RESPIRASI HEWAN VERTEBRATA

Embed Size (px)

Citation preview

3

1. Alat Pernapasan pada IkanInsang dimiliki oleh jenis ikan (pisces). Insang berbentuk lembaran-lembaran tipis berwarna merah muda dan selalu lembap. Bagian terluar dare insang berhubungan dengan air, sedangkan bagian dalam berhubungan erat dengan kapiler-kapiler darah. Tiap lembaran insang terdiri dare sepasang filamen, dan tiap filamen mengandung banyak lapisan tipis (lamela). Pada filamen terdapat pembuluh darah yang memiliki banyak kapiler sehingga memungkinkan OZ berdifusi masuk dan CO2 berdifusi keluar. Insang pada ikan bertulang sejati ditutupi oleh tutup insang yang disebut operkulum, sedangkan insang pada ikan bertulang rawan tidak ditutupi oleh operkulum. Insang tidak saja berfungsi sebagai alat pernapasan tetapi dapat pula berfungsi sebagai alat ekskresi garam-garam, penyaring makanan, alat pertukaran ion, dan osmoregulator. Beberapa jenis ikan mempunyai labirin yang merupakan perluasan ke atas dari insang dan membentuk lipatan-lipatan sehingga merupakan rongga-rongga tidak teratur. Labirin ini berfungsi menyimpan cadangan 02 sehingga ikan tahan pada kondisi yang kekurangan 02. Contoh ikan yang mempunyai labirin adalah: ikan gabus dan ikan lele. Untuk menyimpan cadangan 02, selain dengan labirin, ikan mempunyai gelembung renang yang terletak di dekat punggung. Mekanisme pernapasan pada ikan melalui 2 tahap, yakni inspirasi dan ekspirasi. Pada fase inspirasi, 02 dari air masuk ke dalam insang kemudian 02 diikat oleh kapiler darah untuk dibawa ke jaringan-jaringan yang membutuhkan. Sebaliknya pada fase ekspirasi, C02 yang dibawa oleh darah dari jaringan akan bermuara ke insang dan dari insang diekskresikan keluar tubuh.Selain dimiliki oleh ikan, insang juga dimiliki oleh katak pada fase berudu, yaitu insang luar. Hewan yang memiliki insang luar sepanjang hidupnya adalah salamander. 2. Alat Pernapasan pada KatakPada katak, oksigen berdifusi lewat selaput rongga mulut, kulit, dan paru-paru. Kecuali pada fase berudu bernapas dengan insang karena hidupnya di air. Selaput rongga mulut dapat berfungsi sebagai alat pernapasan karma tipis dan banyak terdapat kapiler yang bermuara di tempat itu. Pada saat terjadi gerakan rongga mulut dan faring, Iubang hidung terbuka dan glotis tertutup sehingga udara berada di rongga mulut dan berdifusi masuk melalui selaput rongga mulut yang tipis. Selain bernapas dengan selaput rongga mulut, katak bernapas pula dengan kulit, ini dimungkinkan karma kulitnya selalu dalam keadaan basah dan mengandung banyak kapiler sehingga gas pernapasan mudah berdifusi. Oksigen yang masuk lewat kulit akan melewati vena kulit (vena kutanea) kemudian dibawa ke jantung untuk diedarkan ke seluruh tubuh. Sebaliknya karbon dioksida dari jaringan akan di bawa ke jantung, dari jantung dipompa ke kulit dan paru-paru lewat arteri kulit pare-paru (arteri pulmo kutanea). Dengan demikian pertukaran oksigen dan karbon dioksida dapat terjadi di kulit. Selain bernapas dengan selaput rongga mulut dan kulit, katak bernapas juga dengan paruparu walaupun paru-parunya belum sebaik paru-paru mamalia. Katak mempunyai sepasang paru-paru yang berbentuk gelembung tempat bermuaranya kapiler darah. Permukaan paru-paru diperbesar oleh adanya bentuk- bentuk seperti kantung sehingga gas pernapasan dapat berdifusi. Paru-paru dengan rongga mulut dihubungkan oleh bronkus yang pendek.

