface, and theflux expansion close to the X-point.

Figure 7: (a) Radial profile of electro-static velocity for unfavourable (lightgray) and favourable (dark grey)configurations. (b) Associatedelectric shear.

One of the most persistent puzzles in L!H tran-sition phenomenology is why power threshold arelower for LSN configurations (with rB drift intothe X-point) than for USN configurations (withrB-drift away from the X-point). Here, we briefly sum-marise recent progress on a model which links thisasymmetry to the interplay of magnetic shear andE ⇥ B shear induced eddy tilting and its a↵ectionon Reynolds stress generated E ⇥ B flows.

Simply put, either magnetic or electric fieldshear acts to tilt eddys. Thus, the local radial wavenumber is given by,

kr

(✓) = kr

(✓0) + [(✓ � ✓0)s� V 0E

⌧c

]k✓

(1)

where the first term is magnetic shear tilting, whichvaries with angle ✓, and the second term is E ⇥ Bshear tilting which grows in time. Hereafter, we take⌧ = ⌧

c

, the correlation time and thus the eddy lifetime and ✓0 = 0. Given the structure of k

r

(✓), thenon-di↵usive (i.e. ’residual’) Reynolds stress is

hvr

v✓

i = hvr

2(0)iF 2(✓)[�✓s

+ V 0E

⌧c

] (2)

The ✓-dependence of eddy tilting is shown inFig. (6). Now the ’point’ is readily apparent fromobserving that h✓F 2(✓)i

will trend to vanish unlessthere is an imbalance between contributions to theflux surface average from ✓ > 0 and ✓ < 0 – i.e.an up-down asymmetry, as for LSN vs USN! Theremaining question is to determine when the mag-netic shear induced stress adds or subtracts to theE⇥B shear induced stress and the related flow pro-duction. To do that, the electric field shear must becomputed self-consistently, by solving the poloidal momentum balance equation:

Vanishes  upon  flux  surface  average,  but  for  X-­‐point-­‐induced  asymmetry  between  ±θ.    →  An  up-­‐down  asymmetry  effect  appears!    

[N.  Fedorczak,  et  al.,  Nucl.  Fusion  52,  103013  (2012).]

Physics  of  the  ∇B-­‐Driq  Asymmetry  

Magne3c  shear ExB  shear

69-TH/P4-02 4

3 Physics of the rB-Drift Asymmetry.

Figure 3: (a) Radial profile ofelectrostatic velocity for unfa-vourable (light gray) and favou-rable (dark grey) configurations.(b) Associated electric shear.

One of the most persistent puzzles in L!H transi-tion phenomenology is why power threshold are lowerfor LSN configurations (with rB drift into the X-point)than for USN configurations (with rB-drift away fromthe X-point). Here, we briefly summarise recent progresson a model which links this asymmetry to the interplayof magnetic shear and E ⇥ B shear induced eddy tilt-ing and its a↵ection on Reynolds stress generated E⇥Bflows[8]. Simply put, either magnetic or electric fieldshear acts to tilt eddys. Thus, the local radial wavenumber is given by, k

r

(✓) = kr

(✓0)+ [(✓� ✓0)s�V 0E

⌧c

]k✓

,where the first term is due to magnetic shear tilting,which varies with angle ✓, and the second term is E⇥Bshear tilting, which grows in time. Hereafter, we take⌧ = ⌧

c

, the correlation time and thus the eddy life time,and ✓0 = 0. Given the structure of k

r

(✓), the total non-di↵usive (i.e. ’residual’) Reynolds stress is

hvr

v✓

i = hvr

2(0)iF 2(✓)[�✓s+ V 0E

⌧c

] (1)

Now the point here is readily apparent from observing that h✓F 2(✓)i✓

will trend tovanish unless there is an imbalance between contributions to the flux surface average from✓ > 0 and ✓ < 0 – i.e. an up-down asymmetry, as for LSN vs USN! The remaining questionis to determine when the magnetic shear induced stress adds or subtracts to the E ⇥ Bshear induced stress and the related flow production. To do that, the electric field shearmust be computed self-consistently, by solving the poloidal momentum balance equation:@t

hv✓

i+ @r

hvr

v✓

i = ��CX

hv✓

i where hvr

v✓

i = ��✓

@r

hv✓

i+ ⇧s

+ ⇧V

0Eso

@t

v✓

+ @r

(⇧s

+ ⇧V

0E) = �(�

CX

� @r

�✓

@r

)[VE

+ V⇤i] (2)

Here we have used radial force balance while neglecting toroidal flow, have accountedfor turbulent viscosity (�

) and frictional damping (�CX

), and retained magnetic shear(⇧

s

) and electric field shear (⇧V

0E) driven residual stresses. Of course, hV

E

i0 in the lat-ter also must satisfy radial force balance. Equation (??) is solved while imposing theboundary conditions E

r

= �3@r

Te

(i.e. determined by SOL physics) at the LCFS andVE

= �V⇤i in the core. Assuming GB turbulence and using standard parameters, wecalculate V

E

/cs

and V 0E

, as shown in Fig. (??). It is readily apparent that favourable(i.e. LSN) configurations give a larger and stronger edge electric field shear layer than dounfavourable (i.e. USN) configurations. The e↵ect is significant – maximum shears aretwice as strong for LSN than for USN. The corresponding Reynolds force is obtained, too.We also note that the e↵ect is not poloidally symmetric, when variation in ✓ is considered.Thus, the flux surface averaged Reynolds stress cannot be inferred from a single pointmeasurement.

