21
Designing and Achieving Geothermal Power Plant Performance with Confidence Guofu Chen, TAS Energy Inc. 12/31/2013 © 2012 TAS Energy. All Rights Reserved. 1

REW_Designing and Achieving Geothermal Power Plant Performance with Confidence

Embed Size (px)

Citation preview

Page 1: REW_Designing and Achieving Geothermal Power Plant Performance with Confidence

Designing and Achieving Geothermal Power Plant Performance with Confidence

Guofu Chen, TAS Energy Inc. 

12/31/2013 © 2012 TAS Energy. All Rights Reserved. 1

Page 2: REW_Designing and Achieving Geothermal Power Plant Performance with Confidence

Agenda

• Introduction to TAS Energy• Introduction to Organic Rankine Cycle (ORC)• The benefits of a supercritical R134a ORC• The PROBLEM: over or under estimate the performance• The SOLUTION: design and achieve the performance

– The tools being used– Model 1,  build a “Virtual Plant”

• With real geometries, but not site process data– Model 2,  model heat and mass balance of an operating plant

• Reflects plant operation on site• With site process data, but no geometries included

– Model 3, combine model 1 and model 2 to predict reality• Site data, real geometries, really predicts the reality

12/31/2013 © 2012 TAS Energy. All Rights Reserved. 2

Page 3: REW_Designing and Achieving Geothermal Power Plant Performance with Confidence

ORC Development Timeline

© 2012 TAS Energy. All Rights Reserved.

2012Dixie and San Emidio

commissioning 

2010Multiple follow on geothermal orders 

2006Started waste heat market evaluation

2002Improved heat 

recovery concept development

2002 2006 2008

2003First patent application

2004Working ORC 

laboratory model

2005US Patent #6,964,168 issued protecting recuperated 

supercritical cycle

2009TAS/BNI expander 

development program started

2007US Patent #7287381 issued protecting Ultra 

Max cycle

2011Beowawe low temperature 

geothermal plant in operations 

2008Shortlisted working fluid 

selections

2004 2010 2012

2002Started working fluid evaluation

2009Added detailed heat 

exchanger design/sizing tools

2009Second generation of 

integrated ORC system model

2009TAS Energy sells its first 

geothermal plant

2010First TAS/BNI 

expander delivered

2010US Patent #7827791 protecting Methanol 

as a fluid

2011Dixie bottoming cycle 

equipment delivery

2011First international geothermal plant order (Turkey)

2005Purchased HYSYS to start detailed cycle 

analysis

2008Started prototype heat 

recovery unit

2008First generation of 

integrated ORC system model

2007First introduction into 

geothermal

12/31/2013

Page 4: REW_Designing and Achieving Geothermal Power Plant Performance with Confidence

ORC Experience

© 2012 TAS Energy. All Rights Reserved.12/31/2013

Solution Location Solution Temp Type StatusLow Temp Terra‐Gen Power Beowawe 2.5 MW (1) Axial turbine Operating

Water Cooled Nevada, USA Bottom Cycle 205°F/96°CHigh Temp TAS BOOM Weyerhaeuser 0.8 MW (1) Axial turbine OperatingAir Cooled NC, USA Recovered heat 470°F/243°CLow Temp Terra‐Gen Power Dixie Valley 6.1 MW (1)  Radial turbine OperatingAir Cooled Nevada, USA Bottom Cycle 225°F/107°CSupercritical US Geothermal San Emidio  I 11.5 MW (1) Radial turbine OperatingWater Cooled Nevada, USA Hydrothermal 285°F/140°CSupercritical US Geothermal Neal Hot Springs  33.0 MW (3)  Radial turbine OperatingAir Cooled Oregon, USA Hydrothermal 285°F/140°CSupercritical Gradient Resources Patua 1 48.5 MW (3)  Radial turbine InstallationAir Cooled Nevada, USA Hydrothermal 315°F/157°CSupercritical Confidential Oil Field 0.8 MW (1) Radial turbine OperatingAir Cooled California, USA Recovered heat 300°F/149°CSupercritical BM Holding Gumuskoy 1&2 13.2 MW (2)  Axial turbine OperatingAir Cooled Turkey Hydrothermal 320°F/160°CLow Temp Zorlu Enerji Kizildere II 19.4 MW (2)  Radial turbine Operating

Water Cooled Turkey Bottoming 212°F/100°CSupercritical Surprise Valley  Paisley 3.1 MW (1)  Axial turbine ManufacturingWater Cooled Oregon, USA Hydrothermal 232°F/111°C

Page 5: REW_Designing and Achieving Geothermal Power Plant Performance with Confidence

San Emidio (Nevada, USA)

© 2012 TAS Energy. All Rights Reserved.

