14
ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů – členy a regulátory Regulátory a vlastnosti regulátorů Jak již bylo uvedeno, vlastnosti regulátorů určují kvalitu regulace. Při volbě regulátoru je třeba přihlížet i k přenosovým vlastnostem regulované soustavy. Cílem je, aby se přenos řízení v co nejširším frekvenčním pásmu blížil jedné a přenos poruch nule. Na tomto principu provádíme návrh (syntézu) konkrétního regulačního obvodu, známe-li přenosové vlastnosti regulované soustavy (byla-li provedena identifikace soustavy). Syntézu můžeme provádět čistě matematicky na základě blokové algebry nebo tuto metodu kombinujeme s grafickou syntézou, nejlépe pomocí logaritmických frekvenčních charakteristik nebo modelování na počítači. Dále probereme základní typy spojitých lineárních regulátorů s ohledem na jejich dynamické přenosové vlastnosti. Proporcionální regulátor Regulátor P pouze zesiluje regulační odchylku e, přičemž zesílení je v širokém frekvenčním rozsahu konstantní. Teprve na vysokých frekvencích, které nejsou pro danou regulovanou soustavu podstatné, jeho přenos vlivem setrvačností klesá. Jde tedy o proporcionální člen s konstantním reálným přenosem mnohem větším než jedna. Tento regulátor snadno vytvoříme stejnosměrným invertujícím zesilovačem, který je symbolicky znázorněn na obr. 5.1. U ideálního zesilovače předpokládáme nekonečný vstupní odpor, nulový výstupní odpor a nekonečné zesílení A bez zpětné vazby. Obr. 5.1. Ideální invertující stejnosměrný zesilovač Pro takový zesilovač můžeme psát: U 2 = -A U 1 Jeho přenos je v zapojení dle obr. 5.2. roven G(p) = -R 0 /R 1 . Ideální zesilovač můžeme dobře nahradit skutečným operačním zesilovačem s použitým invertujícím vstupem. Problematika operačních zesilovačů bude probrána později. Pro vysvětlení vlastností regulátorů budeme pracovat se zjednodušeným ideálním zesilovačem podle obr. 5.1. Jeho zesílení můžeme velice jednoduše nastavit pomocí záporné zpětné vazby. Schéma proporcionálního regulátoru je na obr. 5.2. Záporné znaménko vyjadřuje, že použitý zesilovač obrací fázi (invertuje). R 0 Obr. 5.2. Základní zapojení proporcionálního regulátoru

Regulátory a vlastnosti regulátorůautomatizace-issnp.wz.cz/Soubory3/Vlastnosti regulatoru.pdf · 2012. 4. 15. · Cílem je, aby se přenos řízení v co nejširším frekvenčním

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Regulátory a vlastnosti regulátorůautomatizace-issnp.wz.cz/Soubory3/Vlastnosti regulatoru.pdf · 2012. 4. 15. · Cílem je, aby se přenos řízení v co nejširším frekvenčním

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka

Automatizace – Dynamické vlastnosti členů – členy a regulátory

Regulátory a vlastnosti regulátorů Jak již bylo uvedeno, vlastnosti regulátorů určují kvalitu regulace. Při volbě regulátoru je

třeba přihlížet i k přenosovým vlastnostem regulované soustavy. Cílem je, aby se přenos

řízení v co nejširším frekvenčním pásmu blížil jedné a přenos poruch nule. Na tomto principu

provádíme návrh (syntézu) konkrétního regulačního obvodu, známe-li přenosové vlastnosti

regulované soustavy (byla-li provedena identifikace soustavy). Syntézu můžeme provádět

čistě matematicky na základě blokové algebry nebo tuto metodu kombinujeme s grafickou

syntézou, nejlépe pomocí logaritmických frekvenčních charakteristik nebo modelování na

počítači.

Dále probereme základní typy spojitých lineárních regulátorů s ohledem na jejich dynamické

přenosové vlastnosti.

Proporcionální regulátor Regulátor P pouze zesiluje regulační odchylku e, přičemž zesílení je v širokém frekvenčním

rozsahu konstantní. Teprve na vysokých frekvencích, které nejsou pro danou regulovanou

soustavu podstatné, jeho přenos vlivem setrvačností klesá. Jde tedy o proporcionální člen s

konstantním reálným přenosem mnohem větším než jedna. Tento regulátor snadno vytvoříme

stejnosměrným invertujícím zesilovačem, který je symbolicky znázorněn na obr. 5.1. U

ideálního zesilovače předpokládáme nekonečný vstupní odpor, nulový výstupní odpor a

nekonečné zesílení A bez zpětné vazby.

