Riemannian Geometry: a Beginner's Guide

Embed Size (px)


Frank MorganJones and Bartlett Publishers (1993)

Text of Riemannian Geometry: a Beginner's Guide

- - - - -- --..-- II A 1'..11'..1. A I'.. 1 .....,I". -a 1 '-I 1 '-I -a 1 '-I..L.' J..1.. T..L.L .1...1.. .... ..1.. .... ..L.L .1...1.. ....GEOMETRY- - - -- -- --- -----"-__ J __I I "'I "'I __I J "\.. II 1 I I "' __f"""'. II , 111"11"11 ,.,'1111111- - - -- --- -FrankMorgann. n.+ 7I.,fro ..1A-I:" " ,IT,f.1,0Wlillamsfown MassaChusettsllluSrrateanv.I ames t". tsreat

....,,."', .. vJ"/'>MassachusettsInstitute of TechnologyDrlal.I'11I-T --"IT" _1 Tll .. 1. 11J 1111[' ,:"!.auu.oalUt;ll r I II JIII:"!.III :"!.n T JEditorial, Sales, andCustomer ServiceOfficesJonesand Bartlett PublishersOne Exeter PlazaBoston,MA 02116Jonesand Bartlett Publishers InternationalP.O. Box1498London W6 7RSEnglandManuscript typed by Dan RobbCopyright 1993 by Frank MorganAll rights reserved. No part of the material protectedby this copyright notice may be reproducedor utilized in any form or by any means,electronic or mechanical, including photocopying,recording, or by any informationalstorage and retrieval system,without written permission fromthecopyright owner.Library of Congress Cataloging-in-Publication DataMorgan, Frank.Riemannian geometry: a beginner's guide / Frank Morgan.p. em.Includes bibliographical referencesand index.ISBN 0-86720-242-41. Geometry, Riemannian. I. Title.QA611.M674 1992516.3'73-dc20Printed in theUnited States of America96 95 94 93 92 10 9 8 7 6 5 4 3 2 192-13261CIPPhotograph courtesy of the Morganfamily; takenby the author'sgrandfather, Dr. Charles Selemeyer.This book is dedicated to my teachers-notably FredAlmgren, ClemCollins, ArthurMattuck, Mabel Riker,mymom, andmydad. Here as achildI got anearlygeometry lesson frommy dad.F.M.ContentsPREFACE Vlll==i . INTRODUCTION 12. CURVES IN an 53. SURFACES IN R311-------zJ: SURFACES IN Rn255. m-DIMENSIONAL SURFACES IN Rn316. INTRINSIC RIEMANNIAN GEOMETRY 397. GENERAL RELATIVITY 558. THEGAUSS-BONNET THEOREM 659. GEODESICSANDGLOBAL GEOMETRY 773B. GENERAL NORMS 89SELECTED FORMULAS 101BIBLIOGRAPHY 105SOLUTIONS TO SELECTEDEXERCISES 109SYMBOL INDEX 113NAMEINDEX 115SUBJECT INDEX 117---Prefaee---Thecomplicatedformulations of Riemanniangeometrypresent adaunting aspect to the student This little book focuses on the centralconcept-curvature It givesanaivetreatment of Riemanniangeo-metry, basedonsurfacesinR nrather than onabstractRiemannianmanifolds.The more sophIstIcated mtnnslC formulas folIow naturalIy. Laterchapters treat hyperbobc geometry, general relatIVIty, global geome-try,and some current research on energy-mlmmlzmg curves and thelsopenmetnc problem. Proofs, when given at all, emphasize the mainideasandsuppressthedetailsthatotherwisemightoverwhelmthestudent.This bookgrewout of graduate courses I taught on tensoranalysis atMIT in1977 and on differential geometry at Stanford in1987 and Princeton in1990, and out of my own need to understandcurvature better for my work. The last chapter includes research byWilliams undergraduates. I want to thank my students, notably AliceUnderwood; Paul Siegel, myteachingassistantfortensoranalysis;andparticipantsinaseminar at WashingtonandLeeledbyTimMurdoch.Other books I have found helpful include Laugwitz's Differentialand Riemannian GeOl1tetry ftl, IIicks's Notes on Differential Geome-----rtlrt'yt-[Hi](unfortunately out of print), Spivak'sComprehensiveIntlo-ductiontoDifferential GeometlyfSj, andStoker'sDiffelential Geo-metlY fS!jf---.------------------------I am cunently using this book andGeometriclt1easureTheOlY.ABeginnet'sGuide both so happily edited by Klaus Peters andillustlatedby JimBledt, as texts for an advanced, one-semesterundelgtaduate courseat Williams.WilliamstownFrank.Morgan@williams.eduF.M.The central concept of Riemanniangeometryis curvature. It de-scribesthemost importantgeometricfeaturesofracetracksandofuniverses. Wewill beginbydefiningthecurvatureofaracetrack.Chapter 7 uses general relativity's interpretation of mass as curvatureto predict themysterious precession of Mercury's orbit.Thecurvature Kof aracetrackisdefinedastherateat whichthedirectionvector Tof motionisturning, measuredinradiansordegrees per meter. Thecurvatureis bigonsharpcurves, zeroonstraightaways. See Figure1.1.Atwo-dimensional surface, suchasthesurfaceof Figure1.2,can curve different amounts indifferentdirections, perhaps upwardinsomedirections, downwardinothers, andalongstraightlinesinbetween. Theprincipal curvatures"I and"2arethemost upward(positive) andthemost downward(negative), respectively. For thesaddle of Figure 1.2, it appears that at the originKl - andK2- -1.The mean curvature H - Kl +Kz- 'Ihe Gauss cumature G-At thesouth pole of theunit sphere of Figure1.3, Kl - K2 - 1,H 2, andG 1.Since KI andK2measuretheamountthatthesurface is curvingin space, they could not be measUIed by a bug confined to thesurface. They are "extrinsic" properties. Gauss made the astonishingdiscovery, however, that theGauss curvatureG KIK2 can,in prin-"" L CHAPTER1

