32
México Country Report by Floren Cabrera F. de Teresa 1 MEXICO: Country Analysis for Ethanol New Plant Construction The Case for an Integrated BioFuel Technology Model Pilot Program for an Ethanol Blending Mandate based on Sorghum Feedstock and Regional Biomass Cogeneration By Helios Energia Limited Floren Cabrera F. de Teresa Chief Executive Officer Claridge House 32 Davies Street Mayfair W1K 4ND London

Regional Biomass Model for Ethanol Production in Mexico

Embed Size (px)

DESCRIPTION

A regional biomass model for energy; agro-business; model for production of electricity from biomass. Energy efficiency through biomass co-generation.

Citation preview

Page 1: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   1  

                   MEXICO:      Country  Analysis  for  Ethanol  New  Plant  Construction  The  Case  for  an  Integrated  Bio-­Fuel  Technology  Model        Pilot  Program  for  an  Ethanol  Blending  Mandate  based  on  Sorghum  Feedstock  and  Regional  Biomass  Cogeneration      By    Helios  Energia  Limited  Floren  Cabrera  F.  de  Teresa  Chief  Executive  Officer    Claridge  House  32  Davies  Street  Mayfair  W1K  4ND  London                          

Page 2: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   2  

Shortly  after  passage  of  the  Bio-­‐fuel  Law1  in  February  of  2008,  Mexico  set  an  objective  of  5.8%  Ethanol  blend  in  gasoline  for  the  metropolitan  areas  of  Mexico  City,  Monterey,  and   Guadalajara.   Reaching   this   objective   would   require   a   20-­‐fold   increase   from  current  sugar  cane  based  production   levels  of  21  million  gallons;  and  would  require  significant  new   investment   in   sorghum-­‐based   (corn  was  outlawed  as  a   feedstock  by  the  2008  Bio-­‐fuels  Law  in  Mexico)  large  capacity  projects,  under  the  assumption  that  these   cities   account   for   30%   of  Mexico’s   total   gasoline   use.     PEMEX   estimates   new  total  Capex  investments  of  over  US$2.3  billion.    This   research   paper   is   aimed   at   providing   an   informed   background   to   private  investors  in  order  to  promote  the  goal  of  a  strong  blending  mandate  in  Mexico.    As  a  bio-­‐energy  Investor  and  Ethanol-­‐project  investment-­‐banking  advisor  to  other  U.S.    Ethanol  and  biomass  Investors,  Helios  Energia  Limited  is  focused  on  strengthening  a  nascent  Mexican  Ethanol-­‐industry  platform.  We  seek  to  promote  in  Mexico  growth  of  an  Ethanol  industry  and  our  focus  is  particularly  on  the  emerging  possibilities  for  new  plant   construction   and   the   development   of   sustainable   bio-­‐energy   investment  programs;   benefiting   agricultural   communities   and   promoting   new   impact  investments  in  Mexico  by  the  private  and  public  sectors.      Today  we  are  still  waiting  for  the  successful  implementation  of  the  Mexican  blending  program.   The   Mexican   Bio-­‐fuel   Introduction   Program   states   that   the   three   biggest  Mexican  cities  will  have  (the  actual  calendar  for  implementation  is  still  tentative  and  in   fact,   the   Program   has   been   implemented   on   a   trial-­‐and-­‐error   basis)   a   gasoline  blending   with   5.8%   Ethanol   available   for   all   gasoline   on-­‐road   vehicle   fleet.   Also   in  2010   the  Mexican   government   programmed   to   start   the   substitution   of   Tier   1   (the  adopted   US   emission   standards)   by   Tier   2,   which   are   more   stringent   emission  standards   for   motor   vehicles   and   gasoline   sulfur   control   requirements.  We   believe  that   the   Secretary   of   Energy   of   Mexico   supports   these   efforts   and   we   have   made  progress   towards   building   the   "first   up   and   going   plant"   based   on   a   sorghum  feedstock,  strategically  located  in  the  main  production  region.    Bio-­‐fuel  development   in  Mexico  has  been  contentious  as   the  energy  sector  criticized  the   law   for   lacking   specific   targets   and  mandates,  while   others   expressed   concerns  about   negative   impacts   on   food   security.   Amid   highly   publicized   opposition   to   corn  being  diverted  to  Bio-­‐fuel,  the  2008  law  ("Ley  para  la  Promocion  y  el  Desarrollo  de  los  Bioenergeticos")   states   that   feedstock   will   be   sourced   from   “products   derived   from  agricultural,   forestry,   marine,   biotechnology   and   enzymatic   activities,   without  compromising   the   country’s   food   supply.”   Meanwhile,   the   sugarcane   industry’s  infrastructure   is   outdated,   inefficient,   dispersed   and  periodically   embroiled   in   labor  issues.                                                                                                                          1  "Ley  para  la  Promocion  y  Desarrollo  de  los  Bioenergeticos,"  Feb.  2008  

Page 3: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   3  

The   sector   remains   highly   regulated   with   large   government   participation.   High  sugarcane  and/or  sugar  prices  maintained  by  government  policies  are  not  conducive  to  competitive  Ethanol  production.      In  our  opinion,  in  order  to  be  a  competitive  player  in  global  markets,  Mexico’s  bio-­‐fuel  industry  will   need   substantial   investment   and   greater   involvement   from   the   energy  sector  and  perhaps  from  an  advanced  technology  provider,   like  EPC  Partner  capable  of   providing   the   technology,   industry   experience   and   new   R&D   required   for   this  mission.  Private  investors  are  presented  with  a  unique  new  opportunity.    The  U.S.   has   the   opportunity   to  make  major   contributions   in   this   context.   Given   its  strong   tradition   of   development   assistance   programs   in   many   potential   bio-­‐fuel  export  nations  coupled  with   its  expanding  market   for  bio-­‐fuel  consumption,   the  U.S.  could   facilitate   stronger   linkages   between   its   international   development   assistance  and   responsible   trade,   while   promoting   more   sustainable   production   systems,  something   that   has   received   scant   attention   in   the   past.   For   example,   development  assistance   could   contribute   to   programs   that   build   local   capacity   for   sustainable  production   systems   and   support   for   local   efforts   to   improve   capacity   to   implement  laws  protecting  the  environment.      U.S.  agricultural  and  bio-­‐fuel  policies  impact  world  markets,  prices,  and  the  patterns  of  production   in   other   nations   around   the   globe.   U.S.   policies   combined   with   trade  agreements   create   special   opportunities   for   some  nations   to   access   the  U.S.   bio-­‐fuel  market,   as   is   the   case  with   the  CBI   region.  The  proximity   to   the  U.S.   combined  with  free   trade   agreements   will   also   allow   Canada   and   Mexico   to   become   integrated  participants   in   corresponding   U.S.   bio-­‐fuel   markets   and   vice-­‐versa.   As   bio-­‐fuel  programs  grow  in  Canada  and  Mexico,  they  may  find  advantageous  market  segments  in  the  U.S.  based  on  NAFTA  and  proximity  that  facilitate  efficient  distribution.      Mexico  may  have  a  unique  opportunity  to  develop  a  relationship  with  EPC  Partner  and  the  Urban  Air  Initiative,  if  it  can  offer  bio-­‐fuel  at  competitive  prices  while  meeting  the  criteria   for   environmentally   sound   production,   in   the   context   of   U.S.,   European   and  worldwide  standards.  Government  policies  in  Mexico  generally  appear  to  be  designed  to  create  incentives  for  investment  and  to  accelerate  expansion  of  a  national  bio-­‐fuel  industry.   Policies   and   funding   for   the   development   and   implementation   of   national  standards   for   bio-­‐fuel   production,   distribution,   and   blending,   are   instrumental   in  facilitating  the  development  of  a  domestic  bio-­‐fuel  market.      Mexico  completed  a  major  Bio-­‐fuel   study2   that   considered  alternative   feedstock  and  production   costs   in   conjunction   with   the   new   laws   and   polices   noted   above.   That  study  suggested  that  corn  was  a  slightly  more  economical  feedstock  for  Ethanol  than  sugarcane  in  Mexico,  and  that  sorghum  was  the  least-­‐cost  feedstock  available.    