Obr. 5.1. Ideální invertující stejnosměrný zesilovač

Pro takový zesilovač můžeme psát:

U2 = -A U1

Jeho přenos je v zapojení dle obr. 5.2. roven G(p) = -R0 /R1.

Ideální zesilovač můžeme dobře nahradit skutečným operačním zesilovačem s použitým

invertujícím vstupem. Problematika operačních zesilovačů bude probrána později. Pro

vysvětlení vlastností regulátorů budeme pracovat se zjednodušeným ideálním zesilovačem

podle obr. 5.1. Jeho zesílení můžeme velice jednoduše nastavit pomocí záporné zpětné vazby.

Schéma proporcionálního regulátoru je na obr. 5.2. Záporné znaménko vyjadřuje, že použitý

zesilovač obrací fázi (invertuje).

R0

Obr. 5.2. Základní zapojení proporcionálního regulátoru

Page 2: Regulátory a vlastnosti regulátorůautomatizace-issnp.wz.cz/Soubory3/Vlastnosti regulatoru.pdf · 2012. 4. 15. · Cílem je, aby se přenos řízení v co nejširším frekvenčním

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka

Automatizace – Dynamické vlastnosti členů – členy a regulátory

Jestliže zdroj vstupního signálu nemá nulový vnitřní odpor RG , musíme jeho velikost přičíst k

R1:

Přenos proporcionálního regulátoru je tedy určen poměrem odporů ve zpětné vazbě a ve

vstupu.

Skutečné proporcionální regulátory nemají přenos ideálně konstantní, tedy nezávislý na

frekvenci. Základním znakem těchto regulátorů však je, že se jejich přechodová

charakteristika v relativně krátkém čase ustálí na hodnotě K.

Integrační regulátor Regulátor I jako jediný umožňuje úplné odstranění regulační odchylky e, neboť taje

regulátorem integrována. K jejímu úplnému nulování dochází až za určitý čas. Regulátor I se

tedy hodí tam, kde poruchy nejsou příliš časté nebo regulovaná soustava má velkou

setrvačnost (velkou odolnost proti krátkodobým poruchám).

C

Obr. 5.3. Základní zapojení integračního regulátoru

Integrační regulátor lze rovněž snadno realizovat pomocí stejnosměrného invertujícího

zesilovače. Na obr. 5.3. je základní zapojení tohoto regulátoru. Podobně jako u

proporcionálního regulátoru můžeme i zde vyjádřit přenos jako poměr zpětnovazební

impedance a vstupního odporu. Zpětnovazební impedancí je u regulátoru I kapacitní

reaktance velikosti:

V Laplaceově transformaci má reaktance hodnotu:

Vyjádříme-li poměr reaktance a odporu, získáme přibližnou hodnotu přenosu integračního

regulátoru:

Činnost takového integračního regulátoru je v praxi velmi uspokojivá. Parazitní setrvačnosti

se totiž uplatňují až při vyšších frekvencích, kdy je přenos regulátoru I již stejně velmi malý.

Velká amplituda přenosu se požaduje při stejnosměrném signálu a střídavých signálech s

Page 3: Regulátory a vlastnosti regulátorůautomatizace-issnp.wz.cz/Soubory3/Vlastnosti regulatoru.pdf · 2012. 4. 15. · Cílem je, aby se přenos řízení v co nejširším frekvenčním

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka

Automatizace – Dynamické vlastnosti členů – členy a regulátory

velmi nízkými frekvencemi. Amplitudová frekvenční logaritmická charakteristika má v

oblasti nízkých sklon -20 dB/dek a protíná úroveň 0 dB při frekvenci ω> = 1/RC. Fázovou

frekvenční charakteristikou je v tomto pracovním rozsahu přímka v úrovni -90°. Přechodová

charakteristika je přímka z počátku, jejíž strmost je nepřímo úměrná časové konstantě RC

zpětnovazebního děliče. Pro RC = 1 s se shoduje s již dříve uvedenou lineární funkcí.

Derivační regulátor Ideální regulátor D nelze realizovat. Způsobují to parazitní setrvačnosti, které potlačují přenos

při vysokých frekvencích, tj. v oblasti, v níž má být přenos regulátoru největší. Na obr. 5.4. je

základní zapojení derivačního regulátoru. Ideální přenos určuje opět poměr odporu ve zpětné

vazbě a impedance ve vstupu:

kde Td = RC je derivační časové konstanta.

