37
Relativity at the Age of Gravitational Wave Detection Fethi M Ramazano˘ glu Princeton University 0 1000 2000 3000 -0.002 -0.001 0 0.001 0.002 Re(r M Ψ 4 ) l=2, m=2 3800 3900 4000 -0.06 -0.03 0 0.03 0.06 (t S -r*)/M (t S -r*)/M Middle East Technical University Ankara July 8, 2013 Fethi M Ramazano˘ glu Numerical Relativity

Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Relativity at the Age of Gravitational WaveDetection

Fethi M RamazanogluPrinceton University

0 1000 2000 3000

-0.002

-0.001

0

0.001

0.002

Re(r M Ψ4 ) l=2, m=2

3800 3900 4000

-0.06

-0.03

0

0.03

0.06

(tS-r*)/M (t

S-r*)/M

Middle East Technical UniversityAnkara

July 8, 2013

Fethi M Ramazanoglu Numerical Relativity

Page 2: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Outline of talk

A brief introduction to General Relativity

Gravitational wavesSourcesDetection

Numerical RelativityWhy numerical methods?Challenges

Astrophysical numerical relativity

Numerical Relativity beyond astrophysics

Conclusions and questions

Fethi M Ramazanoglu Numerical Relativity

Page 3: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

General Relativity

Currently established theory of spacetime and gravitation(Einstein 1916). “Gravity” is simply due to curvature inspacetime. Distances in spacetime are measured by the metricds2 = gabdxadxb.

Einstein equations couplespacetime curvature to theenergy-momentum of matter:

Gab = 8π Tab,

where Gab is a tensorcontaining (up to) 2nd

derivatives of gab

Fethi M Ramazanoglu Numerical Relativity

Page 4: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Gravitational Waves

Ripples in spacetime, produced by changing quadrupolemoment of energy. Analoguous to EM waves generated bycharge dipoles.gab = gBG

ab + hab

Very hard to produce

P = −325

G4

c5(m1m2)

2(m1+m2))r5

Sun-earth system∼ 200W . Tiny!BHB mergers P ∼ M−2.Huge! But 1/r2 kills it!∆`/` ∼ 10−21

Fethi M Ramazanoglu Numerical Relativity

Page 5: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Gravitational Waves

Gravitational Waves are already observed.

Hulse-Taylor Binary (PSRB1913+16)Only indirectlyOnly weak field regime

Fethi M Ramazanoglu Numerical Relativity

Page 6: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Gravitational Waves: Sources

Solar mass: Binary Black Holes (BBH), Binary NeutronStars (NSNS), BHNSSo far, mostly quasi-circular, recently eccentric as wellSupermassive Black Hole Binaries (galaxy mergers)Extreme Mass Ratio Inspirals (EMRIs)White Dwarf Binaries..Big bang...???

0 1000 2000 3000

-0.002

-0.001

0

0.001

0.002

Re(r M Ψ4 ) l=2, m=2

3800 3900 4000

-0.06

-0.03

0

0.03

0.06

(tS-r*)/M (t

S-r*)/M

Fethi M Ramazanoglu Numerical Relativity

Page 7: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Gravitational Waves: Sources

Fethi M Ramazanoglu Numerical Relativity

Page 8: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Gravitational Waves: Detection

LIGO, Virgo: Solar mass (kHz). Ground based.Operational in 2016LISA: SMBH mergers, EMRIs. Space based(0.01− 100 mHz)Pulsar timing arrays: SMBH mergers (nHz). CurrentlyoperationalCMB observatories: B-modes in polarization

New possible sources: Eccentric mergers.Fethi M Ramazanoglu Numerical Relativity

Page 9: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Gravitational Waves: Detection

New possible sources: Eccentric mergers.Fethi M Ramazanoglu Numerical Relativity

Page 10: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Gravitational Waves: Detection

Source systems not very well understood.

Nlow (yr−1) Nre(yr−1) Nhigh(yr−1)

NS-NS 0.4 40 400NS-BH 0.2 10 300BH-BH 0.4 20 1000

New possible sources: Eccentric mergers.

Fethi M Ramazanoglu Numerical Relativity

Page 11: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Pulsar Timing Arrays

Fethi M Ramazanoglu Numerical Relativity

Page 12: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Numerical Relativity

Enstein equations are a mix of elliptic and hyperbolic equations.

3+1 decomposition:space+timeHyperbolic piece: Timeevolution2gab = lower derivativesPick initial data andevolve

Fethi M Ramazanoglu Numerical Relativity

Page 13: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Why Numerical Relativity?

Simply no other (known) way in the strong field regime!

r/M >> 1: Post Newtonian Theory. Breaks down at smallr (breaks down in worse ways as well)After merger: Black hole perturbation theoryNear the merger: Numerical Relativity

Contributes most to the LIGO signalLeads to surprising discoveries

Critical collapse (Choptuik, 1993)Turbulent instability of AdS spacetime (Bizon andRostworowski, 2011)

0 1000 2000 3000

-0.002

-0.001

0

0.001

0.002

Re(r M Ψ4 ) l=2, m=2

3800 3900 4000

-0.06

-0.03

0

0.03

0.06

(tS-r*)/M (t

S-r*)/M

Fethi M Ramazanoglu Numerical Relativity

Page 14: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Numerical Relativity: A pit of snakes

Hyperbolicity is not manifest: Pick the right coordinates(BSSN 1995,1998, Pretorius 2005)Avoid coordinate singularities: Again, pick the rightcoordinates.Handle (time evolving) physical singularities: Movingpunctures, excision.Control constraint violation: Constraint damping.Generate accurate and physical initial data: Ellipticalsolvers, more.Wildly different length scales: Adaptive mesh refinement(AMR)High computational cost: Parallel programming