Setelah itu koane menutup dan otot rahang bawah dan otot geniohioideus berkontraksi sehingga rongga mulut mengecil. Mengecilnya rongga mulut mendorong oksigen masuk ke paru-paru lewat celah-celah. Dalam paru-paru terjadi pertukaran gas, oksigen diikat oleh darah yang berada dalam kapiler dinding paru-paru dan sebaliknya, karbon dioksida dilepaskan ke lingkungan. Mekanisme ekspirasi adalah sebagai berikut. Otot-otot perut dan sternohioideus berkontraksi sehingga udara dalam paru-paru tertekan keluar dan masuk ke dalam rongga mulut. Celah tekak menutup dan sebaliknya koane membuka. Bersamaan dengan itu, otot rahang bawah berkontraksi yang juga diikuti dengan berkontraksinya geniohioideus sehingga rongga mulut mengecil. Dengan mengecilnya rongga mulut maka udara yang kaya karbon dioksida keluar. 3. Alat Pernapasan pada ReptiliaParu-paru reptilia berada dalam rongga dada dan dilindungi oleh tulang rusuk. Paru-paru reptilia lebih sederhana, hanya dengan beberapa lipatan dinding yang berfungsi memperbesar permukaan pertukaran gas. Pada reptilia pertukaran gas tidak efektif. Pada kadal, kura-kura, dan buaya paru-paru lebih kompleks, dengan beberapa belahanbelahan yang membuat paru-parunya bertekstur seperti spon. Paru-paru pada beberapa jenis kadal misalnya bunglon Afrika mempunyai pundi-pundi hawa cadangan yang memungkinkan hewan tersebut melayang di udara. 4. Alat Pernapasan pada BurungPada burung, tempat berdifusinya gas pernapasan hanya terjadi di paru-paru. Paru-paru burung berjumlah sepasang dan terletak dalam rongga dada yang dilindungi oleh tulang rusuk. Jalur pernapasan pada burung berawal di lubang hidung. Pada tempat ini, udara masuk kemudian diteruskan pada celah tekak yang terdapat pada dasar faring yang menghubungkan trakea. Trakeanya panjang berupa pipa bertulang rawan yang berbentuk cincin, dan bagian akhir trakea bercabang menjadi dua bagian, yaitu bronkus kanan dan bronkus kiri. Dalam bronkus pada pangkal trakea terdapat sirink yang pada bagian dalamnya terdapat lipatan-lipatan berupa selaput yang dapat bergetar. Bergetarnya selaput itu menimbulkan suara. Bronkus bercabang lagi menjadi mesobronkus yang merupakan bronkus sekunder dan dapat dibedakan menjadi ventrobronkus (di bagian ventral) dan dorsobronkus ( di bagian dorsal). Ventrobronkus dihubungkan dengan dorsobronkus, oleh banyak parabronkus (100 atau lebih). Parabronkus berupa tabung tabung kecil. Di parabronkus bermuara banyak kapiler sehingga memungkinkan udara berdifusi. Selain paru-paru, burung memiliki 8 atau 9 perluasan paru-paru atau pundi-pundi hawa (sakus pneumatikus) yang menyebar sampai ke perut, leher, dan sayap. Pundi-pundi hawa berhubungan dengan paru-paru dan berselaput tipis. Di pundi-pundi hawa tidak terjadi difusi gas pernapasan; pundi-pundi hawa hanya berfungsi sebagai penyimpan cadangan oksigen dan meringankan tubuh. Karena adanya pundi-pundi hawa maka pernapasan pada burung menjadi efisien. Pundi-pundi hawa terdapat di pangkal leher (servikal), ruang dada bagian depan (toraks anterior), antara tulang selangka (korakoid), ruang dada bagian belakang (toraks posterior), dan di rongga perut (kantong udara abdominal). Masuknya udara yang kaya oksigen ke paru-paru (inspirasi) disebabkan adanya kontraksi otot antartulang rusuk (interkostal) sehingga tulang rusuk bergerak keluar dan tulang dada bergerak ke bawah. Atau dengan kata lain, burung mengisap udara dengan cara memperbesar rongga dadanya sehingga tekanan udara di dalam rongga dada menjadi kecil yang mengakibatkan masuknya udara luar. Udara luar yang masuk sebagian kecil tinggal di paru-paru dan sebagian besar akan diteruskan ke pundi- pundi hawa sebagai cadangan udara.Udara pada pundi-pundi hawa dimanfaatkan hanya pada saat udara (OZ) di paruparu berkurang, yakni saat burung sedang mengepakkan sayapnya. Saat sayap mengepak atau diangkat ke atas maka kantung hawa di tulang korakoid terjepit sehingga oksigen pada tempat itu masuk ke paru-paru. Sebaliknya, ekspirasi terjadi apabila otot interkostal relaksasi maka tulang rusuk dan tulang dada kembali ke posisi semula, sehingga rongga dada mengecil dan tekanan menjadi lebih besar dari tekanan di udara luar akibatnya udara dari paru-paru yang kaya karbon dioksida keluar. Bersamaan dengan mengecilnya rongga dada, udara dari kantung hawa masuk ke paru-paru dan terjadi pelepasan oksigen dalam pembuluh kapiler di paru-paru. Jadi, pelepasan oksigen di paru-paru dapat terjadi pada saat ekspirasi maupun inspirasi. Bagan pernapasan pada burung di saat hinggap adalah sebagai berikut.Burung mengisap udara udara mengalir lewat bronkus ke pundi-pundi hawa bagian belakang bersamaan dengan itu udara yang sudah ada di paru-paru mengalir ke pundipundi hawa udara di pundi-pundi belakang mengalir ke paru-paru udara menuju pundipundi hawa depan. Kecepatan respirasi pada berbagai hewan berbeda bergantung dari berbagai hal, antara lain, aktifitas, kesehatan, dan bobot tubuh.