                                                                                                               2  Inter  American  Development  Bank  and  GTZ  German  Technology  Agency    

Page 4: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   4  

However,  the  use  of  corn  is  controversial  and  the  government  has  indicated  that  it  will  not   support   policies   to   produce   Ethanol   from   corn.   The   national   assessment   report  concluded  that  the  most  feasible  feedstock  is  sugarcane.      It  recommended  that  distilling  plants  be  built  as  part  of  the  proposed  revitalization  of  the   sugar   industry.   The   economics,   institutions,   and   infrastructure   associated   with  sugarcane  and  sugar  production  constrain   the  use  of   that   crop   for  Bio-­‐energy.  High,  government-­‐maintained   sugarcane   prices   are   not   conducive   to   Ethanol   production.  And,   substantial   changes   to   the   country’s   plants   and   infrastructure,   and   greater  involvement  by  its  energy  sector,  would  be  needed  to  support  and  sustain  sugarcane-­‐derived   Bio-­‐fuel   production.   Any   significant   increase   in   production   will   require  financing  and  incentives  that  are  not  presently  apparent.    Therefore,   Helios   Energia   believes   that   a   new   sorghum-­‐based   production   plant  presents  a  unique  entry  opportunity  into  a  nascent  Mexican  Bio-­‐fuel  industry.    Biodiesel  production  in  Mexico  is   just  beginning  to  develop,  cautiously,  based  on  the  new   policies   and   legislation.   Biodiesel   production   historically   has   been   limited   to  small  operations  that  primarily  use  beef  tallow,  with  total  production  estimated  at  3.7  million   liters/year.   Though   Mexico   produces   oilseeds,   particularly   soybeans   and  rapeseed  (canola),  it  also  imports  these  products  from  the  U.S.  These  oilseeds  typically  are  used  for  dietary  consumption  and  higher  corn  prices  may  encourage  planting  corn  instead   of   soybeans.   Currently,   biodiesel   plants   in   Mexico   are   limited   to   relatively  small  private  operations  and  research  facilities.    Mexico   is   a   net   importer   of   corn,   but   exports   about   10%   of   its   sugar   production.  Estimated   baseline   case   cumulative   production   of   sugarcane   in   Mexico   in   2017   is  about  63  mmt  from  760  thousand  ha,  compared  with  52  mmt  from  670  thousand  ha  in  2005/06.  For  corn,  estimated  total  cumulative  production  in  2017  is  nearly  32  mmt  from   7.2   million   ha,   compared   with   19.3   mmt   from   6.6   million   ha   in   2009/2010.3  Achieving  the  goal  of  5.8%  Ethanol  blend  of  gasoline  use  in  three  major  cities  would  require   a   20-­‐fold   increase   in  Mexico’s   Ethanol   production.   Although   a   new  Biofuels  Promotion  and  Development  Law  offers  few  specific  incentives,  a  new  National  Sugar  Program  aims  to  produce  about  6.5  mmt  of  sugarcane  for  Ethanol  purposes  by  2012.  There  are  about  10  corn  Ethanol  plant  proposals,  but  only  one  was  reportedly  under  construction  (although  it  seems  the  project  was  shut-­‐down).    Mexico   is   a   dry   country  with   variable  weather   conditions.   Thus,   it   appears   unlikely  that  Mexico  would  be  able  to  contribute  significantly  to  Ethanol  production  from  corn  in  the  coming  years.  Sugarcane  is  considered  to  be  the  best  Bio-­‐fuel  feedstock  option  in  Mexico,  but  there  currently  are  only  13  sugar  mills  producing  Ethanol  for  non-­‐fuel  purposes.   Increasing  Ethanol  production  both   for   export  markets   and  domestic   fuel  blending  would  require  substantial  technology  and  infrastructure  investments.                                                                                                                    3  Oakridge  National  Laboratory  white  paper  for  U.S.  Department  of  Energy  

Page 5: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   5  

Cellulosic   feedstock   from   sugarcane   and   corn   production   as  well   as   forest   residues  could  be  used  for  Ethanol  production  with  the  availability  of  technology.  However,  a  significant  amount  of  the  bagasse  from  sugar  production  currently  is  used  for  power  generation,  while  other  biomass  resources  (wood  fuels)  are  used  for  domestic  cooking  purposes  in  Mexico.      These   uses   are   unlikely   to   be   displaced   by   bioEthanol   production   in   the   near   to  medium   time   frame.   Bagasse   from   sugarcane   production   is   expected   to   be   readily  available  at  the  sugar  mills  and  its  supply  is  estimated  at  6  mmt  (dry  weight)  in  2017  under  the  baseline  case.      Limitations  on  Current  Infrastructure  for  a  Blending  Mandate    Mexico,  currently  the  highest  fossil  fuel  emitter  in  Latin  America,  is  a  net  exporter  of  crude   oil   but   importer   of   refined   gasoline   and   gasoline   additives.   These   gasoline  additives,   such  as  MTBE,   constitute   an  obstacle   to  meeting  Bio-­‐fuel   targets,   because  Ethanol  would  have  to  substitute   for  MTBE  and  current  production  facilities  are  not  equipped  to  do  so.  PEMEX  has  pointed  out  this  as  the  primary  barrier  to  entry.    Additionally,   the   country’s   fuel   infrastructure,   including   its   network   of   gas   stations,  would  have   to  be  modernized,   inspected,   and  maintained   to  handle  Ethanol.  Mexico  has   established   a   technical   cooperation   relationship   with   Brazil   with   regard   to  Ethanol   and   Gulf   of   Mexico   crude   oil   reserves,   where   Brazil   provides   technical  assistance.    The  North  American  Free  Trade  Agreement  (NAFTA)  eliminates  some  protections  for  corn  and  other  feedstock  crops  by  2008,  creating  concerns  and  uncertainties  as  to  the  impacts   on   local   markets,   domestic   production,   and   trade   in   feedstock   crops   and  Ethanol.   Mexico   currently   produces   between   56   and   82   million   liters   of   Ethanol  annually,  though  it  has  the  capacity  to  produce  nearly  170  million  liters  per  year.  That  Ethanol  generally  is  not  used  for  fuel  and  is  insufficient  to  meet  the  projected  20-­‐fold  increase  in  demand  the  blending  targets  imply.    Mexico   is  a  net   importer  of  Ethanol   from  the  US,  Brazil,  and,  recently,  China.  Mexico  likely  would   continue   to   rely  on   imports,   primarily   from   the  US   and  Brazil,   to  meet  future  Ethanol  demand.  Nevertheless,  Mexico  has   the  natural  resources,  arable   land,  and   history   of   cultivating   viable   feedstock   crops   (sugarcane,   corn,   sorghum,  wheat,  sugar  beet,  cassava,  and  oilseeds)  that  could  allow  the  country  to  achieve  its  Bio-­‐fuel  production  goals.    Meeting  this  demand  would  require  a  substantial  investment,  shift  in   domestic   agricultural   production,   and   changes   in   legislation,   institutions,   and  infrastructure.   The   proximity   to   the   U.S.   market,   combined   with   state   targets   for  environmentally   friendly   fuel  use  and  access   to  markets  under  NAFTA,  offers   future  opportunities   for  Mexico   to   export   Bio-­‐fuel   to   California.   These   exports  most   likely  would   consist   of  modest   quantities   based   on   sugarcane,   sorghum   and   recycled   oils  and  oilseed  for  feedstock.    

Page 6: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   6  

Impact  Investment  in  Bio-­fuel  /  Biomass  Co-­gen:  Rationale  for  Rural  Projects    Agriculture  is  a  potential  instrument  for  reducing  carbon  and  other  greenhouse  gases  in   the   atmosphere.   Crops   naturally   sequester   carbon   as   part   of   the   plant’s   growth  cycle.   This   carbon   can  become  an   energy   source   for  humans   and   animals   or   can  be  converted  into  bio-­‐energy,  which  can  substitute  for  fossil  fuels.    

 Biomass   residuals   from  agriculture  left  on  the  fields  can   reduce   erosion   and  contribute   to   soil   fertility,  or  much  of  this  biomass  can  be  collected  and  turned  into  energy.   The   state   of  Tamaulipas  produces  over  2  million   tonnes   of   sorghum  per  annum  and  we  estimate  an   approximate   8   million  tonnes   of   residual   sorghum  stems  in  the  fields.      Animal  manure   can   also   be  used   as   a   fuel   instead   of  being   left   to   decay   and  

release  the  potent  greenhouse  gas  methane,  with  an  atmospheric  impact  21  times  that  of   carbon   dioxide   (the   other   significant   green-­‐house   gas   from   agriculture   is   nitrous  dioxide,   with   an   impact   more   than   300   times   that   of   carbon   dioxide).   However,  methane  bio-­‐digester  systems  have  yet  to  prove  their  energy  efficiency  in  operation  in  Mexico,  as  there  are  no  installed  systems  yet.  Doubts  surround  the  feasibility  of  such  systems,  especially  when  accounting  for  their  high  Capex  cost.    The   specificity   of   the   feedstock,   the   logistics,   the   conversion,   and   local   economic  conditions  make  it  difficult  to  define  a  single  break-­‐  even  point  for  the  production  of  Bio-­‐fuels.  If  technology  improves  and  oil  prices  continue  their  current  upward  trend,  however,   the   production   of   Bio-­‐fuels   would   be   economically   competitive   in   more  countries  and  for  a  wider  variety  of  feedstock.      A   key   motivation   in   the   development   of   Bio-­‐fuels   is   the   possibility   of   diversifying  energy   resources   and   displacing   large   oil   import   bills   with   spending   on   locally  produced   Bio-­‐fuels.   Rural   development   benefits   from   a   dynamic   bio-­‐energy   sector,  beginning   with   feedstock   production.   Because   agricultural   production   in   many  developing   countries   is   characterized  by   labor-­‐intensive   activity,   additional  demand  for   agricultural   products   will   increase   employment   and   wages   in   the   agricultural  sector.   Furthermore,   the   additional   personal   income   generated   has   the   potential   to  induce  significant  multiplier  effects  as  the  rural  population  spends  it.    