Fethi M Ramazanoglu Numerical Relativity

Page 15: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

AMR, Constraint Violation

2Ai + DiDjAj = Di∂t Φ

C = DiEi , ∂tC = 0

Γ = DiAi

∂t Γ = −DiEi − DiDiΦ + a2C

0 =(∂2

t + a2DiDi)

C

Fethi M Ramazanoglu Numerical Relativity

Page 16: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Numerical Relativity: First Holy Grail

Fethi M Ramazanoglu Numerical Relativity

Page 17: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Astrophysical Simulations

Quasi-circular NS-NS

Fethi M Ramazanoglu Numerical Relativity

Page 18: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Astrophysical Simulations

Eccentric NS-NS

Fethi M Ramazanoglu Numerical Relativity

Page 19: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Astrophysical Simulations

BBH Harizon merger

Fethi M Ramazanoglu Numerical Relativity

Page 20: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Astrophysical Simulations

Test gravity in the strong field.Direct detection of GWs.Learn about compact object populations.Constrain nuclear equation of stateExplain high energy EM phenomena: GRBs and moreUnderstand nucleosynthesis (R process)

Fethi M Ramazanoglu Numerical Relativity

Page 21: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Coincident detection

EM waves and GWs atthe same time.Localization, triggeringUnderstanding GRBsElucidate the nature ofnew transients

Fethi M Ramazanoglu Numerical Relativity

Page 22: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Future directions: More physics, more astrophysics

Realistic NS EOSEM: Forcefree→ Ideal MHD→ Resistive MHDRealistic NS structureNeutrinos: Leakage→ Transport. . .

Fethi M Ramazanoglu Numerical Relativity

Page 23: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Testing GR: Spontaneous Scalarization

Damour, Esposito-Farese, PRL 1993

S =1

16πG

∫d4x√−g

[R − 2gab ∂aφ∂bφ

]+ SM(A2(φ)gab, ψ) A(φ) = e−β/2 φ2

gab≡ A2(φ)gab

Fethi M Ramazanoglu Numerical Relativity

Page 24: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Why Spontaneous?

Novak, PRD 1998

Fethi M Ramazanoglu Numerical Relativity

Page 25: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Parameter Range

Novak, PRD 1998

−15.0 −13.0 −11.0 −9.0 −7.0 −5.0 −3.0

β0

0.0

0.4

0.8

1.2

1.6

2.0

MB [M

so

l]

Polytrope γ=2.34

Spontaneous ScalarizationSpontaneous Scalarization

unstable configurations

Fethi M Ramazanoglu Numerical Relativity

Page 26: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Matter Density

Fethi M Ramazanoglu Numerical Relativity

Page 27: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Scalar field

Fethi M Ramazanoglu Numerical Relativity

Page 28: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Gravitational Waves

200 250 300 350 400 450

−5

0

5

x 10−4

time (Mirr

)

C2

2M

irr

noST

ST

Fethi M Ramazanoglu Numerical Relativity

Page 29: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Comeback times

E/M T (ms)noST 0.0083 7.5

ST 0.0134 3.8

Fethi M Ramazanoglu Numerical Relativity

Page 30: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Beyond Astrophysics

Critical collapseHigher dimensional gravityAdS/CFTQuantum Gravity/CosmologyMathematical relativity

Fethi M Ramazanoglu Numerical Relativity

Page 31: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Information Loss

Fix background metric, look at quantumfields (Hawking ’74-’75):

Blacks holes radiate energyRadiation is thermal

Solution:Full Quantum Gravity?Semiclassical terms? Still hard in3 + 1 = 4D

⇒ 1 + 1 = 2D

Fethi M Ramazanoglu Numerical Relativity

Page 32: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Some Peculiarities of 2D

More null infinities.Conformal flatness:gab = Ω−1ηab

Dimensionless G~

I+R

I−R

I+L

I−L

z− z+

EventHorizon

singularity

collapsingmatter

Fethi M Ramazanoglu Numerical Relativity

Page 33: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Unitarity in 2D (a la ATV)

Fethi M Ramazanoglu Numerical Relativity

Page 34: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Unitarity vs Information Loss

Unitarity is saved, but some information is lost?

−25 −20 −15 −10 −5 00

0.5

1

1.5

y−

sh

F*

M*=14 w=0

M*=12 w=0

M*=9.5 w=1

M*=6 w=0

M*=6 w=0.25

M*=6 w=0.5

M*=6 w=1

I+R

I−R

I+L

I−L

z− z+

singularity last ray

dynamicalhorizon

collapsingmatter

Fethi M Ramazanoglu Numerical Relativity

Page 35: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

AdS/CFT Correspondence

Arguably hottest topic in string theory circlesQuantum gravity on AdS5 bulk↔ SSYM theory on theboundaryPossible insights to QCD, CMT(?)Contact with experiment with RHIC (?)

Fethi M Ramazanoglu Numerical Relativity

Page 36: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Dynamical Superradiance

Extract energy froma rotating black holeProvenperturbatively(Teukolsky, Press1974)Never examined instrong, dynamicalsettings.

Fethi M Ramazanoglu Numerical Relativity

Page 37: Relativity at the Age of Gravitational Wave Detection€¦ · Relativity at the Age of Gravitational Wave Detection Fethi M Ramazanoglu˘ Princeton University 0 1000 2000 3000-0.002-0.001

Conclusions

LIGO is funded, operational by the end of the decade. NRessential for data analysis.Detection→ GW astronomy including coincident searches.Probing strong field gravity for the first time.Beyond astrophysics, connections to QG, particle physics,more?Possibly a second golden age for relativity.

Fethi M Ramazanoglu Numerical Relativity