T 7T.//.-.- ............... ............--""""'"I" I,I,lCbig,T.

lC small-T TT)"""'"I"""'-..IT"-

......... ............ .............. .-- J.,..",1 1 r v;" "''' th", r",t", nf-.,.ot '.f'lnlp. np. rTom rnp. nH: TP."-I

hl"-'OTIhlp. I(T:\l1"" '"1"- :\11 '"Anm- lnK h:\" m f'l1TV:\-'" .. .ITP."- 1Ulll ... \..ii VVvl U I' r D.. D' 1- 'Jk'U''' "u'" ........"''''.. "' ................... '" ...... '" 61. "'Uv JR. = ),R... (7)J' 'J,iYI' ... . I' ,.11 yuulllIllll.. UIfiijkl i:1:S i:1 Illi:1l11XUIIi'! , , ,Ll\i1k1J Ll\i1k2J Ll\i1kmJ,[Rimkd [Rimk2] [Rimkm]thenR;1isthecorresnondim!matrixoftraces sothedefinitionofRic as a bilinear formdoes not really denend on the choice oforthonormal coordinates forTvS. Its application to el yields the sum .1. .1 .1V.l U.lV VU.lV V.l UA.li:> 1. o R 1(' (0. \ - fl - ).fl .. - ). fl ..1 , Ij '11-'Ul-IIIIi i401m.......=2.. K(el /\ eJ.I 'L.r""[JA D'T''CD .. ..Henceforany orthonormal basisVI, .., Vrn for TpS,rnVI . Ric (VI) = K(VI /\ Vi)' (8)i=2and foranyunit V ETpS, r",.1 I 9. vKIC lUI I 1\.1U/\ WI. IIunl -" IW.LU 'T"1. .1. n' 1. .J:.Luu.., ..u"" .L.......ua", au a", au'0' sectional curvatures.The scalar curvature R is defined as the trace of the Riccicurvature:R = (10)iHenceforany orthonormal basis v, . .... Vn>for TnS.'" mlm 11 IJ< L L KIll 1\ IJ:I I KIl"l I I I 1.,,,1(j])I -J JrE'&'. t17> 1. ... .J: .11 " 'T' C' 'T"1. ..1._..., ..u"" "''''' .. au6.- .L lJu, .L UU.., ..U"" "a .. :n_..... 1..J: .11 .1 .., rr..v .. U"" a -0 VLau ,,",UL 'a ..a.. a yvu....Remark. Historically Ric used to have the opposite sign. Sometexts givetheRiemannian curvaturetensor Rijkl the opposite sign.5.3. The covariant derivative. Let S be a C2m-dimensional surfacein.K 1I T isaoirreremiaDJeruncrionon.'\ menmeoerivalive vU. . .IS a veCIOrnelO. nUl III IS a veCIOrnelO lor a nelO or malflces. . .or 1 LJUU.Wl:SCInlnen (ne\. .val.lVe .vWIll nave. lO.:>. Int: InlO1 ISlnt:. - --