Organ Pernafasan dan FungsinyaAlat pernafasan pada burung (unggas) terbagi atas paru-paru mempunyai bronkhus tertier yang lebih banyak jumlahnya dibandingkan dengan paru-paru ayam. Ayam mempunyai 7 kantong hawa, yaitu sepasang kantong hawa servikalis, sepasang abdominalis, sepasang torakalis, dan sebuah kantong hawa klavikularis. Kalkun mempunyai 8 kantong hawa dan sebuah kantong hawa servikalis (sama dengan klavikularis), 2 pasang kantong torakalis, 2 pasang kantong abdominalis.

Pada umumnya kebanyakan jenis burung kecil hanya sedikit atau tidak memiliki pneumatic bones, sedangkan jenis burung yang besar mempunyai banyak pneumatic bones. Jadi, ternyata bahwa ada tidaknya pneumatic bones hanya berperan kecil dalam kemampuan terbang. Ada pendapat yang menyangkal bahwa humerus pada ayam itu merupakan pneumatic bones, tetapi ada pendapat lain yang menyatakan bahwa pneumatic bones pada ayam meliputi hampir semua vertebre servikalis, 2 tulang rusuk yang pertama, tulang dada, humerus, dan bagian setengah bawah korakoid. Semua pneumatic bones tidak berhubungan dengan kantong hawa, tetapi humerus berhubungan dan beberapa jenis burung dapat bernafas melalui humerus pada kondisi tertentu.

Mekanisme PernafasanSelama pernafasan (respirasi), terjadi gerakan dada (thorax = thorak) dan perut. Pada inspirasi, sternum korakoid, furkula, dan rusuk bergerak ke depan dan ke bawah. Rusuk vertebral ditarik ke depan dan ke dalam. Jadi, pada inspirasi diameter vertical thorak bertambah besar dan diameter melintangnya bertambah kecil. Paru-paru membesar pada saat inspirasi, dan tulang rusuk serta dada tertarik ke arah dalam.Kecepatan Bernafas Kecepatan bernafas pada bangsa burung tergantung pada ukuran badan, seks, rangsangan, dan berbgai faktor lain. Pada umumnya bangsa burung yang lebih kecil mempunyai kecepatan (frekuensi) pernafasan yang lebih tinggi dibandingkan dengan yang lebih besar, misalnya pada bangsa unggas jantan seperti merpati, itik, angsa, kalkun, dan anak ayam adalah 28, 42, 20, 28, dan 16 kali/menit secara berturut-turut; sedangkan yang betina 16, 110, 40, 49, dan 28 secara berturut-turut. Kecepatan bernafas bertambah bila suhu badan meningkat. Pada anak ayam yang suhu badannya 43,5oC 44,5oC , kecepatannya bisa mencapai 140 170 kali/menit.

