24
ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃黃黃 ) Tsung-Yao (Andy) Chen ( 黃黃黃 ) Jih-Run (J.R.) Tsai ( 黃黃黃 )

ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

Embed Size (px)

DESCRIPTION

ROCSAT-2 Thermal Design Description ISUAL(AP, SP, CCD and AEP) is thermally isolated from the payload platform to reduce the platform’s thermal distortion. The locations of the AEP and IRU had changed in the CDR phase. ISUAL has the independent thermal control to keep the temperatures within their limits. Thermostat controlled heaters are used on ISUAL units to keep the temperatures within their limits in ASH mode. Thermal control devices such as the radiator, MLI and heater are used to maintain the temperatures within their operating/non- operating limits.

Citation preview

Page 1: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2

Critical Design ReviewISUAL Thermal Interface Design / Analysis Report

Jeng-Der (J.D.) Huang (黃正德 )Tsung-Yao (Andy) Chen (陳宗耀 )

Jih-Run (J.R.) Tsai (蔡志然 )

Page 2: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2

Contents

• Thermal Design Description

• Thermal Analysis Assumptions

• Configuration

• Power Dissipation

• Thermal Analysis Results

• Results Discussion

• Thermal Hardware Description

• Issues and Concerns

Page 3: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2Thermal Design Description

• ISUAL(AP, SP, CCD and AEP) is thermally isolated from the payload platform to reduce the platform’s thermal distortion.

• The locations of the AEP and IRU had changed in the CDR phase.

• ISUAL has the independent thermal control to keep the temperatures within their limits.

• Thermostat controlled heaters are used on ISUAL units to keep the temperatures within their limits in ASH mode.

• Thermal control devices such as the radiator, MLI and heater are used to maintain the temperatures within their operating/non-operating limits.

Page 4: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2

The internal heat dissipations of ISUAL units used orbit-averaged values. The predicted interface temperatures are unit radiator temperatures for

worst hot and cold cases. The units are thermally isolated from the payload platform with interface

conductance value of 0.064 W/°C. The heat of each unit part is conducted through the screws with

conductance values of 0.76 W/°C for M4 type screw and 0.6 W/°C for M3 type.

The conductance between the lens and lens/CCD assembly of CCD Imager is 0.02 W/°C.

The Spectrophotometer filter is insulated from the ring with conductance value of 0.002 W/°C.

Thermal Analysis Assumptions

Page 5: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2Configuration

STR

Array Photometer

Spectrophotometer

CCD ImagerAEP

RSI

IRU

Page 6: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2Configuration (Continued)

AEP

IRU

RSI

Spectrophotometer

Array Photometer

CCD Imager

STR

Page 7: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2

• Nominal hot (operating)

Power Dissipation

Power Dissipation (W) Phase Number 1 2 3 4 5 6 7 8 9 10 11 12 13 Mean

CCD Imager 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9

Spectrophotometer 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4

Array Photometer 11.9 11.9 11.9 4.8 4.8 4.8 4.8 4.8 4.8 4.8 11.9 11.9 11.9 7.7

AEP 25.4 25.4 25.4 22.6 22.6 22.6 22.6 22.6 22.6 22.6 25.4 25.4 25.4 23.7

Page 8: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2

• Nominal cold (stand-by)

Power Dissipation (Continued)

Power Dissipation (W) Phase Number 1 2 3 4 5 6 7 8 9 10 11 12 13 Mean

CCD Imager 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9

Spectrophotometer 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4

Array Photometer 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8

AEP 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6

Page 9: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2

• ASH mode

Power Dissipation (Continued)

Power Dissipations (W)Phase Number 1 2 3 4 5 6 7 8 9 10 11 12 13 Mean

CCD Imager 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Spectrophotometer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Array Photometer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

AEP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Page 10: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2

• Radiator area requirement

Thermal Analysis Results

Area(cm2)

CCD Imager 265.0 Spectrophotometer 18.6 Array Photometer 152.0

AEP 934.0

Page 11: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2

Thermal Analysis Results- Radiator and Heater Locations

Radiator(Heater with 4 thermostats imbedded)

Array Photometer

Radiator(Heater with 4 thermostats imbedded)

CCD Imager

AEP

RadiatorRadiator(Heater with 4 thermostats imbedded)

Spectrophotometer

Page 12: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2

Thermal Analysis Results (Continued)

(129, -417, 744)

(129, -417, 540)

(129, -487, 407)

(129, -741, 539)

(129, -741, 679)

(129, -651, 769)

(129, -521, 853)

Z

Y

• AEP Radiator Coordinates (Provided by Astrium)