unt u.. L ...."" L""" .. 'r '--' _.....1.. ...... ' _1. ,11' 1 .. u.., .. ..,..,U uu.., ..... u .......,.A y"tn h r 1that is, a geodesic forthe standard metricds2=dx 2+ dy 2 + dz 2+ dt2 (1)It is actuallya geodesic forany metric of the form..1_2...LA. 2...L..1_2...L..1.2'1\""..,"1"""" "L "".r"4""\ ...,........ . . . . .It:li:1l1VllYUIl lWU1 'T't. ... 1 .1... 11 . 1 i'.&......"" ..u ',," 'V.."J,,"'V'V"" L"'" ""u.. ...u... .. .. L,u.."",," 'V....1.. .......... 11 n.:"t.UU"'L .. .." L'V.. 'V... ..,..,.. .., ....,'0,......velocity relative to one another. (Of course, in acceleratingreferenceframes, thelawsofphysicslookdifferent. Cupsof lemonade in acceleratingcars suddenlyfall over, andtennis balls onthefloors of rockets flattenlike pancakes.)2. The speed of a light beam is the same relative to any inertialframe, whether moving in the same or the opposite di-{thil1. , orr ".I ..., or '0thp h" thp"0 r .I-It toothpr.I r1;;.1ll'htlmp'l;;. I;;. rlown hH1h \'-' '-',Einstein'spostulatesholdformotionalonggeodesics in space-time if onetakes the special case of (2):ds2=-dx2- dy 2 -dz 2+ c2dt2 (3),..n,1/'\ rHA1>TPR7 thp. I w1thr thp. of l10ht WP. w111. '-'tA r 1Thp. I of'-'hllt IAAin-.I'-''.1....or np.w ot thp. ot.thp nAt tAr thpnAvpl0'r rthat thesquare of the length of curves in space-time can be positiveor negative, all definitions and properties remain formally the same.Inparticular, positivesectional curvaturemeansthat parallel geo-desics converge (the square of the distance between them decreases).(See Section 6.7.)This newdistance s is oftencalled"proper time" T, since amotionless particle (x, y, Zconstant) has ds2=dt2Ifwereplacethesymbol s byT and changetospherical coordinates, theLorentzmetric becomesdT2= -dr2- r2dq/ - r2sin2

'"'T""'''' th"t fLt. .... ? ....... J J"leo: nv V V 1'TT2/l2.Assumeyis parameterized by arc length t. Let Wbean ortho-GEODESICSANDGLOBAL GEOMETRY 87gonal, parallel unit vectorfield on'Y.Take as a variational vectorfieldI ".,. \(sin J t )W, which vanishes at theendpoints of 1'. By (4), the initial\ I-' , ,VI.-0I;' uy[2 ,.I I 7T 7T\ I . ,,7T \ - 1 cos 1 t } sm 1 t }1, W)

0I7T227T.27T . 27TA----,12 \.-v;:' 1 12 ;:,IU 1 V.0Thic.... , .. 'nfthp .,.nf ,,\, 'JOC 'JOJn'JOth.thpnrnnfI r--rT> JTn thor ___ f n'e- ,.,J."70 ,,___ ..lA h.,.,or,-

-.,.n ... " ..... ;f- .'- ,TTIT nf-... f- ...L'-'L.. .....0 of l' (extendingWbyparallel transport). Averagingover all suchchoices permits us toreplacethe boundonKbyaboundonitsaverage, theRicci curvature. Thetheorem of Myers concludes thatif Ric> (n- l)Ko, then diam M< 7T/VKo.9.6. Constant curvature, the Sphere Theorem, and the Rauch Com-parisonTheorem. Thissection justmentionssomefamousresultson a smooth,connected,completeRiemannian manifold M.Suppose that M is simply connected, so every loop can be shrunkto a point. Suppose the sectional curvature Kis constant for allsections at all points. By scaling, wemay assumeKis1, 0, or -l.If K=1,Mis theunit sphere. If K=0, Mis Euclidean space.T T7 .. -"1' ,, ,.'T'1. .'-..J ,,.H..n. .I., H.I. "U]P'-.I.VVU'- "pa,-,- .I.UU" u'- auu'-' -'-'