Pernafasan Selama TerbangPersediaan dan kecepatan oksigen (O2) berdifusi dalam paru-paru sangat penting artinya bagi bangsa burung pada waktu terbang. Pada waktu terbang konsumsi oksigen bisa 10 15 kali lebih banyak dibandingkan dengan pada keadaan istirahat. Konsumsi itu juga tergantung pada kecepatan terbang. Pada kecepatan terbang 35 km/jam, oksigen yang diperlukan rata-rata 21,9 ml/g/jam atau 12,8 kali lebih banyak dibandingkan dengan keadaan tidak terbang, dan pada kecepatan terbang 40 km/jam konsumsi oksigen 23ml/g/jam.Konsumsi oksigen paling tinggi pada waktu terbang menaik dan paling rendah pada waktu terbang menurun. Beberapa peneliti mengasumsikan bahwa pernafasan (aliran udara paru-paru) ada hubungan (sinkronisasi) dengan berbagai gerakan sayap pada waktu terbang. Pada waktu sayap bergerak ke bawah, terjadi ekspirasi.

Difusi O2 dari Kapiler ke Cairan InterstisialPada kapiler jaringan, O2 berdifusi ke dalam jaringan oleh suatu proses penting yang sama dengan yang terjadi dalam paru-paru. Dengan demikian tekanan O2 (PO2) dalam cairan interstisial di luar kapiler rendah dan diperkirakan sangat bervariasi, rata-rata sekitar 40 mm Hg, sedangkan di dalam darah arteri tinggi sekitar 95 mm Hg. Oleh karena itu, pada kapiler tekanannya berbeda sampai 55 mm Hg yang menyebabkan difusi O2. Pada waktu itu, darah yang mengalir melalui kapiler banyak O2 berdifusi ke dalam jaringan dan PO2 kapiler mendekati 40 mm Hg dalam cairan jaringan. Konsekwensinya, darah venous yang meninggalkan jaringan mengandung O2 yang sangat penting untuk berbagai aktivitas.

Difusi O2 dari Cairan Interstisial ke Dalam SelSelama O2 masih digunakan oleh sel, tekanan O2 intraseluler tetap lebih rendah dibandingkan dengan tekanan O2 cairan interstisial. O2 berdifusi melalui membrana sel dengan sangat cepat. Oleh karena itu, PO2 intraseluler hampir sama dengan PO2 di dalam cairan interstisial. Namun, dalam banyak hal ada yang perlu dipertimbangkan misalnya jarak antara kapiler dan sel. Dengan demikian, PO2 intraseluler normal berkisar dari yang terendah 5 mm Hg sampai yang tertinggi 60 mm Hg dengan rata-ratanya 23 mm Hg yang merupakan nilai yang diberikan pada sel tersebut. Kira-kira hanya 1 3 mm Hg PO2 yang diperlukan untuk mendukung sepenuhnya proses metabolisme sel. Jadi dapat dilihat bahwa walau PO2 rendah namun cukup aktual dan aman untuk metabolisme sel.

Transportasi CO2 ke Paru-paruKarena pembentukan CO2 dalam sel sangat banyak dan terus-menerus maka PO2 intraseluler berdifusi kira-kira 20 kali lebih mudah dibandingkan O2 yang berdifusi dari sel dengan sangat cepat ke dalam darah kepiler. Darah arteri masuk kapiler jaringan mengandung CO2 pada tekanan kira-kira 40 mm Hg. Mengalirnya darah melalui kapiler, PCO2 meningkat sampai 45 mm Hg.

Untuk mengeluarkan CO2 dari darah pulmonaris, PCO2 vena kira-kira 45 mm Hg. Sedangkan dalam alveoli sekitar 40 mm Hg. Perbedaan tekanan awal untuk difusi hanya 5 mm Hg jauh lebih rendah dari difusi O2 menembus membrana. Walau demikian, karena koefisien difusi 20 kali lebih besar dari koefisien difusi O2 maka kelebihan CO2 dalam darah dengan cepat dikirim ke dalam alveoli.Top of Form

Pengertian Pernafasan

Pernafasan mempunyai 2 arti yang sangat berbeda :

1). pernafasan oksigen (O2 ) dalam matabolisme karbohidrat dan berbagai molekul organik lainnya,

2). suatu proses yang melibatkan pertukaran O2 dan CO2 di antara berbagai sel suatu organisme dan lingkungan luar.

