Rhodo Spiri Ll Um

Embed Size (px)

Citation preview

  • 8/10/2019 Rhodo Spiri Ll Um

    1/3

    https://microbewiki.kenyon.edu/index.php/Rhodospirillum

    Classification

    Higher order taxa:

    Bacteria; Proteobacteria; Alphaproteobacteria; Rhodospirillales; Rhodospirillaceae

    Species:

    Rhodospirillum centenum, R. photometricum, R. rubrum, R. sp.

    NCBI:TaxonomyGenome

    Description and Significance

    Rhodospirillum rubrumis a purple nonsulfur bacterium that can grow aerobically or anaerobically. It

    has the ability to live through cellular respiration, fermentation, photosynthesis, or photoautotrophic

    growth.

    Genome Structure

    None of the genomes for bacteria in the Rhodospirillumgenera have been sequenced. However,

    the regulation of nitrogen fixation occurs at the transcriptional level with the nif expression and the

    posttranslational level with dinitrogenase reductase by "reversible ADP-ribosylation catalyzed by the

    DRAT-DRAG (dinitrogenase reductase ADP-ribosyltransferase-dinitrogenase reductase-activating

    glycohydrolase) system" (Zhang et al.1999). In addition, a genetic system of the bacterial

    photosynthesis for Rhodospirillum centenumhas been developed through studying mutants

    (Yildiz et al.1991). Visit thedraft of the Rhodospirillum rubrumanalysis files made for the Joint

    Genome Institute Microbial Sequencing program for great information on the genome

    of Rhodospirillum rubrum.

    Cell Structure and Metabolism

    Rhodospirillumbacteria are Gram-negative, motile, spiral-shaped bacteria. They can grown under

    many different types of conditions including aerobic or anaerobic environments. Anaerobically, the

    bacterium uses fermentation or photosynthesis in order to produce energy as well as

    photoautotrophic growth (DOE). The nitrogen fixation system of R. rubrumuses a MoFe and an Fe-

    only nitrogenase. This system, which works with both translational and post-translational regulation

    of the nitrogenase activity and responds to both nitrogen and energy status signals, has been called

    the "best-understood example of reversible ADP-ridosylation as a regulatory system in any

    organism" (DOE).Rhodospirillum rubrumwas found to be most efficient and produce the maximum

    levels of internal photosynthetic membranes when it was grown with both succinate and frutose as

    carbon sources under microaerophilic conditions (Grammel et al.2003). However, it can grow with

    CO as its sole energy source (DOE). The structure o fthe CODH that is the center of R. rubrum's

    CO oxidation system has become a model for more complex CODHs for other organisms. In

    addition, the CO-oxidation regulon has a unique CO-sensing protein, CooA, that is "becoming a

    paradigm for gas-sensors and transcriptional regulators" (DOE).

    https://microbewiki.kenyon.edu/index.php/Rhodospirillumhttps://microbewiki.kenyon.edu/index.php/Rhodospirillumhttp://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=1081&lvl=3&lin=f&keep=1&srchmode=1&unlockhttp://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=1081&lvl=3&lin=f&keep=1&srchmode=1&unlockhttp://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=1081&lvl=3&lin=f&keep=1&srchmode=1&unlockhttp://genome.ornl.gov/microbial/rrub/http://genome.ornl.gov/microbial/rrub/http://genome.ornl.gov/microbial/rrub/http://genome.ornl.gov/microbial/rrub/http://genome.ornl.gov/microbial/rrub/http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=1081&lvl=3&lin=f&keep=1&srchmode=1&unlockhttps://microbewiki.kenyon.edu/index.php/Rhodospirillum
  • 8/10/2019 Rhodo Spiri Ll Um

    2/3

    In the absence of fructose, the bacterium only produced 20% of its maximum level of photosynthetic

    membranes. In aerobic conditions, R. rubrumconsumed the succinate and fructose simultaneously;

    however, during oxygen-limiting conditions, the bacterium preferentially consumed fructose. The

    cell processed the frutose through the Embden-Meyer-Parnas pathway. It was also found that

    under oxygen-limiting conditions, NADPH was produced mostly by the pyridine-nucleotide

    transhydrogenase. (Grammel et al.2003)

    Ecology

    Rhodospirillumbacteria can generally be found in marine environments or in some types of mud

    and soil where light is available for photosynthesis. Rhodospirillum centenumcan form swarm

    colonies that "rapidly migrate toward or away from light, depending on the wavelength of excitation"

    by using surface-induced lateral flagella, chemotaxis, and a photosynthetic apparatus (Jiang et

    al.1997).