285°F/140°C ‐ Supercritical Water Cooled – 11.5 MW Gross Output

12/31/2013

Page 6: REW_Designing and Achieving Geothermal Power Plant Performance with Confidence

Neal Hot Springs (Oregon, USA)

© 2012 TAS Energy. All Rights Reserved.

285°F/140°C ‐ Supercritical Air Cooled – 33 MW Gross Output

12/31/2013

Page 7: REW_Designing and Achieving Geothermal Power Plant Performance with Confidence

Agenda

• Introduction to TAS Energy• Introduction to Organic Rankine Cycle (ORC)• The benefits of a supercritical R134a ORC• The PROBLEM: over or under estimate the performance• The SOLUTION: design and achieve the performance

– The tools being used– Model 1,  build a “Virtual Plant”

• With real geometries, but not site process data– Model 2,  model heat and mass balance of an operating plant

• Reflects plant operation on site• With site process data, but no geometries included

– Model 3, combine model 1 and model 2 to predict reality• Site data, real geometries, really predicts the reality

12/31/2013 © 2012 TAS Energy. All Rights Reserved. 7

Page 8: REW_Designing and Achieving Geothermal Power Plant Performance with Confidence

Introduction to ORC

• Based on Rankine cycle principle, use an organic working fluid to turn geothermal fluid energy or waste heat into electricity.

12/31/2013 © 2012 TAS Energy. All Rights Reserved. 8

Page 9: REW_Designing and Achieving Geothermal Power Plant Performance with Confidence

Agenda

• Introduction to TAS Energy• Introduction to Organic Rankine Cycle (ORC)• The benefits of a supercritical R134a ORC• The PROBLEM: over or under estimate the performance• The SOLUTION: design and achieve the performance

– The tools being used– Model 1,  build a “Virtual Plant”

• With real geometries, but not site process data– Model 2,  model heat and mass balance of an operating plant

• Reflects plant operation on site• With site process data, but no geometries included

– Model 3, combine model 1 and model 2 to predict reality• Site data, real geometries, really predicts the reality

12/31/2013 © 2012 TAS Energy. All Rights Reserved. 9

Page 10: REW_Designing and Achieving Geothermal Power Plant Performance with Confidence

Benefits of supercritical R134a ORC

• Supercritical Organic Rankine Cycle outperforms sub‐critical cycle, from the gross and net kW generated point of view.

• Non‐flammable working fluid, eliminates the risk of fires.• Simpler to design and easier to operate than sub‐critical cycle

12/31/2013 © 2012 TAS Energy. All Rights Reserved. 10

Super-critical

Sub-critical

Page 11: REW_Designing and Achieving Geothermal Power Plant Performance with Confidence

Agenda

• Introduction to TAS Energy• Introduction to Organic Rankine Cycle (ORC)• The benefits of a supercritical R134a ORC• The PROBLEM: over or under estimate the performance• The SOLUTION: design and achieve the performance

– The tools being used– Model 1,  build a “Virtual Plant”

• With real geometries, but not site process data– Model 2,  model heat and mass balance of an operating plant

• Reflects plant operation on site• With site process data, but no geometries included

– Model 3, combine model 1 and model 2 to predict reality• Site data, real geometries, really predicts the reality

12/31/2013 © 2012 TAS Energy. All Rights Reserved. 11

Page 12: REW_Designing and Achieving Geothermal Power Plant Performance with Confidence