Sebagian besar sel tubuh memperoleh energi dari reaksi kimia yang melibatkan O2. Sel itu harus mampu melenyapkan CO2 yang merupakan hasil akhir utama dari metabolisme oksidasi. Organisme bersel satu pertukaran O2 dan CO2 terjadi secara langsung dengan lingkungan luar, tetapi hal itu sama sekali tidak mungkin untuk sebagian besar sel organisme yang kompleks seperti manusia maupun hewan/ternak. Oleh karena itu, evaluasi hewan besar memerlukan perkembangan suatu sistem khusus yaitu sistem respirasi (pernafasan) untuk pertukaran O2 dan CO2 bagi hewan tersebut dengan lingkungan sekitarnya meliputi : paru-paru, jalan udara ke paru-paru, dan struktur dada yang bertanggung jawab terhadap gerakan udara keluar dan masuk ke paru-paru.

Mekanisme Ventilasi (Pertukaran Udara) PulmonalisParu-paru dapat membesar dan berkontraksi dengan 2 jalan : 1). dengan gerakan turun naik diafragma akan memanjang dan memperpendek rongga dada, dan 2). dengan pengangkatan dan penekanan tulang rusuk akan mengangkat/memperbesar dan menurunkan/memperkecil diameter anteroposterior rongga dada.

Pernafasan normal dilakukan hampir sempurna oleh gerakan inspirasi (menghirup) diafragma. Selama inspirasi diafragma menarik ke bawah permukaan bagian bawah paru-paru. Selama ekspirasi (menghembus) diafragma berelaksasi dan mendorong paru-paru ke belakang, dinding dada dan struktur perut mendorong paru-paru. Selama bernafas berat, dorongan ke belakang tidak cukup kuat untuk menyebabkan respirasi cepat, hal itu dapat dicapai dengan kontraksi urat perut yang mendorong isi perut ke atas melawan diafragma bagian bawah. Cara kedua untuk memperbesar paru-paru adalah dengan meningkatkan/memperbesar ruangan dada melalui rib cage. Hal itu akan memperbesar paru-paru karena dalam posisi istirahat secara alamiah, tulang rusuk miring ke bawah, sehingga memungkinkan tulang dada bergerak ke belakang di depan kolumnis spinalis. Namun, bila rib cage terangkat, tulang rusuk langsung mengarah ke belakang. Dengan demikian, tulang dada pada waktu itu bergerak ke belakang menjauhi spinosus yang menyebabkan anteroposterior dada menjadi lebih besar kira-kira 20% selama respirasi maksimum dibandingkan selama ekspirasi. Oleh karena itu, berbagai otot tersebut yang mengangkat rongga dada dapat diklasifikasikan sebagai urat daging inspirasi, dan urat daging yang menekan rongga dada adalah urat daging ekspirasi.

Kapasitas dan Volume Paru-paruSuatu metode sederhana untuk mempelajari pertukaran udara paru-paru adalah mancatat volume udara yang bergerak ke dalam dan ke luar paru-paru disebut spirometer. Sebuah alat spirometer terdiri dari sebuah silinder yang berada dalam sebuah ruangan berisi air yang keseimbangannya dapat diatur melalui suatu pemberat. Dalam selinder terdapat campuran udara pernafasan biasanya udara atau O2 ; suatu tabung yang menghubungkan mulut dengan ruang udara. Karena nafas masuk dan ke luar ruang udara maka silinder terangkat/naik dan turun, dan suatu grafik akan terlihat pada kertas yang terdapat pada silinder yang berputar. Untuk memudahkan menjelaskan berbagai kejadian pertukaran udara paru-paru maka udara dalam paru-paru telah dibagi menjadi 4 volume dan 4 kapasitas.

Volume paru-paru bagian kiri terdiri atas 4 volume yang berbeda dan bila dijumlahkan semuanya sama dengan volume maksimum paru-paru yang masih dapat diharapkan. Arti penting dari masing-masing volume tersebut adalah sebagai berikut.

1. Volume tidal (tidal volume = TV) adalah volume udara pada waktu inspirasi atau ekspirasi normal, dan volumenya kira-kira 500 ml.

2. Volume cadangan inspirasi (inspiratory reserve volume = IRV) adalah volume ekstra udara yang masih dapat dihirup setelah inspirasi normal sebagai volume udara tambahan terhadap volume volume tidal, dan biasanya volume udara itu kira-kira 3000 ml.

3. Volume cadangan ekspirasi (expiratory reseve volume = ERV) adalah jumlah udara yang masih dapat dikeluarkan dengan berekspirasi sekuat-kuatnya (maksimum) pada saat akhir ekspirasi normal, biasanya volume ini kira-kira 1100 ml.