R

Obr. 5.4. Základní zapojení derivačního regulátoru

Pokud bychom chtěli vyjádřit přenos skutečného derivačního členu, musíme výraz násobit

přenosem parazitního setrvačného členu s časovou konstantou T.

Amplitudová frekvenční charakteristika protíná úroveň 0 dB při frekvenci ω = l /RC a roste se

sklonem 20 dB/dek až do frekvence ω 1 = 1 /T, kde regulátor přestává derivovat v důsledku

parazitní setrvačnosti s časovou konstantou T. Fáze je v rozsahu derivování +90°. Přechodová

charakteristika v důsledku setrvačnosti vrcholí na hodnotě RC/T a klesá se strmostí určenou

velikostí časové konstanty T (obr. 5.5.).

Obr. 5.5 Přechodová charakteristika skutečného derivačního regulátoru

Page 4: Regulátory a vlastnosti regulátorůautomatizace-issnp.wz.cz/Soubory3/Vlastnosti regulatoru.pdf · 2012. 4. 15. · Cílem je, aby se přenos řízení v co nejširším frekvenčním

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka

Automatizace – Dynamické vlastnosti členů – členy a regulátory

Derivační regulátor má při konstantním vstupu (tj. nulová frekvence, stejnosměrný signál)

nulový přenos. Vyplývá to jak průběhu amplitudové charakteristiky, tak z průběhu

přechodové charakteristiky. Samotný derivační regulátor nezesiluje regulační odchylku, a

musí být proto vždy kombinován s proporcionálním, popř. integračním regulátorem. V této

kombinaci derivační regulátor zrychluje regulaci a zvyšuje stabilitu, což má velký význam pro

odstranění krátkodobých a četných poruch.

Uvedené základní typy regulátorů jsou dynamickými členy s velkým přenosem v

požadovaném frekvenčním pásmu. Jejich přenosy a charakteristiky byly podrobně probrány

ve 2. kapitole. Amplitudové charakteristiky regulátorů musí ležet nad úrovní 0 dB.

Nyní se zaměříme na kombinace základních typů, které umožňují dosáhnout vyšší kvality než

jednoduché regulátory. Tyto kombinované regulátory realizujeme v zásadě třemi způsoby:

a) paralelním řazením regulátorů výchozích typů - dosahuje se tak nejlepších výsledků,

je však nutný značný počet zesilovačů;

b) použitím korekčních členů - využívají zpravidla pouze jeden zesilovač, kvalita je však

nižší;

c) zpětnovazebním zapojením - využívají zpravidla pouze jednoho zesilovače, kvalita je

vyhovující. Nevýhodou je, že k nastavování různých konstant regulátoru se používají

stejné prvky, a to někdy vede ke vzájemnému ovlivňování konstant a může to

znemožnit použití daného regulátoru.

Proporcionálně integrační regulátor PI Regulátor PI vznikne v elektronické verzi paralelním spojením regulátoru P a I, jak je

znázorněno na obr. 5.6., kde K je přenos regulátoru P a KV je rychlostní konstanta regulátoru

I. Někdy se zavádí tzv. integrační časová konstanta Ti = RC = 1/KV. Přenos regulátoru lze psát

pomocí blokové algebry ve tvaru:

P

Obr. 5.6. Vytvoření regulátoru PI

Výsledné logaritmické frekvenční charakteristiky jsou na obr. 5.7. Pokračující amplitudová

charakteristika protíná úroveň 0 dB při frekvenci, kdy amplituda přenosu se rovná jedné, tedy

při ω0= KV. Lom charakteristiky je určen průsečíkem integrační větve se sklonem -20 dB/dek

a proporcionální větve v úrovni 20 log K. K tomu dochází při frekvenci:

Page 5: Regulátory a vlastnosti regulátorůautomatizace-issnp.wz.cz/Soubory3/Vlastnosti regulatoru.pdf · 2012. 4. 15. · Cílem je, aby se přenos řízení v co nejširším frekvenčním

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka

Automatizace – Dynamické vlastnosti členů – členy a regulátory

Obr. 5.8. Přechodová charakteristika regulátoru PI

Přechodová charakteristika na obr. 5.8. vznikne součtem obou dílčích přechodových

charakteristik. Principiální zapojení regulátoru PI je na obr. 5.9. Součet signálů se provádí v

invertujícím sumátoru (sčítačce), který tvoří tři stejné rezistory Rs a invertující zesilovač.