Page 7: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   7  

Given   the   weight   and   bulk   of   most   biomass   feedstock,   it   is   necessary   to   locate  collection   and   conversion   facilities   in   rural   areas,   close   to   where   the   feedstock   is  grown.   Consequently,   construction   and   operation   of   those   facilities   will   generate  additional   economic   activity   in   rural   areas.   This   fact   emphasizes   the   close   link  between  the  Bio-­‐fuels  sector  and  rural  development.    Organizing  small-­‐scale  producers  to  meet  the  throughput  volume  and  reliability  needs  of  conversion  facilities  can  enhance  local  benefits,  especially  for  the  poor.  In  Brazil  and  the   United   States,   large   corporations   dominate   the   bio-­‐energy   industry,   but   farmer  cooperatives  play   a  useful   role   in   linking   these   large   firms   to   independent   growers.  Similar   arrangements   may   be   needed   in   other   countries   if   the   industry   is   not   to  develop   in   a   vertically   integrated   way   with   only   large-­‐scale   growing   of   biomass  feedstock.   Additionally,   since   certain   biomass   co-­‐generation   energy   crops   like   trees  and  grasses  require  few  inputs,  they  sometimes  can  be  grown  on  land  too  marginal  for  food  crops.  These  energy  crops  have  the  potential  to  extend  the  land  base  available  for  agricultural  activities  and  to  create  new  markets  for  farmers.  These  positive  impacts  in   the   dynamics   of   the   rural   economy   could   have   a   substantial   role   in   reducing   the  traditional   exodus   to   urban   areas   and   could   create   a   more   favorable   economic  environment  for  greater  investment  in  rural  infrastructure,  health,  and  education.    Bio-­‐energy  crop  systems  can  yield  significant  benefits,  both  environmental  and  social.  The   right   choice   of   biomass   crops   and   production   methods   can   lead   to   favorable  carbon  and  energy  balances  and  a  net  reduction  in  greenhouse  gas  emissions.  But  bio-­‐energy   production   systems   also   need   to   be   adapted   to   local   conditions   to   avoid  generating  environmental  problems.  As  a  guiding  principle,  bio-­‐energy  crop  systems  can  potentially  provide  benefits  if  implemented  on  land  that  is  currently  under  annual  row  crops  or  is  undergoing  uncontrolled  degradation.  In  either  case,  providing  social  benefits  will  require  engaging  local  communities  and  understanding  the  current  uses  of  the  land,  such  as  food  production,  livestock  grazing,  and  fuel  wood  gathering.  Bio-­‐energy   crop   production   can   be   a   suitable   alternative   if   designed   in   a   participatory  manner  with  those  whose  livelihoods  will  be  affected.      New   technological   innovations   in   bio-­‐energy,   along   with   dramatically   rising  international  oil  prices  and  extremely  volatile  natural  gas  costs,  have  opened  the  door  to  a  revolution  in  commercial  bio-­‐energy  production.  Improvements  have  been  made  in   Ethanol   and   biodiesel   production   and   in   the   gasification   of   Bio-­‐fuels.   In   most  countries   these   developments   have   important   implications   for   agriculture   and  may  offer   new   income-­‐earning   opportunities   for   farmers.   In   some   cases,   such   as   Brazil,  they  dramatically  reduce  the  need  for  imported  oil.    Residues   are   an   especially   important   potential   biomass   energy   source   in   densely  populated   regions,   where   much   of   the   land   is   used   for   food   production.   In   fact,  biomass  residues  play   important  roles   in  such  regions  precisely  because  the  regions  produce   so  much   food;   crop  production   can  generate   large  quantities  of  by-­‐product  residues.      

Page 8: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   8  

To   put   this   in   perspective,   if   half   of   this   resource   were   to   be   used   in   China   for  generating  electricity  at  an  efficiency  of  25  percent  (achievable  at  small  scales  today),  the   resulting   electricity   generation   would   be   about   half   of   the   total   electricity  generated  from  coal  in  China4.        There  is  also  significant  potential  for  providing  biomass  for  energy  by  growing  crops  specifically   for   that   purpose.   In   one   scenario   from   the   Intergovernmental   Panel   on  Climate  Change  (IPCC),  385  million  hectares  globally  are  planted  with  biomass  energy  plantations   in   2050   (equivalent   to   about   one-­‐quarter   of   the   present   planted  agricultural  area),  with   three-­‐quarters  of   this  area   in  developing  countries.  Using  so  much   land   for   bio-­‐energy   raises   the   issue   of   intensified   competition   with   other  important   land   uses,   especially   food   production.   Competition   between   land   use   for  agriculture   and   for   energy  production   can  be  minimized,   however,   if   degraded   land  and   surplus  agricultural   land  are   targeted   for   energy   crops.  Though   these   lands  are  less   productive,   targeting   them   for   bio-­‐energy   plantations   can   have   secondary  benefits,   including   restoration   of   degraded   land   and   carbon   sequestration.   In  developing  countries  in  aggregate,  about  2  billion  hectares  of  land  have  been  classified  as  degraded,  though  this  land  is  certainly  not  entirely  unoccupied.  Although  there  are  many   technical,   socioeconomic,   political,   and   other   challenges   involved   in   growing  energy  crops  on  degraded  lands,  successful   plantations   have  already   been   established   on  such   lands   in   some   developing  countries.    Biomass-­‐based   industries   are  also   a   significant   source   of   jobs  in   rural   areas,   where   high  unemployment   often   drives  people  to  take  jobs  in  towns  and  cities,   dividing   families   and  exacerbating   problems   of   urban  decay.   Compared   with   other  fossil   fuel   and   renewable   energy   production,   biomass   is   relatively   labor   intensive,  even   in   industrialized   countries  with   highly  mechanized   industries.   Traditional   bio-­‐energy  provision  also  creates  a  significant  source  of  employment.  One  study  reported  that   33   percent   of   randomly   selected   respondents   in   one   charcoal-­‐producing   area  claimed   charcoal   production   as   a   source   of   income.   It   should   not   be   assumed,  however,   that   all   rural   areas   in   developing   countries   are   characterized   by   surplus  unskilled  labor  and  that  labor-­‐intensive  bio-­‐energy  projects  will  automatically  have  a  pool   of   workers   from   which   to   select.   Employment   in   rural   areas   is   primarily  agricultural  and  hence,  highly  seasonal.  It  also  moves  in  longer  cycles  coinciding  with  good   and   bad   harvests,   which   can   have   ripple   effects   extending   into   the   formal  economy.                                                                                                                  4  U.S.  Department  of  Energy,  estimated  energy  production  levels  in  China,  2010  

Page 9: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   9  

 Mexican  Social  and  Rural  Context  for  Agri-­business  Investment  Projects    Mexico’s   public   agricultural   budget   for   2011   amounted   to   some   5.8   billion   dollars;  nearly   double   the   total   in   the   year   2000.   An   estimated   52  million   of   Mexico’s   112  people  live  in  poverty,  and  25  percent  of  the  population  does  not  have  enough  to  eat,  according   to   the   government’s   National   Council   for   the   Evaluation   of   Social  Development  Policy  (CONEVAL).  5  In  addition,  the  centre  and  north  of  the  country  are  suffering  from  drought,  which  is  having  a  heavy  impact  on  agriculture,  livestock,  and  the  incomes  of  thousands  of  farm  workers.      Mexico  has  made  significant  progress  in  improving  a  key  indicator  for  the  realization  of  the  right  to  food,  namely,  achieving  the  Millennium  Development  Goal  of  reducing  the  national  average  of  children  under  5  years  who  are  underweight  (target  1.8)  from  14.2  per  cent  in  1988  to  5  per  cent  in  2006.  Progress  has,  however,  been  uneven  and  deprivation  levels  in  enjoyment  of  the  right  to  food  remain  dramatic  for  a  large  part  of  the  population.  The  National  Council  on  the  Evaluation  of  Social  Development  Policy  (CONEVAL)  estimates  that  18.2  per  cent  of  the  population  (19.5  million  people)  lived  in   “food  poverty”   in  2008,  up   from  13.8  per  cent   (14.4  million  people)   in  2006.  The  situation  has  remained  largely  unchanged  since  1992,  with  a  drastic  deterioration  in  1996,  when  the  number  of  people  living  in  food  poverty  almost  doubled  to  reach  37.4  per  cent  and  a  short-­‐  lived  drop  in  food  poverty  in  2006.  According  to  the  most  recent  official   figures,   in  2010,   total   of   52  million  people   (46.2  per   cent   of   the  population)  lived  in  poverty  while  28  million  (24.9  per  cent)  had  insufficient  access  to  food.    These  national  averages  cover  significant  disparities  between  deprivations   in  access  to  adequate  food  between  urban  and  rural  areas  as  well  as  between  States  in  North,  South   and   Central   Mexico.   Of   the   18.1   million   people   living   in   municipalities  considered  to  have  a  high  or  very  high  degree  of  marginalization,  80.6  per  cent  live  in  rural  areas.    There   are   also   marked   differences   in   relevant   right   to   food   indicators   between  indigenous  and  non-­‐indigenous  populations.  For  both  groups,  child  malnutrition  rates  have   gradually   decreased.   Nevertheless,   one   in   three   (33.2   per   cent)   indigenous  children   under   the   age   of   5   years   suffered   from   chronic   malnutrition   in   2006,  compared  with  one  in  10  (10.6  per  cent)  non-­‐indigenous  children.  National  statistics  also  show  that  women  and  the  elderly  are  particularly  vulnerable   to  deprivations   in  access  to  adequate  food.    

                                                                                                               5  United  Nations  Rights  Council  in  Geneva,  U.N.  special  rapporteur  on  "The  Right  to  Food,"  Olivier  De  Schutter,  March  9,  2012  interview  with  IPS.  