4. Volume residu (residual volume = RV) adalah volume udara yang masih tinggal di dalam paru-paru setelah melakukan respirasi maksimum. Volume residu ini rata-rata 1200 ml.

Kapasitas paru-paru dalam siklus paru-paru kadang-kadang perlu mempertimbangkan 2 atau lebih volume udara tersebut di atas secara bersama-sama. Penggabungan ini disebut kapasitas paru-paru. Kapasitas paru-paru berbeda-beda dapat dijelaskan sebagai berikut ini.

1. Kapasitas inspirasi (inspiratory capacity/IC) = volume tidal (TV) + volume cadangan inspirasi (IRV). Ini adalah sejumlah udara (kira-kira 3500 ml) yang berarti seseorang bernafas mulai dengan tingkat ekspirasi normal dan memperbesar paru-parunya hingga maksimum.

2. Kapasitas residu fungsional (functional residual capacity/FRC) = volume cadangan ekspirasi (ERV) + volume residu (RV). Ini adalah sejumlah udara yang tinggal dalam paru-paru pada akhir ekspirasi normal (kira-kira 2300 ml).

3. Kapasitas vital (vital capacity/VC) = volume cadangan inspirasi (IRV) + volume tidal (TV) + volume cadangan ekspirasi (ERV). Ini adalah jumlah udara maksimum yang dapat dikeluarkan dari paru-paru setelah ekspirasi dan dilanjutkan dengan ekspirasi maksimum.

4. Kapasita total paru-paru (total lung capacity/TLC) adalah volume maksimum paru-paru yang masih dapat diperbesar dengan inspirasi sekuat mungkin (kira-kira 5800 ml). TLC = IRV + TV + ERV + RV.Sebagai contoh dapat dikemukakan di sini bahwa laki-laki mempunyai VT = 400 ml, VC = 4800 ml, IRV = 3100 ml, IC = 3600 ml, ERV = 1200 ml, RV = 1200 ml, FRC = 2000 ml, TLC = 6000 ml. Sapi betina (dalam keadaan tidur) mempunyai TV = 3100 ml; sedangkan dalam posisi berdiri adalah 3800 ml.

Semua volume dan kapasitas paru-paru wanita 20 25% lebih rendah dibandingkan laki-laki, dan volume serta kapasitasnya lebih besar pada orang yang bertubuh besar dan olahragawan dibandingkan dengan orang yang bertubuh kecil dan menderita asma.Difusi Gas Melalui Membrana RespirasiUnit alat pernafasan terdiri dari bronkhiolus, berbagai saluran alveoli, atrium dan alveoli (kira-kira 300 juta pada kedua paru-paru, masing-masing alveolus mempunyai diameter kira-kira 0,25 mm). Dinding alveoli sangat tipis, dan di antara banyak dinding itu terdapat berbagai kapiler yang cukup kuat. Aliran darah pada dinding kapiler merupakan suatu sheet dari peredaran darah. Jadi jelaslah bahwa gas alveoli hampir sama dengan gas darah kapiler. Konsekwensinya pertukaran gas antara udara alveoli dan darah volmonaris terjadi di seluruh membrana terminal paru-paru. Membrana ini disebut membrana respirasi atau membrana vulmonaris.

Transportasi O2 dan CO2Gas dapat mengaliri suatu tempat ke tempat lain dengan jalan difusi dan hal ini selalu disebabkan oleh adanya perbedaan tekanan dari satu tempat terhadap tempat lainnya. Jadi, O2 berdifusi dari alveoli ke dalam pembuluh darah kapiler pulmonaris karena perbedaan tekanan yang dalam hal ini tekanan O2 (PO2) di dalam alveoli lebih besar dibandingkan dengan PO2 di dalam darah pulmonaris. Darah pulmonaris diangkut melalui sirkulasi darah menuju berbagai jaringan perifir. Di sana PO2 lebih rendah dalam sel dibandingkan dengan yang di dalam darah arteri yang masuk ke dalam berbagai pembuluh darah kapiler. Di situ lagi PO2 jauh lebih tinggi dalam darah kapiler menyebabkan O2 berdifusi ke luar dari pembuluh kapiler dan seluruh cairan interstisial menuju sel.