The PROBLEM

• Over prediction

• Guaranteed performance not met

12/31/2013 © 2012 TAS Energy. All Rights Reserved. 12

• Under prediction

• Performance does not support further development

0

1

2

3

4

0 2 4 6O

utpu

t

Dry bulb

Under Prediction

Actual

Page 13: REW_Designing and Achieving Geothermal Power Plant Performance with Confidence

Agenda

• Introduction to TAS Energy• Introduction to Organic Rankine Cycle (ORC)• The benefits of a supercritical R134a ORC• The PROBLEM: over or under estimate the performance• The SOLUTION: design and achieve the performance

– The tools being used– Model 1,  build a “Virtual Plant”

• With real geometries, but not site process data– Model 2,  model heat and mass balance of an operating plant

• Reflects plant operation on site• With site process data, but no geometries included

– Model 3, combine model 1 and model 2 to predict reality• Site data, real geometries, really predicts the reality

12/31/2013 © 2012 TAS Energy. All Rights Reserved. 13

Page 14: REW_Designing and Achieving Geothermal Power Plant Performance with Confidence

The tools

• AspenTech HYSYS simulation program• AspenTech Exchanger Design and Rating (EDR) program• Proprietary knowledge and software developed by TAS

12/31/2013 © 2012 TAS Energy. All Rights Reserved. 14

Page 15: REW_Designing and Achieving Geothermal Power Plant Performance with Confidence

Model 1, Virtual Plant at design phase

• Create a thermal model, using sound engineering practice• Size exchangers, select # of ACC, expanders and pumps• Integrate the geometries and build the true simulation model 

that allows you to do virtual experiment• Optimize output and commit to customers with confidence

12/31/2013 © 2012 TAS Energy. All Rights Reserved. 15

Page 16: REW_Designing and Achieving Geothermal Power Plant Performance with Confidence

Model 2, reflects actual operation

• The plant is successfully commissioned• Measure the flow rate, temperature and pressure• Build a plant reality thermal model to reflect the plant 

operation conditions at site. No geometries in Model 2

12/31/2013 © 2012 TAS Energy. All Rights Reserved. 16

Page 17: REW_Designing and Achieving Geothermal Power Plant Performance with Confidence

Model 3, predict the reality

• Extract Model 2 process conditions• Input Model 2 conditions to Model 1

• Model 3 now has the site process conditions and real geometries.

• Model 2 is the reality, while Model 3 is used to predict the reality with site process conditions and actual equipment selection.

12/31/2013 © 2012 TAS Energy. All Rights Reserved. 17

Model 1

Model 2

Model 3

Page 18: REW_Designing and Achieving Geothermal Power Plant Performance with Confidence

Model 3: how good we are?

12/31/2013 © 2012 TAS Energy. All Rights Reserved. 18

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100 120

Outpu

t (kW

)

Dry Bulb (F)

Model 3 Prediction Vs. Operation Data

Operation Data

Prediction

Page 19: REW_Designing and Achieving Geothermal Power Plant Performance with Confidence

Topics covered

• Introduction to TAS Energy• Introduction to Organic Rankine Cycle (ORC)• The benefits of a supercritical R134a ORC• The PROBLEM: over or under estimate the performance• The SOLUTION: design and achieve the performance

– The tools being used– Model 1,  build a “Virtual Plant”

• With real geometries, but not site process data– Model 2,  model heat and mass balance of an operating plant

• Reflects plant operation on site• With site process data, but no geometries included

– Model 3, combine model 1 and model 2 to predict reality• Site data, real geometries, really predicts the reality

12/31/2013 © 2012 TAS Energy. All Rights Reserved. 19

Page 20: REW_Designing and Achieving Geothermal Power Plant Performance with Confidence

Questions

12/31/2013 © 2012 TAS Energy. All Rights Reserved. 20

Guofu [email protected] Energy Inc.6110 Cullen BlvdHouston, TX 77021, USA

Page 21: REW_Designing and Achieving Geothermal Power Plant Performance with Confidence

Thank you for your attention

Guofu [email protected] Energy Inc.6110 Cullen BlvdHouston, TX 77021

12/31/2013 © 2012 TAS Energy. All Rights Reserved. 21