Výstupní signál u je určen vztahem:

kde y1 a y2 jsou výstupní signály dvou vstupních regulátorů. Sumátor musí být invertující

proto, že jednotlivé regulátory na jeho vstupu obracejí fázi o 180°, neboť jsou rovněž

vytvořeny invertujícími zesilovači. Požadujeme-li, aby invertující sumátor zesiloval např.

desetkrát, zvětšíme odpor jeho zpětnovazebního rezistoru rovněž desetkrát, takže jeho

velikost bude 10 RS. Na vysokých frekvencích má kondenzátor zanedbatelnou reaktanci, a

proto se neuplatňuje. V některých případech postačí zjednodušený regulátor PI, u kterého je

integrační složka nahrazena setrvačností s velkou časovou konstantou T. Použije se pasivní

Page 6: Regulátory a vlastnosti regulátorůautomatizace-issnp.wz.cz/Soubory3/Vlastnosti regulatoru.pdf · 2012. 4. 15. · Cílem je, aby se přenos řízení v co nejširším frekvenčním

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka

Automatizace – Dynamické vlastnosti členů – členy a regulátory

korekční člen znázorněný na obr. 5.10. ve spojení s neinvertujícím stejnosměrným

zesilovačem.

Obr. 5.9. Zapojení regulátoru PI

R1

Obr. 5.10. Korekční člen pro zjednodušený regulátor PI

Přenos proporcionální části členu je pak určen přenosem odporového děliče:

Odpory rezistorů volíme tak, aby přenos K byl v rozmezí 1/20 až 1/5. Při nízkých frekvencích

se uplatňuje kondenzátor tvořící s oběma rezistory setrvačný člen s časovou konstantou:

Obr. 5.11. Logaritmické frekvenční charakteristiky korekčního členu a regulátoru Pl po

zesílení signálu akorát (čárkovaně)

Page 7: Regulátory a vlastnosti regulátorůautomatizace-issnp.wz.cz/Soubory3/Vlastnosti regulatoru.pdf · 2012. 4. 15. · Cílem je, aby se přenos řízení v co nejširším frekvenčním

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka

Automatizace – Dynamické vlastnosti členů – členy a regulátory

Logaritmické frekvenční charakteristiky korekčního členu jsou na obr. 5.11. Čárkovaně je

vyznačena amplitudová charakteristika regulátoru po doplnění korekčního členu zesilovačem

se zesílením A. Na obr. 5.12. je přechodová charakteristika. Porovnáme-li obě charakteristiky

s charakteristikami dokonalého regulátoru PI, vidíme, že amplituda přenosu nedosahuje u

zjednodušeného regulátoru pro ω = 0 nekonečné velikosti, takže tento regulátor zcela

neodstraňuje regulační odchylku e. Pouze ji v porovnání s proporcionálním regulátorem více

potlačuje.

Obr. 5.12. Přechodová charakteristika korekčního členu PI

Obr.5.13. Zpětnovazební regulátor PI

Proporcionálně integrační regulátor můžeme vytvořit i zpětnovazebním způsobem. Na obr.

5.13. je zesilovač se zápornou zpětnou vazbou. Ve zpětnovazební větvi je zapojen člen, který

má pro nízké frekvence charakter derivačního členu a pro vysoké frekvence proporcionální

charakter. Protože je člen ve zpětné vazbě zesilovače, bude mít celý obvod opačný, tedy

proporcionálně integrační charakter. Přenos tohoto regulátoru je dán vztahem:

kde

Abychom vyloučili vzájemné ovlivňování (interakci), nastavujeme K změnou R1 a KV

změnou C.

Proporcionálně integrační regulátory mají oproti integračnímu regulátoru větší přenos na

vyšších frekvencích, takže rychleji odstraňují nárazové poruchy. Tento typ regulátoru je často

používán pro své výhodné vlastnosti (velké, popř. úplné potlačení regulační odchylky a

uspokojivé odstraňování náhlých poruch).

Page 8: Regulátory a vlastnosti regulátorůautomatizace-issnp.wz.cz/Soubory3/Vlastnosti regulatoru.pdf · 2012. 4. 15. · Cílem je, aby se přenos řízení v co nejširším frekvenčním

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka

Automatizace – Dynamické vlastnosti členů – členy a regulátory

strana 8

Proporcionálně derivační regulátor PD

Regulátor PD vznikne paralelním spojením regulátoru P a D (obr. 5.14.), kde K je přenos

regulátoru P a Td = RC je derivační časová konstanta. Přenos regulátoru PD je:

Logaritmické frekvenční charakteristiky jsou na obr. 5.15. Čárkovaně je naznačen průběh

amplitudové charakteristiky samotné derivační složky se strmostí +20 dB/dek. Tato

charakteristika protíná úroveň 0 dB při frekvenci. Frekvence lomu je určena vztahem ω0=

K/Td.