Page 10: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   10  

    Historical  and  Projected  Price  of  Corn  (U.S.  Department  of  Energy)    With   recent   constitutional   reforms,   Mexico   has   joined   a   small   but   rapidly   growing  group  of   States   that   are  making   the   right   to   adequate   food  explicit   in   their  national  Constitution,   thus   empowering   courts   to   ensure   that   this   right   is   fulfilled  with.   The  legal  framework  could  be  further  improved,  however,  by  the  adoption  on  a  framework  legislation  on  the  right  to  food,  as  has  been  done  in  a  number  of  other  countries  in  the  region   and   as   recommended   by   the   Committee   on   Economic,   Social   and   Cultural  Rights  and  under  the  Voluntary  Guidelines  to  Support  the  Progressive  Realization  of  the  Right  to  Adequate  Food  in  the  Context  of  National  Food  Security  of  the  Food  and  Agriculture   Organization   of   the   United   Nations.   In   this   regard,   the   United   Nations  notes   with   interest   the   draft   bill   on   planning   for   agricultural,   food   and   nutritional  sovereignty   and   security   ("Proyecto   de   Ley   de   Planeación   para   la   Seguridad   y   la  Soberanía  Agroalimentaria  y  Nutricional").    The  relatively  high  degree  of  dispersion  of  the  rural  population,  in  part  attributable  to  the  policy  of  agrarian  reform  dating  from  the  1917  Constitution,  makes  it  difficult  to  provide  rural  households  with  adequate  basic  services,  including,  in  particular,  health  care   and   education,   and   to   promote   off-­‐farm   rural   employment.   The   concept   of  “sustainable  rural  towns”  (ciudades  rurales  sustenables)  is  seen  as  an  answer  to  this  challenge.            

Page 11: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   11  

This  concept  is  being  tested  in  the  State  of  Chiapas  with  support  of  a  number  of  United  Nations   agencies,   including   in   particular   the   United   Nations   Development   Program.  Based   on   recent   conversations   with   the   Secretary   of   Energy   of   Mexico,   we   are  convinced   that   a   new   public   bidding   process   will   be   announced   during   the   first  quarter   of   2012   for   Chiapas   and   Oaxaca,   in   order   to   test   the   new   PEMEX   Ethanol  purchases  pricing  formula.  If  successful,  then  the  program  may  be  opened  for  the  city  of  Monterrey,  which  is  a  significant  first  step  towards  a  blending  mandate  in  Mexico.  Lobbying  efforts  are  necessary  by  industry  participants  in  order  to  provide  technical  assistance  and  best  practices  for  PEMEX.    

 

Feedstock  Production  Costs    Several   factors   contribute   to   higher   production   costs,   lower   yields,   and   lower  potential   growth   for   Bio-­‐fuel   feedstock   sectors   in   Mexico   when   compared   to   other  countries   in   this  assessment.  Mexico’s   feedstock  production  primarily   is   from  small,  rain-­‐dependent   parcels   with   relatively   limited   access   to   technology,   capital,   inputs,  and   markets.   Additional   cultural   and   social   issues   that   can   influence   production  include  the  role  of  corn  in  society  and  the  impacts  of  NAFTA.      Finally,   physical   conditions   including   climate   and   weather   variability,   soils,   and  limited   availability   of   water,   create   significant   constraints   to   rapid   agricultural  expansion  for  Bio-­‐fuel  crops  such  as  sugarcane.  Crop  yields  are  highly  susceptible  to  weather  conditions.        

Page 12: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   12  

Sorghum  as  an  Ethanol  Feedstock    One  set  of  crops  with  great  potential  for  Ethanol  production  is  sweet  sorghum,  which  is   similar   to   grain   sorghum   but   features   more   rapid   growth,   higher   biomass  production,  and  wider  adaptation.  The  dual-­‐purpose  nature  of  sweet  sorghums—they  produce   both   grain   and   sugar-­‐rich   stalks—offers   new   market   opportunities   for  smallholder   farmers   and   does   not   threaten   food   trade   for   sorghum.   Because   sweet  sorghum   requires   less   water   and   has   a   higher   fermentable   sugar   content   than  sugarcane,  which   contains  more   crystallizable   sugars,   it   is   better   suited   for   Ethanol  production   than   sugarcane   or   other   sources,   and   sweet   sorghum  Ethanol   is   cleaner  than  sugarcane  Ethanol,  when  mixed  with  gasoline.    Opportunities  for  Cellulosic  Ethanol  R&D  in  Mexico    Agricultural  Bio-­‐fuels  are  currently  based  on  the  generation  of  Ethanol  from  sucrose  or  starch  derived  from  vegetative  biomass  or  grain,  on  biodiesel  from  the  more  direct  use   of   vegetable   oils   and   animal   fats.   Ethanol   has   a   high   octane   rating   and   can   be  blended  in  low  proportions  with  gasoline  for  direct  use  in  normal  internal  combustion  engines.    Further   down   the   line,   there   is   enormous   potential   to   develop   cellulose-­‐based   bio-­‐energy  systems.  Plant  biomass  is  an  abundant  and  renewable  source  of  hydrocarbons,  and   crops   can   generate   more   cellulose   per   hectare   than   sucrose   or   starch.   Plant  breeders   should  aim   for  high-­‐density  biomass  production   (for   example,  15   tons  per  hectare  in  maize)  rather  than  competing  with  crop  residues  or  forest  production  for  supplying  materials  to  cellulosic  bio-­‐refineries.      

Page 13: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   13  

Best  Practices:  The  Success-­Case  of  Brazil    

The  government  of  Brazil   announced  on  March  2nd  2012,   a  new  5-­‐year   investment  program   totaling   US$38   Billion   dollars   in   order   to   expand   the   availability   of   sugar  cane   for   Ethanol   production.   The   initial   investment,   part   of   the   "Brazilian   Strategic  Plan   for   the   sugar-­‐Ethanol   Sector"   will   be   over   US$16.9   billion   dollars   in   order   to  renovate   6.4   million   hectares   of   sugar   cane,   which   are   currently   at   an   optimal  production  level  of  three  cuttings  per  year.  This  is  a  clear  example  of  a  leading  Ethanol  and  bio-­‐energy  leader  in  Latin  America  and  perhaps  the  world.  

 Mexico   would   be   well   served   by   implementing   government   programs   aimed   at  improving  energy  security  while  promoting   rural  development.   In   this   light,  Brazil’s  experience  offers  some  relevant  policy  lessons.  Among  the  policies  most  important  to  Brazil’s  success  may  be  the  following:    •  Subsidizing  Bio-­‐fuels  during  market  development  until  economy  of  scale  allowed  fair  competition  with  oil  products;    •   Allowing   renewable   energy-­‐based   independent   power   producers   to   compete  with  traditional  utilities  in  the  large  electricity  market;    •   Supporting   private   ownership   of   sugar   mills,   which   helps   guarantee   efficient  operations;  and    •   Stimulating   rural   activities   based   on   biomass   energy   to   increase   employment   in  rural  areas    

Page 14: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   14  

Synergies  with  the  Sugar  Market    The  coupled  production  of  Ethanol  and  sugar,  which  occurs  in  almost  all  sugar  mills,  is  a  significant  driver  of  Brazil’s  successful  Ethanol  program.  International  sugar  prices  have  been  both  highly  volatile  and  on  a  general  downward  trend.  If  sugar  prices  fall,  mills  may  find  it  more  profitable  to  shift  to  Ethanol  production.  Experience  has  shown,  however,   that   it   is   important  to  protect   the  domestic  market   for  Ethanol—that   is,   in  order   to   prevent   domestic   Ethanol   shortages,   sugarcane   producers   often   have   to  produce  Ethanol  even  when  they  could  make  greater  profits  by  selling  sugar.    Significant   improvements   in   the   productivity   of   the   sugar   industry   have   benefited  Ethanol  production.  Between  1975  and  2010,  sugarcane  yields  in  the  Sao  Paulo  region  rose  by  33  percent,  Ethanol  production  per  unit  of  sucrose  rose  by  14  percent,  and  the  productivity   of   the   fermentation   process   rose   by   130   percent.   Thanks   to   these  productivity   improvements,   the   cost   of   producing   Ethanol   declined   by   an   annual  average  of  3.8  percent  from  1990  to  2000  and  5.7  percent  from  2000  to  2010.    Synergies  with  Electricity  and  Heat  Production    Another  important  contributor  to  the  success  of  Bio-­‐fuels  lies  in  the  energy  content  of  sugarcane   residues.   At   present,   cogeneration   of   heat   and   electricity   from   bagasse  supplies  most  of  the  energy  needs  of  the  Bio-­‐fuel  production  process  itself,  as  well  as  allowing  an  increasing  amount  of  electricity  to  be  exported  to  the  grid.  From  1997  to  2004,   the   amount   of   electricity   from  biomass   sold   to   the   grid   increased   from  80   to  1550   gigawatt-­‐hours   (GWh).   This   surplus   electricity   came   mainly   from   retrofitting  existing  energy  supply  facilities  in  some  30  sugar  mills.    Institutional  Support    Replacing  gasoline  with  another  fuel  faces  a  “chicken-­‐and-­‐egg”  problem  in  the  supply  chain.  Consumers  are  afraid   to  buy   cars   that  use  a  new   fuel   that  may  be  difficult   to  find.   Service   station   owners   are   not   interested   in   investing   in   a   parallel   fuel  distribution   system   since   the   number   of   potential   users   is   usually   very   small.  Therefore   the   Brazilian   government,   at   both   the   federal   and   state   level,   had   an  essential   role   to   play   in   providing   incentives   and   setting   up   a   clear   institutional  framework.   This   role   included   setting   technical   standards,   supporting   the  technologies  involved  in  Ethanol  production  and  use,  providing  financial  advantages,  and  ensuring  appropriate  market  conditions.                  