Karena O2 dimetabolisasikan dengan makanan dalam sel untuk membentuk CO2 maka tekanan CO2 (PCO2) meningkat mencapai nilai tinggi dalam sel yang menyebabkan CO2 berdifusi dari sel ke dalam jaringan kapiler. CO2 dalam darah diangkut ke kapiler pulmonaris. CO2 itu berdifusi ke luar dari darah dan menuju ke dalam alveoli karena PCO2 di dalam alveoli lebih rendah dibandingkan dengan yang di dalam darah. Hal yang mendasar di sini adalah bahwa angkutan O2 dan CO2 ke dan dari berbagai jaringan tergantung dari difusi dan aliran darah secara berturut-turut.

Faktor yang Mempengaruhi Difusi GasPrinsip dan formula terjadinya difusi gas melalui membrana respirasi sama dengan difusi gas melalui air dan berbagai jaringan. Jadi, faktor yang menentukan betapa cepat suatu gas melalui membrana tersebut adalah : 1). ketebalan membrana, 2).luas permukaan membrana, 3).koefisien difusi gas dalam substansi membrana, dan 4). perbedaan tekanan antara kedua sisi membrana.

Sering terjadi kecepatan difusi melalui membrana tidak proporsional terhadap ketebalan membrana sehingga setiap faktor yang meningkatkan ketebalan melebihi 2 3 kali dibandingkan dengan yang normal dapat mempengaruhi secara sangat nyata pertukaran gas pernafasan normal. Khusus pada olahragawan, luas permukaan membrana respirasi sangat mempengaruhi prestasi dalam pertandingan maupun latihan. Luas permukaan paru-paru yang berkurang dapat berpengaruh serius terhadap pertukaran gas pernafasan. Dalam hal koefisien difusi masing-masing gas kaitannya dengan perbedaan tekanan ternyata CO2 berdifusi melalui membrana kira-kira 20 kali lebih cepat dari O2, dan O2 dua kali lebih cepat dari N2. Dalam hal perbedaan tekanan gas, tekanan gas parsial menyebabkan gas mengalir melalui membrana respirasi. Dengan demikian, bila tekanan parsial suatu gas dalam alveoli lebih besar dibandingkan dengan tekanan gas dalam darah seperti halnya O2 , difusi terjadi dari alveoli ke arah dalam, tetapi bila tekanan gas dalam darah lebih besar dibandingkan dengan dalam alveoli seperti halnya CO2 maka difusi terjadi dari darah ke dalam alveoli.

Kapasitas Difusi Membrana RespirasiKemampuan seluruh membrana respirasi untuk terjadinya pertukaran gas antara alveoli dan darah pulmonaris dapat diekspresikan dengan istilah kapasitas difusinya, yang dapat didefinisikan sebagai volume gas yang berdifusi melalui membrana tadi setiap menit untuk setiap perbedaan tekanan 1 mm Hg. Kapasitas difusi O2 laki-laki muda dewasa pada waktu istirahat rata-rata 21 ml per menit per mm Hg. Rata-rata perbedaan tekanan O2 menembus membrana respirasi selama dalam keadaan normal yaitu dalam keadaan bernafas tenang kira-kira 11 mm Hg. Peningkatan tekanan itu menghasilkan kira-kira 230 ml O2 berdifusi normal melalui membrana respirasi setiap menit; dan itu sama dengan kecepatan tubuh menggunakan O2. Di lain pihak, kapasitas difusi CO2 belum pernah dihitung karena kesukaran teknis. Sebenarnya sangat penting diketahui kapasitas difusi yang tinggi dari CO2 itu. Bila tidak demikian maka membrana respirasi banyak mengalami kerusakan. Akibatnya, kapasitasnya membawa O2 ke dalam darah sering tidak cukup sehingga menyebabkan kematian seseorang jauh lebih cepat daripada ketidakseimbangan yang serius dari difusi CO2.Mekanisme RespirasiSelama respirasi, terjadi gerakan dada (thorax) dan perut. Pada inspirasi sternum coracoid , furcula, dan rusuk bergerak ke depan dan ke bawah. Rusuk vertebral ditarik ke depan dan ke dalam. Jadi, pada inspirasi diameter vertikal dada bertambah besar dan diameter melintangnya bertambah kecil. Paru-paru membesar pada saat inspirasi, dan tulang rusuk serta dada tertarik ke arah dalam.