Obr. 5.14. Vytvoření regulátoru PD

Obr. 5.16. Přechodová charakteristika ideálního regulátoru PD

Page 9: Regulátory a vlastnosti regulátorůautomatizace-issnp.wz.cz/Soubory3/Vlastnosti regulatoru.pdf · 2012. 4. 15. · Cílem je, aby se přenos řízení v co nejširším frekvenčním

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka

Automatizace – Dynamické vlastnosti členů – členy a regulátory

strana 9

Přechodová charakteristika na obr. 5.16. znázorňuje odezvu ideálního regulátoru PD na

jednotkový skok. Skutečný regulátor zatížený setrvačností s časovou konstantou T má

přechodovou charakteristiku na obr. 5.17.

Vznikla sečtením přechodové charakteristiky proporcionálního regulátoru. Principiální

zapojení regulátoru PD je na obr. 5.18.

Použijeme-li korekční člen na obr. 5.19. ve spojení s neinvertujícím stejnosměrným

zesilovačem, získáme zjednodušený regulátor PD. Na nízkých frekvencích má kondenzátor C

velkou reaktanci, a proto se neuplatní. Přenos proporcionální části členu je pak určen

přenosem odporového děliče:

Obr. 5.17. Přechodová charakteristika skutečného regulátoru PD

Odpory rezistorů volíme podobně jako u regulátorů PI tak, aby přenos K byl v rozmezí 1/20

až 1/5. Při vysokých frekvencích se začne uplatňovat kondenzátor C, čímž se zvětší přenos

členu. Derivační složka členu se začne projevovat od frekvence, při které se reaktance

kondenzátoru rovná odporu rezistoru R1, z toho plyne:

Obr. 5.19. Korekční člen pro zjednodušený regulátor PD

Page 10: Regulátory a vlastnosti regulátorůautomatizace-issnp.wz.cz/Soubory3/Vlastnosti regulatoru.pdf · 2012. 4. 15. · Cílem je, aby se přenos řízení v co nejširším frekvenčním

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka

Automatizace – Dynamické vlastnosti členů – členy a regulátory

strana 10

Obr. 5.20. Frekvenční charakteristiky korekčního členu PD a regulátoru PD po zesílení

signálu akorát (čárkovaně)

Na obr. 5.20. jsou frekvenční charakteristiky korekčního členu, z nichž vyplývá, že jeho

přenos se rovná nejvýše jedné (0 dB). Úhlová frekvence, při které se amplitudová

charakteristika podruhé lomí, určuje převrácenou hodnotu časové konstanty T setrvačného

členu, který zatěžuje derivační složku. Její velikost je dána vztahem:

Čárkovaně je vyznačena amplitudová charakteristika po doplnění korekčního členu

zesilovačem se zesílením A, neboť regulátor musí dostatečně zesílit stejnosměrnou regulační

odchylku.

Obr. 5.21. Zpětnovazební regulátor PD

Regulátor PD můžeme také realizovat frekvenčně závislým členem zapojeným v obvodu

záporné zpětné vazby. Tento způsob je uveden na obr. 5.21. Ve zpětnovazební větvi je

zapojen setrvačný člen, který signály nízkých frekvencí a stejnosměrné signály přenáší

proporcionálně. Frekvence vyšší než je frekvence lomu, zeslabuje o 20dB/dek. Celý obvod

pak bude mít (vzhledem k umístění v záporné zpětné vazbě) opačný charakter, bude se tedy

chovat jako regulátor PD s přenosem:

Page 11: Regulátory a vlastnosti regulátorůautomatizace-issnp.wz.cz/Soubory3/Vlastnosti regulatoru.pdf · 2012. 4. 15. · Cílem je, aby se přenos řízení v co nejširším frekvenčním

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka

Automatizace – Dynamické vlastnosti členů – členy a regulátory

strana 11

Kde přenos regulátoru je dán vztahem:

a derivační konstanta

Abychom vyloučili vzájemné ovlivňování (interakci), nastavujeme K změnou R0 a hodnotu

Td změnou C.