Page 15: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   15  

 Agricultural  Land    Brazil   has   abundant   agricultural   land   and   an   appropriate   climate   for   sugarcane.   Its  sugarcane   industry  was   already   developed,   and   the   dominant   state   in   this   industry  (Sao  Paulo)  sugar  mills  are  also  diversifying  their  energy  outputs.    Since  1997,  when  legislation   allowed   independent   power   producers   to   sell   electricity   to   the   grid,   the  supply  of  electricity  to  the  grid  from  sugar  mills  has  grown  strongly.  Around  600  MW  of  installed  power  from  sugar  mills  were  delivered  to  the  grid  in  2010.  Sugar  mills  are  starting  to  economically  compete  with  conventional  sources  of  electricity  to  meet  the  needs  of  the  national  power  grid,  and  this  activity  is  expected  to  increase.  In  addition,  sugar   mills   are   installing   biodiesel   plants   that   offer   a   number   of   synergies   with  sugar/Ethanol  production.    Sugar/Ethanol  production  does  raise  concerns  about  land  use.  Sugarcane  production  for   Ethanol   competes   with   production   of   food   and   other   export   crops.   Yet   the   5.5  million  hectares  cultivated  with  sugarcane  represent  only  8.6  percent  of  the  total  area  harvested  with  essential  crops.      In  addition,  farmers  are  increasingly  rotating  between  sugarcane  and  food  crops  like  tomatoes,   soy,   peanuts,   beans,   rice,   sorghum   and  maize.   This   approach   has   helped  maintain   the  balance  between  energy  and   food  and  has   improved   land  profitability.  The  expansion  of   sugarcane  plantations  could,  however,   indirectly   lead   to   increased  deforestation,  as  cattle  ranching  displaced  from  pastureland  by  sugarcane  production  could  encroach  on  forest  areas.  Until  now,  most  of  the  cattle  ranching  activities  in  the  region  have  continued  on  a  more  confined,  less  land-­‐  intensive  scale.    Development  of  a  Sustainable  Bio-­energy  Industry  in  Mexico    Launching  and  developing  a  new  industry  like  bio-­‐energy  poses  difficult  challenges  for  the  private  sector.  The  substantial  investments  that  must  be  made  up  front  can  yield  little   return  until   sufficient   scales  of  production  and  demand  have  been  achieved   to  slash  unit   costs.  But  achieving   those   scales  depends  on  complementary   investments  throughout   the  market   chain,   and   these   investments  may   not   be   forthcoming   until  bio-­‐energy   costs   have   fallen   to   a   level   competitive  with   alternative   energy   sources.  The  Bio-­‐fuel  industry  is  a  good  example.      A   viable   Bio-­‐fuel   industry   requires   large   and   coordinated   investments   not   only   by  farmers  and  processors,  but  also  by  car  manufacturers,  consumers,   fuel  distributors,  and  garages.  Until  these  investments  are  in  place,  Bio-­‐fuel  sales  are  destined  to  be  low,  and   economies   of   scale   in   production   and   distribution   cannot   be   exploited.   Given  higher  costs,  Bio-­‐fuels  may  remain  uncompetitive  with  oil.          

Page 16: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   16  

The  solution  to  this  problem  is  for  Mexico  to  provide  initial  incentives  to  help  launch  the   industry.   The   public   sector   can   help   achieve   critical  market   size   by   offering   tax  rebates   on   Bio-­‐fuels   (but   not   on   oil-­‐based   gasoline   and   diesel),   by   mandating   fuel  blending   requirements   (like   the   European   Union’s   current   requirement   that   diesel  contain   at   least   2   percent   biodiesel),   by   offering   investment   incentives   such   as   tax  exemptions   or   holidays   on   bio-­‐energy   investments   by   industry   and   subsidies   to  consumers   (to  buy   flex-­‐fuel   cars,   for   instance),  and  by   investing  directly   in   research  and   development   and   relevant   infrastructures.   Brazil   began   using   these   kinds   of  interventions  in  the  mid-­‐1970s  and  has  now  built  up  a  viable  Bio-­‐fuels  industry  that  not   only   contributes   a   significant   share   of   the   country’s   energy   requirements   for  transportation,  but  also  exports  to  other  countries.        

   The   European   Union   and   the   United   States   began   later   and   are   in   the   process   of  building  up  their  own  domestic  industries.  Many  other  countries  seem  likely  to  follow.  Although   Bio-­‐fuel   production   has   clear   benefits   for   the   agricultural   sector,   the   net  impact   on   poverty   and   food   insecurity   in   developing   countries   is   less   clear.   Not   all  countries   have   the   natural   resource   base   to   justify   significant   production   of   bio-­‐energy   crops,   but   for   those   that   do,   the   diversion   of   land   and  water   away   from   the  production   of   other   agricultural   outputs,   especially   food   and   feed,   needs   to   be  considered.   Although   current   levels   of   bio-­‐energy   production   are   too   small   to   have  much   impact  on  world   food  prices,   any   rapid   and  widespread  expansion  within   the  constraints  of  existing  technologies  could  lead  to  significant  food  price  increases.          

Page 17: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   17  

Such   price   increases   would   be   beneficial   to   farmers   who   produce   a   net   surplus   of  food,  but  they  would  be  detrimental  to  poor  consumers  and  food-­‐deficit  farmers,  who  would  have  to  balance  more  expensive  food  against  less  costly  energy.  Since  the  poor  typically  spend  much  larger  shares  of  their  consumption  budget  on  food  than  energy,  this  trade-­‐off  is  unlikely  to  be  favorable.    Policy  Recommendations  for  a  Mexican  Bio-­fuel  /  Bio-­energy  Industry    There  are   several  ways   to   reduce   the   trade-­‐offs  between  bio-­‐energy  crops  and   food  production:    •  Develop  biomass  crops  that  yield  much  higher  amounts  of  energy  per  hectare  or  unit  of  water  and  thereby  reduce  the  resource  needs  of  bio-­‐energy  crops.    •  Focus  on  food  crops  that  generate  by-­‐products  that  can  be  used  for  bio-­‐energy,  and  breed  varieties  that  generate  larger  amounts  of  by-­‐products.    •  Develop  and  grow  biomass   in   less-­‐favored  areas   rather   than   in  prime  agricultural  land  (an  approach  that  would  benefit  some  of  the  poorest  people.)    •  Invest  in  increasing  the  productivity  of  the  food  crops  themselves,  since  this  would  free  up  additional  land  and  water  for  the  production  of  bio-­‐energy  crops.    •  Remove  barriers  to  international  trade  in  Bio-­‐fuels.  The  world  has  enough  capacity  to  grow  all  the  food  that  is  needed  as  well  as  large  amounts  of  biomass  for  energy  use,  but  not  in  all  countries  and  regions.      Trade   is   a   powerful   way   of   spreading   the   benefits   of   this   global   capacity   while  enabling   countries   to   focus   on   growing   the   kinds   of   food,   feed,   or   energy   crops   for  which   they   are   most   competitive.   Trade   would   also   allow   bio-­‐energy   production  patterns   to   change   in   the   most   cost-­‐effective   ways   as   new   second-­‐generation  technologies  come  on  line.    Sugar  Cane  Production  and  the  Installed  Ethyl  Alcohol  Plant  Assets  in  Mexico    Although   sugarcane   is   among   the  most   expensive   (in   terms   of   the   opportunity   cost  posed   by   higher   pure-­‐ethyl-­‐alcohol   and   sugar  markets   prices)   of  Mexico’s   potential  Bio-­‐fuel   crops,   the   country’s   sugar   industry   probably   is   best   suited   for   producing  Ethanol.  Sugarcane  is  a  key  component  of  Mexico’s  sugar  industry.      The  seventh-­‐largest  global  producer  of  sugar,  Mexico  produces  about  5  million  tons  of  sugar   annually   from   approximately   633   million   ha,   and   the   industry   directly   or  indirectly   employs   12   million   people.   Land   holdings   typically   are   small,   held   by  individual  growers  or  through  communal  ownership  of  3–5  ha  farms.        