Page 40: (RecentProgress$on$the$ spao temporal$ … · 2013. 11. 12. · 2 ", " % %) % +) %

To  determine  self-­‐consistent  ExB  shear  induced  by  the  magne3c  shear  ŝ  stress,  poloidal  momentum  balance  is  used.  

40

69-TH/P4-02 6

@t

hv✓

i+ @r

hvr

v✓

i = ��CX

hv✓

i (3)

where

hvr

v✓

i = ��✓

@r

hv✓

i+ ⇧s

+ ⇧V

0E

(4)

so

@t

v✓

+ @r

(⇧s

+ ⇧V

0E) = �(�

CX

� @r

�✓

@r

)[VE

+ V⇤i] (5)

Figure 8: Radial derivative of theReynolds stress across the profile for afavourable configuration with aballooning envelope, averaged overthe flux surface (full curve) or takenlocally at the outboard midplane(dashed line).

Here we have used radial force balance whileneglecting toroidal flow, have accounted forturbulent viscosity (�

) and frictional damp-ing (�

CX

) and retained by magnetic shear (⇧s

)and electric field shear (⇧

V

0E) driven residual

stresses. Of course, hVE

i0 in the latter alsosatisfies radial force balance. Equation (5)is solved while imposing the boundary condi-tions E

r

= �3@r

Te

(i.e. determined by SOLphysics) at the LCFS and V

E

= �V⇤i in thecore. Assuming GB turbulence and using stan-dard parameters, we calculate V

E

/cs

and V 0E

, asshown in Fig. (7). It is readily apparent thatfavourable (i.e. LSN) configurations give a largeand stronger edge electric field shear layer thando unfavourable (i.e. USN) configurations. Thee↵ect is significant – maximum shears are twice as strong for LSN than for USN. The cor-responding Reynolds force is plotted in Fig. (8). We also note that the e↵ect is notpoloidal symmetric, when variation in ✓ is considered. Thus, the Reynolds stress cannotbe inferred from a single point measurement.

Future work will aim to integrate this analysis into the model discussed in Section 2.Along the way, the treatment of the SOL boundary conditions will be generalised.

4 Intrinsic Variability, Heat Avalanches, and Noisey

Transitions

It is well known that the L!H transition exhibits significant variability. The scatter inPT

trends is large. Also, many anecdotes exist describing sudden transitions in stationary,slightly subcritical states. In particular, I-phase!H-phase transition appear noisey andunpredictable. Many observations have been reported, which describe prolonged (i.e.

 ŝ  induced  residual    stress

Er  driven    residual    stress

Fric3onal    damping

Turbulent  viscosity

Boundary  condi3on:  determined  by  SOL  physics

69-TH/P4-02 6

@t

hv✓

i+ @r

hvr

v✓

i = ��CX

hv✓

i (3)

where

hvr

v✓

i = ��✓

@r

hv✓

i+ ⇧s

+ ⇧V

0E

(4)

so

@t

v✓

+ @r

(⇧s

+ ⇧V

0E) = �(�

CX

� @r

�✓

@r

)[VE

+ V⇤i] (5)

Figure 8: Radial derivative of theReynolds stress across the profile for afavourable configuration with aballooning envelope, averaged overthe flux surface (full curve) or takenlocally at the outboard midplane(dashed line).

Here we have used radial force balance whileneglecting toroidal flow, have accounted forturbulent viscosity (�

) and frictional damp-ing (�

CX

) and retained by magnetic shear (⇧s

)and electric field shear (⇧

V

0E) driven residual

stresses. Of course, hVE

i0 in the latter alsosatisfies radial force balance. Equation (5)is solved while imposing the boundary condi-tions E

r

= �3@r

Te

(i.e. determined by SOLphysics) at the LCFS and V

E

= �V⇤i in thecore. Assuming GB turbulence and using stan-dard parameters, we calculate V

E

/cs

and V 0E

, asshown in Fig. (7). It is readily apparent thatfavourable (i.e. LSN) configurations give a largeand stronger edge electric field shear layer thando unfavourable (i.e. USN) configurations. Thee↵ect is significant – maximum shears are twice as strong for LSN than for USN. The cor-responding Reynolds force is plotted in Fig. (8). We also note that the e↵ect is notpoloidal symmetric, when variation in ✓ is considered. Thus, the Reynolds stress cannotbe inferred from a single point measurement.

Future work will aim to integrate this analysis into the model discussed in Section 2.Along the way, the treatment of the SOL boundary conditions will be generalised.

4 Intrinsic Variability, Heat Avalanches, and Noisey

Transitions

It is well known that the L!H transition exhibits significant variability. The scatter inPT

trends is large. Also, many anecdotes exist describing sudden transitions in stationary,slightly subcritical states. In particular, I-phase!H-phase transition appear noisey andunpredictable. Many observations have been reported, which describe prolonged (i.e.

at  LCFS →  Favorable  (LSN)  configura3on  yields  a  

stronger  edge  V’E  than  does  unfavorable  (USN)  configura3on,  other  parameters  comparable  

→  LSN  vs  USN  asymmetry  explained.

R R

Another  candidate:    Pfirsch-­‐Schlüter  currents  [Aydemir  ‘12  NF]