Proporcionálně derivační regulátory mají oproti proporcionálním regulátorům větší přenos na

vyšší frekvencích. Používají se při četných poruchách, protože je velmi rychle potlačují,

stejně jako tlumené kmity vznikající v regulovaných soustavách vyšších řádů. Trvalou

regulační odchylku stejně jako regulátory P zcela neodstraňují, pouze ji zmenšují. Tyto

případy nejsou příliš časté, takže regulátory PD používáme poměrně zřídka.

Proporcionálně integračně derivační regulátor PID

Regulátor PID vznikne paralelním spojením regulátorů P, I a D (obr. 5.22.). Přenos regulátoru

PID je:

Obr. 5.22. Vytvoření regulátoru PID

Page 12: Regulátory a vlastnosti regulátorůautomatizace-issnp.wz.cz/Soubory3/Vlastnosti regulatoru.pdf · 2012. 4. 15. · Cílem je, aby se přenos řízení v co nejširším frekvenčním

strana 12

Obr. 5.23. Zapojení regulátoru PID

Principiální zapojení regulátoru PID je na obr. 5.23.

Logaritmické frekvenční charakteristiky jsou na obr. 5.24. Amplitudová frekvenční

charakteristika je tvořena větví integrační části se sklonem -20 dB/dek, jejíž prodloužení

(čárkovaně) protíná osu 0 dB při úhlové frekvenci, která se rovná rychlostní konstantě Kv

integračního regulátoru. Dále je tvořena větví proporcionální části s úrovní 20 log K, kde K je

přenos proporcionálního regulátoru, a konečně větví derivační části se sklonem 20 dB/dek.

Prodloužení této větve (čárkovaně) protíná osu 0 dB při frekvenci, která se rovná převrácené

hodnotě derivační konstanty neboli 1/Td.

Přechodová charakteristika (obr. 5.25.) vznikne součtem přechodových charakteristik dílčích

regulátorů. Setrvačný člen s časovou konstantou T ovlivňuje derivační regulátor.

Zjednodušený regulátor PID využívá korekčního členu znázorněného na obr. 5.26. a

stejnosměrného neinvertujícího zesilovače. Kondenzátor C1 vytváří derivační složku.

Kondenzátor C2 tvoří s rezistory R1 a R2 setrvačný člen, který v určitém frekvenčním rozsahu

nahrazuje integrační člen. Pro správnou činnost je třeba zajistit, aby hodnota součinu C1R1

Page 13: Regulátory a vlastnosti regulátorůautomatizace-issnp.wz.cz/Soubory3/Vlastnosti regulatoru.pdf · 2012. 4. 15. · Cílem je, aby se přenos řízení v co nejširším frekvenčním

strana 13

byla mnohem menší než C2R2. Současně musí být zajištěn značný dělící poměr

K=R2/(R1+R2), aby se mohl dostatečně uplatnit vliv derivace a integrace na přenos regulátoru.

Tento požadavek vyplývá i z frekvenčních charakteristik korekčního členu (obr. 5.27.).

Zjednodušený regulátor PID s korekčním členem není schopen zcela odstranit regulační

odchylku ani nemá ideálně derivační charakter. Ideální regulátor PID by musel mít

amplitudovou charakteristiku s větvemi pokračujícími bez lomu, jak je v obr. 5.27. naznačeno

čárkovaně.

Obr. 5.25. Přechodová charakteristika regulátoru PID

Obr. 5.26. Korekční člen pro zjednodušení regulátoru PID

Page 14: Regulátory a vlastnosti regulátorůautomatizace-issnp.wz.cz/Soubory3/Vlastnosti regulatoru.pdf · 2012. 4. 15. · Cílem je, aby se přenos řízení v co nejširším frekvenčním

strana 14

Regulátor PID vytvořený zpětnovazebním způsobem je na obr. 5.28. Předpokládáme-li přenos

regulátoru PID ve tvaru:

a zanedbáme-li vzájemné působení (interakci) členů R1-R2-C1-C2, pak přibližně platí:

Ve skutečnosti však regulátor pracuje s konstantami:

kde i je tzv. činitel interakce.

Aby byla interakce menší, volíme R2 mnohem menší než R1. Nepříjemným důsledkem

interakce je nemožnost nastavení libovolných hodnot konstant regulátoru, zvlášť poměru

Td/Ti . Obecně lze shrnout, že regulátory PID používáme pro jejich větší složitost méně často.

Použití je opodstatněné jen v případě, kdy požadujeme úplné odstranění, popř. větší potlačení

trvalé regulační odchylky a rychlou kompenzaci poruch nebo vlastních tlumených kmitů

regulované soustavy.