Page 18: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   18  

Most  of  the  country’s  sugarcane  is  used  to  produce  centrifugal  sugar.  Nevertheless,  the  Bio-­‐  Fuels  Promotion  and  Development  Law  and  the  National  Sugar  Development  Plan  encourage   the   use   of   sugarcane   for   Ethanol.   The   Sugar   Development   Plan   seeks   to  diversify   the   sugar   industry   and   envisions   building   up   to   a   120-­‐million   gallon/year  Ethanol  production  capacity  by  2012.    Current   sugarcane  production   in  Mexico  mainly   is   for   domestic   sugar   consumption.  However,   about   13%   of   the   sugar   production   is   exported   in   either   raw   or   refined  form.  The  Mexican  sugar  industry  is  undergoing  a  number  of  changes  that  may  affect  sugarcane  uses  for  Ethanol  fuel.      These   changes   include   implementation   of   NAFTA   provisions,   a   pending   Supreme  Court  decision  on  a  new  sugar  law,  the  launching  of  a  new  National  Sugar  Program  by  the  government,  privatization  of  sugar  mills,  and  the  enactment  of  a  Bio-­‐fuel  Law  that  encourages  sugarcane  use  for  Ethanol  fuel  production.  One  of  the  targets  of  the  new  National   Sugar   Program   is   to   allocate   about   11%  of   the   total   sugarcane   production  target  for  2012  of  61mmt  to  Ethanol.    Mexico   produces   over   50   million   tonnes   of   sugar   cane   per   annum,   which   are  dedicated  to  production  of  over  5.8  mmt  of  sugar  and  1.8  million  mtt  of  molasses,  of  which  its  principal  use  is  the  production  of  alcohol  of  diverse  grades  of  purity.    Some   sugar   cane   mills   have   installed   dehydrator   columns   in   order   to   produce  anhydrous  Ethanol.  This  initiative  emerged  from  a  collaboration  agreement  between  the   Sugar   Industry   Chamber   of   Commerce   and   the   Government   of   Mexico   City;  although   it   does   not   have   yet   the   official   endorsement   by   PEMEX.   In   the   2009  collaboration   agreement,   it   was   stipulated   that   at   least   10  million   liters   of   Ethanol  would  be  produced  in  order  to  blend  in  the  gasoline  of  Mexico  City  official  vehicles.    Unfortunately,   that   effort   failed   since   PEMEX   was   unwilling   to   provide   an  economically  attractive  pricing  formula  for  its  purchases  of  Ethanol.  The  PEMEX  open  auction  for  the  city  of  Guadalajara  was  declared,  "deserted"  on  March  2010.    The  Mexican  sugar-­‐cane  chamber  of  commerce  estimates  that  the  top-­‐production  12  (twelve)  mills  produced  during  2010  over  60  million  liters  (or  15  million  gallons)  of  anhydrous   Ethanol,  which  was   sold   and   used   for   other   industrial   purposes   and  not  used  at  all  in  any  type  of  blending  in  Mexico.    Surprisingly,   these   12   top-­‐tier   sugar   cane   distilleries   only   produce   an   average   30  million  gallons  of  anhydrous  alcohol  per  year.  At  the  same  time,  industry  reports  state  that  nearly  180  million  gallons  of  stillage  are  produced  and  applied  as  bio-­‐fertilizer  for  the   same   sugar   cane   plantations,   surrounding   the  mills.   Industry   data  mention   that  from   one   (1)   tonne   of   sugar   it   is   possible   to   produce   243   liters   of   absolute   pure  alcohol  (200-­‐proof).      

Page 19: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   19  

PEMEX,   through   its   "Mexican   Institute  of  Petroleum"  has  become  a  supporter  of   the  sugar  cane  mill  industry  and  has  paid  for  several  research  programs,  aimed  at  testing  different   blend  mixes   of   Ethanol   with   vehicular   gasoline.   In   order   to   overcome   the  economic  challenges,  posed  by  the  combination  of  high  feedstock  costs  and  uncertain  Ethanol  purchase  prices  by  PEMEX,  derived  from  its  obscure  pricing  formula,  several  industrialists   and   sugar   cane   mill   owners   are   turning   to   the   lessons   learned   from  Brazil.   There   is   currently   a   dynamic   discussion   about   the   need   to   conceptualize,  develop   and   implement   an   integral   production   model,   which   encompasses   its   own  power  and  steam  generation  for  each  plant.    Several   sugar   cane   mill   owners   are   exploring   biomass   energy   co-­‐generation   new  projects  and  there  is  a  high  level  of  interest  in  new  biomass  power  technologies.      A   clear   opportunity   for   new   investors   who   are   seeking   entry   into  Mexico   presents  itself,  particularly  in  the  biomass  co-­‐generation  capital  investment  niche,  since  sugar  cane  producers  have  already  stated  publicly  their  desire  to  upgrade  their  sugar  cane  mills  with  new  electricity  and  steam  generation  technologies.    Mexico  Sugar  Cane  Production  Estimates6                                  Bio-­energy  from  Sugar  Cane  Production    The   processing   of   one   tonne   of   sugarcane   produces   about   280   kg   of   bagasse   with  about  50%  average  moisture  and  13-­‐15%  dry  fiber.  There  is  an  additional  estimated  50-­‐250   kg   of   “trash”   (leaves   and   straw)   potentially   available   with   the   wide   range  depending  on  the  harvest  and  collection  process  used.  Most  of  this  is  usually  left  in  the  fields.  The  sugar  mills  and  Ethanol  plants  are  usually  designed  to  crush  the  sugarcane  and  process  the  solid  cane  residue,  bagasse,  for  combustion  on  site.                                                                                                                    6  Biofuel  Feedstock  Assessment,  Oakridge  National  Laboratory,    U.S.  Department  of  Energy  

Page 20: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   20  

The   energy   value   in   the   bagasse   is   greater   than   sugar   mill   processing   thermal  requirements.   Therefore,   the   combustion   processes   in   mills   was   traditionally  thermally  inefficient  because  there  was  a  need  to  dispose  of  the  bagasse  on  site.  As  the  value   of   energy   and   bagasse   has   increased,   many   sugarcane-­‐processing   plants   are  upgrading   their   equipment   to   make   more   efficient   use   of   bagasse   and   other  byproducts.  There  is  growing  use  of  efficient  co-­‐generation  systems  that  produce  heat  for  processing  and  electric  power  that  can  serve  the  mill  and  in  many  areas,  be  sold  back  to  the  grid.      This  transition  is  catalyzed  where  higher  prices  and  government  regulations  facilitate  profitable   participation   of   private   power   producers   such   as   sugar  mills   in   national  electricity  markets.   The   U.S.   Oakridge   National   Laboratory   (based   on   the   projected  amount   of   sugarcane   production)   calculated   the   total   amount   of   bagasse   available.  Available  bagasse  is  reported  on  an  equivalent  dry  biomass  basis  at  the  rate  of  140  kg  of  bagasse  for  each  tonne  of  sugarcane  (half  the  total  weight  generated).      With  efficient   systems,  U.S.  Department  of  Energy   researchers   suggest   that  only  25-­‐30%  of  available  bagasse  will  be  needed  to  meet  process  heat  needs  at  a  processing  plant,   leaving   the   majority   available   as   a   potential   feedstock   for   cellulosic   Bio-­‐fuel  production   while   maintaining   a   self-­‐sufficient   energy   supply   system   for   the   plant.  Although   there   are   not   formal   or   consistent  markets   for   bagasse,   spot  markets   can  occur.  Excess  bagasse   is  also  used  as  a   fiber   feedstock  for  paper  production   in  some  localities.   An   estimated   opportunity   cost   is   assigned   for   this   analysis   based   on  reported  values  occasionally  observed  in  Brazil  of  approximately  $1/MJ,  or  $8.40  per  metric   tonne.  This  value   is   adjusted   somewhat  based  on   information  about  demand  and  markets  in  each  country  studied.      

Estimated  Land  Surfaces  for  Biomass  Production7    

                                                                                                               7  Ibid  

Page 21: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   21  

   Estimated  Cost  US$/metric  tone  for  Biomass8    Crop  Residues  as  Biomass  for  Co-­Generation  Strategies  in  Latin  America    An   assessment   by   the   U.S.   Department   of   Energy,   estimated   total   crop   residues   in  Latin   America   in   2010.   The   amount   of   recoverable   residues   as   a   function   of   the  projected   crop  production   in  2017   ranges   from  182  mmt   in   the   low  growth  case   to  344  mmt   in   the   high   growth   case,   and   sums   to   246  mmt   in   the   baseline   case.   The  baseline  estimate  includes  187  mmt  from  bagasse,  40  mmt  from  corn  stover,  17  mmt  from  wheat  straw  and  2  mmt  from  palm  oil  processing  wastes.      Due  to  environmental  considerations,  none  of  the  wastes  from  soybean  harvesting  is  assumed  to  be  recoverable.  Total  crop  residues  recoverable  in  2027  are  projected  at  326  mmt,  ranging  from  200  mmt  to  570  mmt  in  the  low  and  high  growth  cases.  The  recoverable   crop   residue   estimates   summarized   here   are   based   solely   on   the   crop-­‐country   combinations   studied.   The   distribution   of   estimated   recoverable   crop  residues  by  country  is  presented  in  Figures  2.13  and  2.14  (for  all  three  cases  in  2017  and  2027,  respectively).    Environmental  and  Social  Issues  related  to  Biomass  Feedstock  in  Latam    Biofuel  feedstock  production  can  have  negative  or  positive  effects  depending  upon  the  local   situation   and   factors   such   as   crop   type,   the   methods   used   to   cultivate   and  harvest   it,   and  what   the   alternative   land   use  would   be.   A   recent   book,   Biofuels   for  Transport,   notes   that   Bio-­‐fuels   offer   tremendous   potential   benefits   “if   policies   are  enacted  to  steer  developments  in  the  right  direction.”    

                                                                                                               8  Ibid  

Page 22: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   22  

Several   studies   have   examined   environmental   and   social   issues   associated   with  expanding   global   Bio-­‐fuel   production,   including   food   security,   greenhouse   gases,  expansive   monoculture   production   systems,   and   poverty,   finding   both   risks   and  opportunities.   Although   several   concerns   are   observed   in   specific   instances,   there  appears   to   be   a   growing   consensus   that   if   best   practices   for   socially   and  environmentally   sound   development   can   be   applied,   then   appropriate   Bio-­‐fuel  feedstock   crops   could   offer   farmers   enhanced   employment   and   incomes   while  reducing   the   burden   of   foreign   oil   imports   on   developing   nations.   Best   practices  should   guide   production   systems   to   be   increasingly   socially   responsible   and  environmentally   sound.   Optimizing   system   efficiency   by   minimizing   and   recycling  wastes   in   a   manner   that   maintains   productivity   is   important   and   some   feedstock  crops   (such   as   sugarcane   in   Brazil)   appear   to   be  moving   in   that   direction.   But   any  rapid   agricultural   expansion   poses   risks   if   it   distorts   markets   and   disregards   local  needs,  or  undermines  human  rights,  equity  and  long-­‐term  sustainability.  