    Bchl aPathway

    A genetic system of the bacterial photosynthesis in Rhodospirillum centenumwas developed bystudying mutants. The mutants blocked bacteriochlorophyll abiosynthesis at certain steps of the

    biosynthetic pathway leading from protoporphyrin IX to bacteriochlorophyll a. Some of the mutants

    blocked carotenoid biosynthesis early in the pathway and "exhibited pleiotropic effects on stability or

    assembly of the photosynthetic apparatus" (Yildiz et al.1991). Other mutants lacked the ability to

    make a functional reaction center complex; others still had defective cytochromes which resulted in

    defective electron transport. The last type of mutant in this study had an "enhanced repression" of

    bacteriochlorophyll due to the presence of oxygen. The genetic system and biosynthetic pathway

    can be viewed in the diagram to the right.

    CODH

    Rhodospirillum rubrum's Ni-Fe-S carbon monoxide dehydrogenase (CODH) "catalyzes the

    biological oxidation of CO at an unusual Ni-Fe-S cluster called the C-cluster" that contains a

    mononuclear site and a four-metal cubane (Drennan et al.2001). The CODH does this oxidation in

    a two-electron process:

    It is thought that the CO binds to a unique CO-binding site on the C-cluster adjacent to the

    hydroxide; this allows a metal-bound hydroxide to "attack" the CO carbon. The metal-COOH

    intermediate is then deprotonated (loses the H) and the CO2is "lost to yield a two-electron-reduced

    C-cluster" (Drennan et al.2001).

    References

    General:

    DOE Joint Genome Institute:Rhodospirillum rubrum

    Jiang, Ze-Yu, Brenda G. Rushing, Yong Bai, Howard Gest, and Carl E. Bauer. 1998. "Isolation

    of Rhodospirillum centenummutants defective in phototactic colony motility by transposon

    http://genome.jgi-psf.org/draft_microbes/rhoru/rhoru.home.htmlhttp://genome.jgi-psf.org/draft_microbes/rhoru/rhoru.home.htmlhttp://genome.jgi-psf.org/draft_microbes/rhoru/rhoru.home.htmlhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9495765http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9495765http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9495765http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9495765http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9495765https://microbewiki.kenyon.edu/index.php/File:Formula.JPGhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9495765http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9495765http://genome.jgi-psf.org/draft_microbes/rhoru/rhoru.home.html
  • 8/10/2019 Rhodo Spiri Ll Um

    3/3

    mutagenesis." Journal of Bacteriology, vol. 180, no. 5. American Society for Microbiology.

    (1248-1255)

    Yildiz, Fitnat H., Howard Gest, and Carl E. Bauer. 1991. "Genetic analysis of photosynthesis

    in Rhodospirillum centenum." Journal of Bacteriology, vol. 173, no. 13. American Society for

    Microbiology. (4163-4170)

    Cell Structure and Metabolism:

    Grammel, Hartmut, Ernst-Deiter Gilles, and Robin Ghosh. 2003. "Microaerophilic cooperation of

    reductive and oxidative pathways allows maximal photosynthetic membrane biosynthesis

    in Rhodospirillum rubrum."Applied and Environmental Microbiology, vol. 69, no. 11. American

    Society for Microbiology. (6577-6586)

    CODH

    Drennan, Catherine L., Jongyun Heo, Michael D. Sintchak, Eric Schreiter, and Paul W. Ludden.

    2001. "Life on carbon monoxide: X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon

    monoxide dehydrogenase."Proceedings of the National Academy of Sciences of the USA, vol.

    98, no. 21. (11973-11978)

    http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9495765http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9495765http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=1648078http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=1648078http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=1648078http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=1648078http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=1648078http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=14602616http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=14602616http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=14602616http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=14602616http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=14602616http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=14602616http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=11593006http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=11593006http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=11593006http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=11593006http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=11593006http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=11593006http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=14602616http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=14602616http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=14602616http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=1648078http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=1648078http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9495765