Unit: mm

Page 13: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2

• Orbit averaged heater power requirement

Thermal Analysis Results (Continued)

Set-point (C) Nominal Hot(W)

Nominal Cold(W)

ASH Mode (W) Nominal

mode ASH

mode

CCD Imager - - 1.8 - -25.0/-20.0*

Spectrophotometer - - 0.4 - -25.0/-20.0* Array Photometer - - 2.7 - -25.0/-20.0*

AEP - - - - -

*Set-point of Thermostat: -25 3 C / -20 3 C, dead-band 4 C

Page 14: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2

• Predicted interface temperatures for nominal hot case

Temperature (oC) Predicted Operating Non-Operating Margin

Min. Max. Min. Max. Min. Max. Min. Max.

CCD Imager 15.5 16.3 -20.0 30.0 - - 35.5 13.7 Spectrophotometer 10.2 10.8 -20.0 30.0 - - 30.2 19.8 Array Photometer 12.3 13.3 -20.0 30.0 - - 32.3 16.7

AEP 34.4 41.4 -40.0 50.0 - - 74.4 8.6

Thermal Analysis Results (Continued)

Page 15: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2

• Predicted interface temperatures for nominal cold case (stand-by mode)

Temperature (oC) Predicted Operating Non-Operating Margin

Min. Max. Min. Max. Min. Max. Min. Max.

CCD Imager 9.3 10.0 -20.0 30.0 - - 29.3 20.0 Spectrophotometer 1.1 1.8 -20.0 30.0 - - 21.1 28.2 Array Photometer 5.5 6.9 -20.0 30.0 - - 25.5 23.1

AEP 17.4 20.7 -40.0 50.0 - - 57.4 29.3

Thermal Analysis Results (Continued)

Page 16: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2

• Predicted interface temperatures for ASH case

Thermal Analysis Results (Continued)

Minimum temperature (oC) Predicted Operating Non-operating Margin

Min. Max. Min. Max. Min. Max. Min. Max.

CCD Imager -25.0 -20.0 - - -35.0 40.0 10.0 60.0 Spectrophotometer -25.0 -20.0 - - -35.0 40.0 10.0 60.0 Array Photometer -25.0 -20.0 - - -35.0 40.0 10.0 60.0

AEP -37.6 -33.0 - - -55.0 55.0 17.4 88.0

ISUAL instruments are thermally controlled by thermostats in ASH mode.

Page 17: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2

• CCD Imager, Spectrophotometer and Array Photometer survival heaters are controlled by thermostats instead of thermistors, and the dead-bands (the difference between lower and upper temperature set-points) for the thermostats are all 5C.

• The top extended surface of the AEP is used as the radiator, and ISUAL total radiator areas are 0.143 m2.

• Both worst hot and cold predicted temperatures of ISUAL are within the maximum and minimum operating/non-operating limits with proper margins by applying radiators and heaters.

• CCD Imager and Spectrophotometer have more detailed internal thermal models and these can improve the accuracy of interface temperature predictions.

Results Discussion

Page 18: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2Thermal Hardware Description

• The thermal filler “Cho-Them” should be applied between the AEP box and radiator to increase the interface thermal conductance.

• Silver-Teflon SSM (Second Surface Mirror) radiator is applied on unit surfaces to radiate unit waste heat to the space.

• The ISUAL MLI design has been completed, and the MLI drawings for AEP, CCD Imager, Spectrophotometer and Array Photometer were made by NSPO. These drawings should be reviewed by UCB and then Astrium.

Page 19: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2CCD Imager MLI Drawing

Page 20: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2

CCD Imager MLI Drawing(Continued)

Page 21: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2Spectrophotometer MLI Drawing

Page 22: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2Array Photometer MLI Drawing

Page 23: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2AEP MLI Drawing

Page 24: ROCSAT-2 Critical Design Review ISUAL Thermal Interface Design / Analysis Report Jeng-Der (J.D.) Huang ( 黃正德 ) Tsung-Yao (Andy) Chen ( 陳宗耀 ) Jih-Run (J.R.)

ROCSAT-2

• Current analysis results are based on very limited unit thermal information. The more detailed analysis must be performed after the following information are given by UCB.

More detailed mass break down for each unit Clear power profile for each unit in nominal, stand-by, and survival modes Heat transfer paths inside the units, especially in some critical parts such as lens, filters, etc. Lens (instrument-controlled) heater operations (i.e., on/off, temperature set point, etc.) CCD thermoelectric cooler thermal capability

• NSPO is only responsible for ISUAL unit thermal interface control based on the unit internal thermal information given by UCB, and UCB should be responsible for ISUAL unit internal design and thermal performance.

Issues and Concerns