   

Page 23: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   23  

   The   scope   and   degree   of   social,   environmental   and   political   constraints   associated  with   increased   Bio-­‐fuel   feedstock   production   vary   depending   on   the   crop   and   the  country.   Capacity   for   land   use   planning   and   enforcement   is   important   to   avoid   or  minimize   detrimental   impacts   associated   with   expanding   areas   under   any   form   of  cultivation.   Brazil,   for   example,   has   enacted   progressive   environmental   protection  regulations  but  faces  many  challenges  in  achieving  compliance.  Agricultural  expansion  in   Brazil   (particularly   soybeans)   has   generated   concern   among   stakeholders   about  potential   contributions   to   deforestation   and   pollution   in   the   Amazon   and   other  sensitive  ecosystems.      And  while   increases   in   the   area   used   for   sugarcane   typically   come   from   previously  cleared   land   (primarily   pastures),   it   is   difficult   to   determine  what   impact   this  may  have  on  more  distant  agricultural  frontiers.  Deforestation,  land  tenure,  water  use  and  pollution   represent   important   and   politically   delicate   issues   in   most   countries.   In  some   countries,   concerns   have   been   raised   over   small-­‐farmer   and   indigenous   land  rights   and   the   loss   of   biodiversity  due   to   expanding  palm  oil   plantations   in   tropical  low  lands.  A  positive  trend  is  that  recent  growth  in  Bio-­‐fuel  feedstock  production  has  been   accompanied   by   increased   local   and   international   attention   to  what   are   often  long-­‐standing  social  and  environmental  development  challenges.        

Page 24: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   24  

Stakeholder  participation  in  discussing  the  issues  of  expanding  production  of  Bio-­‐fuel  feedstock   has   been   supported   by   various   sectors   (industrial,   government   and  environmental)  and  is  producing  growing  networks  of  practitioners  at  multiple  scales.    The   increased   transparency   is   generating   a   better   understanding   of   the   issues   and  mechanisms  to  address  them.  These  may  serve  as  important  mechanisms  to  promote  more  sustainable  systems  for  feedstock  production,  harvest  and  transformation.    Soils    Any   agricultural   system   needs   to   maintain   soil   health   and   productivity   to   be  sustainable   in   the   long   term.   Traditional   annual   feedstock   production   including  intensive   corn   and   soybean   cultivation   has   often   been   associated   with   soil  degradation   and   erosion.   Negative   impacts   tend   to   be   more   severe   in   large-­‐scale  operations   where   machinery   is   heavier   (leading   to   soil   compaction)   and   tillage   is  more   expansive   and   intensive   thereby   creating  more   opportunity   for   erosion   from  wind   and   rain.   Improved   crop   varieties   combined   with   the   use   of   fertilizers,  pesticides,   herbicides   and   irrigation,   has   compensated   for   negative   soil   impacts   as  reflected  in  consistent  yield  increases  over  time  (on  average  and  thus  far).  Expansion  of  annual  crops  for  Bio-­‐fuel  will   likely  have  negative  consequences  on  long-­‐term  soil  health   and   productivity   unless   more   sustainable   practices   are   employed.   Studies  referenced  in  country  analyses.  Specifically  note  some  of  the  concerns  associated  with  expanding  corn  and  annual  cultivation  in  Argentina,  Colombia  and  Canada.      Other   cultural   practices   including   site   preparation,   irrigation,   and   the   use   of   fire,  fertilizers,   pesticides   and   herbicides,   can   impact   soil   health.   Furthermore,   if  cultivation  takes  place  in  environmentally  sensitive  ecosystems  (wetlands  or  tropical  forests)   or   on  marginal   lands   (steep   slopes   or   shallow   soils),   negative   soil   impacts  may  be  unavoidable  and  special  precautions  may  be  required   to  mitigate   them  both  for  site  productivity  and  to  reduce  damage  to  surrounding  ecosystems.    Over  several  decades,  the  sugarcane  industry  has  researched  options  to  return  liquid  and   solid   processing   residues   to   fields   and   has   developed   sophisticated   procedures  and   guidelines   for   recycling   wastes   and   maintaining   productivity.   Sugarcane  industries   in   some   nations,   such   as   Guatemala   and   Colombia,   have   consistently  improved   yields,   in   part   by   ongoing   improvements   in   soil   management.   Studies   in  Brazil   have   suggested   that   commercial   sugarcane   plantations   reduced   erosion   and  improved  soil  quality  when  compared  to  prior   land  uses.  However,   traditional  sugar  cane   operations   often   involve   annual   burning   of   fields   prior   to   harvest,   with  associated   loss   of   nutrients   and   increased   proclivity   for   subsequent   erosion.   These  practices  make  new  sorghum  field-­‐leftovers  attractive.              

Page 25: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   25  

Water    In   some   geographic   areas,  water   availability   and   costs   are   expected   to   increasingly  become   limiting   factors   for   expanding   agricultural   production.   The   local   climate  combined   with   a   crop’s   water   requirements   and   other   economic   factors   help   to  dictate  the  need  for  and  use  of  irrigation.      Crops  with  high  value  and  high   input  costs  are  often   irrigated  even   though   they  are  produced   in   areas   where   average   rainfall   could   support   a   fair   level   of   production.  Irrigation  in  these  cases  reduces  uncertainty  and  the  risk  of   loss  due  to  drought  and  allows   more   intensive   cultivation   and   precise   planning   of   inputs.   Growing   climate  variability  and  climate  change  increase  the  amount  of  land  area  where  irrigation  (and  drainage)   infrastructure   are   required   to   reduce   risk   to   acceptable   levels.   Climate  change  may  eventually  cause  shifts  in  where  crops  can  be  grown  successfully  without  irrigation   and   generally,   will   require   additional   irrigation   in   traditional   production  areas.  Once   irrigation   is  established,  cultivation   intensity  (crop  density)   increases   to  reap   the   most   from   the   infrastructure   investment.   This   in   turn   creates   increased  demand  for  water,  fertilizer  and  other  inputs.    Although   it  does  not  directly   limit  potential   feedstock  production,  water  pollution   is  another   factor  where   intensively  cultivated  annual  crops  such  as  corn  and  soybeans  have   documented   negative   impacts   (as   will   any   crop   that   involves   high   levels   of  fertilizer   and   chemical   applications   that   can   eventually   reach   local   water   tables).  Monitoring   and   minimizing   runoff   or   leaching   of   agricultural   chemicals   is   an  important  component  of  best  practices  for  sustainable  production.  Erosion  and  run  off  can  have  detrimental  impact  on  urban  water  supplies,  freshwater  ecosystems  and,  in  some  cases   such  as  CBI  nations,  damage  marine  ecosystems  and  coral   reefs  as  well.  The   use   of   improved   (more   sustainable)   agricultural   practices   is   vital   to   avoid   or  mitigate  these  impacts.    Land    The   countries   and   region   studied   vary   in   the   amount   of   arable   land   that   could   be  available   to  produce   feedstock.  A  combination  of  physical  attributes  (e.g.,   soil,   slope,  climate,  water),   tenure,   prior   use,   economics   and   policies  will   influence  what   lands  could  become  available  for  expansion  of  Bio-­‐fuel  feedstock  production.      At   one   end   of   the   spectrum,   Brazil   has   an   estimated   100–200   million   hectares   of  underutilized   or   undeveloped   arable   land   suitable   for   feedstock   that   could   be  available  without  deforestation  and  with  little  impact  on  other  productive  sectors.  At  the  other  extreme,  availability  of  arable  land  in  countries  such  as  India  and  China  pose  severe  constraints  on  Bio-­‐fuel  feedstock  production  given  national  priorities  for  food  security.          

Page 26: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   26  

Following   Brazil,   Argentina   and   Colombia   are   considered   to   possess   relative  abundance  of  underutilized  arable  land.  But  in  both  of  these  nations,  land  suitable  for  sugarcane   is   already   developed   leaving   little   room   for   expansion  without   relatively  high  costs  and  displacement  of  other  productive  systems.  Within  Central  America  over  the  next  decade,  expansion  in  sugarcane  and  Ethanol  production  is  expected  to  be  led  by   Guatemala   and   Nicaragua   based   on   suitable   lands,   existing   industries   and   the  limitations  of  land  and  climate  in  other  parts  of  the  region.    Most  nations  use   their  best  available   land   (in   terms  of   climate,   soils  and  access)   for  existing   food,   feed  and   fiber  sectors.  Thus,   to  achieve   increasing  Bio-­‐fuel  production  targets  will  often  require  trade-­‐offs  and  shifts  in  farming  practices  such  as:  expansion  to  marginal   (less   productive)   lands,   changes   in   the   proportion   of   land   dedicated   to  different  crops,  rotation  and  tillage  practices.  These  shifts  bring  associated  changes  in  fertilizer  and  pesticide  use,  water  demand  and  land  use  intensity  that  could  contribute  to   negative   impacts   on   soil,   water   and   ecological   services   –   and   impinge   on  sustainability,   if   not   carefully   managed.   Some   countries   plan   to   improve   land   use  while  simultaneously  increasing  Bio-­‐fuel  feedstock  production.      This  can  occur  when  prior  land  use  is  less  sustainable  than  systems  used  for  feedstock  –   such   as   the   use   of   perennials   in   areas   that  might   otherwise   be   prone   to   erosion.  China  hopes  to  promote  the  production  of  Bio-­‐fuel  feedstock  using  drought  resistant  tree   crops   on   marginal   lands   that   do   not   compete   with   food   and   feed   related  production.  And   lands  cleared  and  abandoned  or   repeatedly  burned   for  pasture  can  be  more  productively  managed  for  sugarcane  or  perennial  crop  production.    Corn   and   soybeans   have   similar   climate   and   soil   requirements.   In   many   of   the  countries  studied,  most  of   the   land  being  used   for   increased  production  of  soybeans  and  corn  is  former  pastureland  and  significant  areas  of  underutilized  pastures  remain  available   for   expansion.   (In   Latin   America,   this   is   an   artifact   of   former   land   tenure  regimes   that   required   claimants   to   show   land   “improvement”   in   order   to   gain  ownership.   The   “improvement”   was   nearly   always   clearing/burning   the   land   and  calling  it  “pasture.”)      While  sugarcane  is  also  expanding  on  former  pastures,  it  will  tend  to  displace  any  land  use   of   lesser   value   while   focusing   in   localities   that   offer   appropriate   climate,   soil,  topography   and   infrastructure   (including   processing   plants).  With   the   exception   of  Brazil,  land  availability  represents  a  growing  constraint  to  the  expansion  of  feedstock  supplies  in  most  countries  studied.  Land  is  a  more  important  constraint  to  sugarcane  (outside   of   Brazil)   than   for   other   feedstock   due   to   its   more   demanding   site  requirements  for  competitive  production.      A  transition  to  cellulosic  feedstock  would  substantially  alleviate  the  land  constraint  in  most  nations,  but  Brazil  would  still  be  best  positioned  for  low-­‐cost  supply  due  to  the  size   of   its   sugarcane-­‐Ethanol   industry   and   corresponding   availability   of   bagasse   as  feedstock  in  the  mills  and  distilleries.    

Page 27: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   27  

 Deforestation    Leaders  in  Bio-­‐fuel  production  (Brazil  and  the  United  States)  along  with  four  countries  with  plans  for  future  Bio-­‐fuel  feedstock  expansion  –  Colombia,  Indonesia,  Canada  and  Peru   –   contain   the   majority   of   the   world’s   remaining   primary   forests.   This   raises  serious   concerns   among   national   and   global   environmental   constituencies   about  potential   impacts   of   Bio-­‐fuel   feedstock   expansion   on   world   forest   resources   and  biodiversity.   Among   the   nations   studied,   this   concern   is  most   evident   in   Brazil   and  Colombia.    A  review  of  literature  conducted  for  this  research  paper  suggests  the  following:      (a)   Deforestation   is   a   product   of   a   complex   set   of   factors   including   access,   land  speculation,  social  injustice  and  weak  law  enforcement  capabilities;      (b)   Expansion   of   sugarcane   production   can   occur   without   directly   contributing   to  further  deforestation;      (c)  Expansion  of  other   feedstock  crop  areas   is   likely   to  occur  on   land  more  recently  cleared  of  forest;      (e)  Other  factors  being  equal  ("ceteris  paribus"),  when  alternative  uses  of  cleared  land  are  considered,  expansion  of  well-­‐managed  Bio-­‐fuel   feedstock  production  may  often  be  environmentally  preferred.              

Page 28: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   28  

Social  Factors    Social  factors  are  a  potential  constraint  to  the  growth  of  Bio-­‐fuel  feedstock  supplies  in  some   sectors   and   countries,   especially   where   a   large   percentage   of   the   local  population  perceives  impacts.  Social  concerns  related  to  feedstock  production  revolve  around  two  key  areas:  changing  land  use  and  loss  of  employment.  Related  to  land  use,  issues  derive  from  the  displacement  of  traditional  small  farmers  by  large  commercial  agricultural   enterprises   typically   associated   with   Bio-­‐fuel   production.     While   such  displacement  could  be  applicable  to  any  feedstock  crop,  it  appears  to  be  most  severe  in   cases   such   as   the   conflicts   publicized  when  new  palm  plantations  displace   forest  dwelling   indigenous  groups.  Sugarcane  and  soybean  operations  also   tend   to  acquire  large,   concentrated   holdings   by   buying-­‐out   prior   small   holders   who   typically   used  more   labor   intensive   and  diversified   agricultural   systems.  And  as   industries   expand  and  become  more  mechanized,  employment  opportunities  may  be  reduced.  This   is  a  large  concern  as  sugarcane  operations  switch  from  manual  to  mechanized  harvests.  In  any   of   these   scenarios,   compensating   employment   and   income   opportunities   are  needed   to   avoid   social   problems   that   could   begin   to   undermine   or   constrain   the  industry.    Risks  posed  by  Concentration  on  Bio-­fuel  Feedstock    The  concentration  of  a  major  percentage  of  the  world’s  traded  commodities  in  just  a  few   countries,   and   the   cultivation   of   these   crops   in   large   monoculture   plantations,  exposes  globally  important  supplies  to  significant  vulnerabilities  from  severe  weather  events,   political   unrest,   plagues   and   pests.   A   majority   of   Bio-­‐fuel   feedstock   supply  expansion  is  expected  to  occur  in  the  tropics  where  extreme  weather  events  such  as  hurricanes,   droughts   and   floods   have   disrupted   past   production   and   caused  unforeseen  spikes  in  prices.  For  example,  the  sugar  content  in  a  harvest  is  influenced  by   weather   and   an   untimely   tropical   storm   and   flooding   can   cause   an   unexpected  decline  in  the  total  annual  harvest  despite  expanding  area  under  cultivation.      The  supply  curves  developed  for  the  baseline  cases  in  this  study  assume  that  growth  within  a  given  state  or  nation  continues  based  on  past  average  rates  within  a  defined  set  of  parameters.  However,  in  any  given  year,  supplies  will  likely  be  somewhat  higher  or   lower   than   the  baseline,  moving  up  and  down   in   response   to   the  many  variables  discussed,  but  probably  within  the  range  bracketed  by  the  high  and  low  growth  cases.  If   future  conditions  differ  greatly   from  the  past,   the  assumptions  behind  projections  based  on  past  trends  will  no  longer  be  valid.  And  the  risks  posed  by  the  concentrated  production  of  key  commodities  may  increase  as  a  consequence  of  increasing  climatic  change.              

Page 29: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   29  

   Comparison  of  Existing  Blending  Mandates  by  Country  (U.S.  DOE)    

   Note:  Mexico  passed  the  Bio-­‐fuels  Law  on  February,  2008  

Page 30: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   30  

       

Page 31: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   31  

 Afterthoughts    These   are   but   a   few   simple   ideas   in   order   to   convey   the   message   that   there   is   an  important  opportunity  in  Mexico  for  development  of  a  new  Bio-­‐fuel  industry.  Success  in  this  country  is  probably  dependent  on  a  model  that  integrates  high  technology  with  impactful  social  investment.  A  new  model  that  draws  from  lessons  learned  in  the  case  of  Brazil  and  which  integrates  a  regional  biomass  cogeneration  strategy,  together  with  a  fully  integrated  soil  to  Ethanol  production  chain.    The  Mexican  government  has  been  advised  by  multilateral  agencies  like  the  IDB  and  the  German  technology  transfer  office.  Diverse  economic  players  have  begun  to  make  inroads  into  the  nascent  game  for  new  plant  development.    Undoubtedly,   it   is   a   great   opportunity   for   a   technology   leader   like   EPC   Partner   to  participate   in   this  nascent  market.  All   efforts   should  be  directed   towards  building  a  first  up  and  going  plant  in  Mexico,  which  is  based  on  a  profitable  economic  model.      

Page 32: Regional Biomass Model for Ethanol Production in Mexico

 

México  Country  Report  by  Floren  Cabrera  F.  de  Teresa   32  

 Helios   Energia   Limited   recommends   a   business   model   for   new   plants   that   is   not  dependent  on  the  outcome  of  a  PEMEX  blending  mandate,  but  rather,  which  is  able  to  withstand  wide  fluctuations  in  the  price  of  feedstock  by  introducing  advanced  energy  generation  technologies.    We   recommend   EPC   Partner   to   analyze   and   pursue   a   new  model   for   an   integrated  value  chain  from  recovery  of  agricultural  land,  bio-­‐fertilization  of  sorghum  to  recovery  of  biomass  on  the  fields  in  order  to  generate  electricity  and  steam  at  a  low  cost.  One  of  the  keys  for  success  is  to  design  an  integrated  plant  that  is  able  to  achieve  the  lowest  cost  of  production  and  thus,   is  able  to  deliver  the  profitability,  which  is  undoubtedly  the  basis  for  sustainable  development  of  a  Bio-­‐fuel  industry  in  Mexico.    A  strategic  goal  posited  by  the  CEO  of  EPC  Partner  and  which  we  invite  you  to  develop  together.  We  are  bringing  to  the  table  all  of  the  necessary  pieces  in  order  for  this  to  be  the  time  and  place  for  a  successful  sorghum-­‐based  milestone  plant  in  Mexico.    Respectfully,        Floren  Cabrera  F.  de  Teresa  Chief  Executive  Officer  Helios  Energia  Limited      Washington,  D.C.  on  March  9th.,  2012